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ABSTRACT

For a mobile robot to interact with its environment in complex ways, it must possess a model of
the environment, i.e., a map. It is generally infeasible for an accurate map to be constructed by
hand and provided to the robot prior to deployment, so the robot must build a map online.

Most mapping algorithms assume the availability of frequent, high fidelity feedback from
the environment acquired using sensors such as scanning laser rangefinders. Such sensors pro-
vide dense, accurate, and long-range data at great expense: they typically cost thousands of (US)
dollars, consume significant power and space resources, and require the use of powerful com-
puters for data processing. These sensors are therefore unsuitable for deployment in many ap-
plications, e.g., consumer robots, disposable robots for search and rescue or hazardous material
detection, or mobile sensor networks.

This thesis instead examines the mapping problem in the context of limited sensing. Sen-
sors such as infrared rangefinder arrays are inexpensive, low-power, and small, but they give
only low-resolution, short-range feedback about the environment and are thus difficult to use
for mapping. The main contributions of this thesis are a theoretical characterization of the rela-
tive capabilities of mapping sensors, and the development and demonstration of several practical
algorithms for building maps with real, inexpensive sensors.

The thesis begins by examining a generalized model of mapping sensors. The model is
applied with a simple mapping algorithm to characterize the space of sensors in terms of their
suitability for mapping, and theoretical bounds on map error in terms of the capabilities of the
sensor are derived. The thesis then turns to practical algorithms for simultaneous localization
and mapping (SLAM) with limited sensors. In the context of particle filtering SLAM, an approach
is formulated for accumulating low-resolution sensor measurements in “multiscans” that contain
sufficient information for feature extraction and data association. To manage uncertainty due to
limited feedback, a new technique for incorporating prior knowledge in the mapping process is
developed, and new sampling techniques to combat estimation degeneracies in particle filtering
SLAM are described. The algorithms presented in the thesis are validated experimentally through
simulation, tests on well-known benchmark data sets, and implementation and deployment on
real robots, and a working implementation of particle filtering SLAM on an 8-bit microcontroller
with a small infrared rangefinder array is described in detail.

xxi
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1
INTRODUCTION

The ability of a mobile robot to move efficiently and accurately throughout the world depends
crucially on the robot’s model of the world — i.e., its map. A robot’s map-building capability
is primarily a function of its perceptual and computational capacities. Unlike humans, whose
sensing capabilities capture minute details of environment geometry, structure, texture, and color,
today’s robots must make do with much less information. Nevertheless, by employing accurate
(and expensive) sensors, such as scanning laser rangefinders, research in robot mapping has led
to algorithms that can build reasonably precise maps of real-world environments.

Most current mapping algorithms fail, however, when presented with much lower-fidelity
sensors. For example, a simple array of a few infrared rangefinders provides data that is too
sparse to be used to observe meaningful environment features frequently and accurately. Yet, for
robot mapping to be widely employed — e.g., in consumer products — it must be possible to
build maps with inexpensive sensors. Other constraints on power usage, sensor size, and com-
putation further reinforce the need for mapping techniques that work with very limited sensing.

1.1 The impact of sensing limitations
Imagine a person, relocated to an unfamiliar building, perhaps outfitted with heavy mittens, and
blindfolded (all voluntarily, of course). Our subject is given the following objective:

Explore the building, using only outstretched arms and contact with walls. When
commanded, return quickly to the starting location.

A simple enough task, but upon trying it yourself, you may find the goal remarkably difficult to
achieve. Without visual and other feedback from the environment, you quickly become disori-
ented and the accuracy of your estimated “configuration” with respect to the world is severely
reduced. In exploring a building while blindfolded, feedback is restricted to what can be “ob-
served” by your outstretched hands, which is generally insufficient to recognize a specific loca-
tion. In particular, it is extremely difficult to uniquely recognize a place — say, a specific office or
desk among many — given only “touch” information from mitten-covered hands.

This example illustrates a notion of limited sensing that closely corresponds to the sens-
ing of some of the robots studied in this thesis. The range at which obstacles can be detected is
relatively small — an arm’s length. Furthermore, the spatial resolution of the subject’s sensing is
limited: s/he has only two arms. These and other related limitations, such as sensor noise, are
examined in the following chapters.

1.2 Thesis overview
This thesis proposes algorithms for mapping with limited sensing. The algorithms can be used
to build accurate maps of indoor environments with low-resolution, short-range sensors such
as arrays of infrared rangefinders. Toward this end, the thesis addresses both theoretical and
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2 INTRODUCTION

practical aspects of the mapping problem and documents the results of simulated and real-world
experiments for the presented algorithms.

The thesis starts with a theoretical examination of the relationship between a robot’s sens-
ing capabilities and the quality of the map that is produced. A broad model of mapping sensors is
employed, along with several simplifying assumptions about the robot and environment, to ob-
tain analytical bounds on map error in terms of the model parameters. These results are applied to
realistic sensors, including scanning laser rangefinders, SONAR arrays, and infrared rangefinder
arrays, to compare the relative mapping abilities of the sensors.

The remainder of the thesis focuses on practical algorithms for simultaneous localization
and mapping (SLAM) with limited sensing. All of the proposed SLAM algorithms are based on
the relatively new but widely successful particle filtering paradigm. The thesis first shows how
particle filtering SLAM can be adapted to accommodate low-resolution sensors that cannot in-
stantaneously observe meaningful features of the environment. Second, a new particle filtering
algorithm is developed to enable the incorporation of prior knowledge about the environment in
the filtering process, in the form of relative constraints on the map. Third, the thesis describes
several new sampling techniques for particle filtering SLAM that significantly improve the con-
sistency of the estimation process. While the last two contributions are especially relevant to the
limited sensing case, they are useful as well for robots with traditional mapping sensors such as
laser rangefinders.

One of the most important advantages of particle filtering SLAM algorithms is their com-
putational efficiency and flexibility. A robot with severe sensing constraints is likely to also be
limited in its computational abilities. The last part of the thesis demonstrates that particle filter-
ing SLAM algorithms can be implemented not only for robots with limited sensing, but on board
robots with limited computing and sensing. A particle filtering implementation for robots with
an 8-bit microcontroller and a five-sensor infrared rangefinder array, using only fixed point num-
bers, is described and demonstrated.

1.3 Sensors for mapping
For a robot to interact in complex ways with its environment — traversing corridors, driving to
the office, playing soccer, or petting a dog — it generally must possess a model, or map, of the
environment. In some circumstances, like the controlled and fixed environment of an automated
factory, it is reasonable to create a map before the robot is ever deployed. Most of the time how-
ever, this is not an option: CAD models cannot capture the haphazard placement of desks, boxes,
couches, shelves, lamp posts, parked cars, and sleeping dogs encountered in reality. It is there-
fore necessary for a robot to build a map of its surroundings online, i.e., as it moves through those
surroundings.

The ability of a robot to build a map relies most heavily on its perceptual and computa-
tional capabilities. A robot that cannot sense its surroundings cannot model them, and a robot
that cannot process sensory feedback in real time is as bad off as a robot with no feedback what-
soever. Modern robots vary widely in the sensors and processors they employ. Computing on
robots ranges from bare-bones 8-bit microcontrollers to onboard multiprocessor high-end PCs.
Sensing is similarly diverse, extending from the simplest on-off bump sensors to GPS, scanning
laser rangefinders, and pan-tilt stereo cameras. While intuitively it seems desirable to use the
most powerful computing and sensing possible to build maps, in reality there are a number of
tradeoffs, ranging from power consumption to sheer cost.

This section investigates some of the characteristics of sensors that can be used for map-
ping. We show that, in order to do mapping with low-cost, low-power, lightweight sensors, we
must make do with much less data than is normally available to robot mapping algorithms, and
thus, we must investigate new algorithms for building maps with limited sensing.
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1.3.1 Types of sensing limitations
This thesis primarily focuses on limitations in exteroceptive perception — sensors that observe the
world. Proprioceptive sensing, which observes the robot’s internal state, is also important to robot
mapping. The most frequently used proprioceptive information for mapping is encoder infor-
mation from actuators, e.g., odometry from a wheeled robot’s motors. Clearly proprioceptive
information is useful in mapping, but it is not sufficient for mapping because it is impossible to
build a model of the world without observing it.

For now, we categorize exteroceptive sensors according to three capabilities: the range of
the sensor, its spatial resolution, and its accuracy. (Chapter 3 examines these and other sensing
limitations in more detail.) To make precise our interpretation of these characteristics, we assume
the sensor (or array of sensors) is mounted in a fixed location on the robot chassis, and consider
the “instantaneous” returns of the sensor. This is appropriate for most formulations of mapping,
for which an “observation” is the data produced by the sensor at a specific time, or over a very
short time interval.

Table 1.1 on page 4 presents a comparison of several different exteroceptive sensors that
can be used for mapping. The table is sorted (approximately) according to the cost of the sensor.
The primary conclusion that can be drawn from the table is that that to do mapping with low-
cost sensors, one must settle for sensors that are somehow limited, be it in range, resolution,
or accuracy. Below, we discuss these three sensor capabilities in more detail and discuss how
limitations in each affect mapping. In Section 1.3.2 we address some of the costs associated with
different sensors.

1.3.1.1 Spatial resolution limitations
The spatial resolution of mapping sensors is widely varied. The resolution of arrays of simple
sensors such as bump, SONAR, and infrared sensors is dependent upon the arrangement of the
array. Typically, a small number of individual sensors (e.g., 5, 8, 16, or 24) are spaced evenly
around the perimeter or half-perimeter of the robot. (In Chapters 4–5 of this thesis we generally
assume 5 sensors placed at −90◦,−45◦, 0◦, 45◦, and 90◦ in the forward-facing reference frame of
the robot, as shown in the diagrams in Table 1.1.) With this “sparse” sensing it is impossible to
instantaneously observe significant features of the environment that could be used to build maps.

In contrast, a scanning laser rangefinder offers dense coverage of the environment, typi-
cally in one or one-half degree increments over a 180◦ or 360◦ field of view. Monocular and stereo
cameras are similarly high-resolution, although they generally have smaller fields of view. An
omnidirectional camera gives fairly dense coverage over the full 360◦ field of view.

One approach to compensate for low-resolution sensing is to sweep the sensor over the
environment, either by mounting it on some actuated mechanism, or by using the motion of the
robot. The former approach introduces extra mechanical complexity and costs but may be feasible
in some circumstances. This thesis instead examines the latter technique in Chapter 4, building
maps with low-resolution sensors without introducing mechanical complications.

1.3.1.2 Range limitations
The range capabilities of robot sensors vary from zero range (e.g., bump sensors) to very long
range (e.g., cameras, which are limited only by visibility conditions). The simple consequence of
range-limited sensing is that a robot cannot observe, act on, or map portions of the environment
that are outside the sensor’s effective range.

Thus, for a mapping algorithm to build accurate maps with range-limited sensing, the algo-
rithm must actively control the robot’s motion to pass the sensor over portions of the workspace
to be mapped. Most mapping algorithms are “passive” in nature and do not direct the robot’s mo-
tion, but by incorporating an exploration strategy the impact of range limitations can be reduced.
While this thesis does not address the exploration problem, Chapter 3 examines analytically the
influence of range restrictions on mapping efficiency.
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Table 1.1: Sensors: capabilities and costs. For each sensor an overhead schematic is shown,
depicting the sensor’s (ideal) returns for a simple situation with several obstacles.
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1.3.1.3 Distance accuracy limitations
In addition to range and resolution limitations, sensors are also subject to accuracy constraints due
to noise or other characteristics of the sensor. Most approaches for mapping make use of range
and bearing measurements to build maps, so we consider the accuracy of sensors in measuring
both the distance to an obstacle and the angle to the obstacle in the robot’s reference frame.

Within their maximum range, sensors are subject to inaccuracy in measuring the distance
to an object. For example, a SONAR beam may reflect off a specular surface, yielding an inaccu-
rate measurement. Infrared and laser sensors are typically fairly accurate at measuring distance,
although their performance may vary with environmental conditions, e.g., temperature. Stereo
cameras measure range but the accuracy of the measurements depends crucially on the calibra-
tion and resolution of the cameras. By combining the information from multiple sensor returns,
inaccurate range information can be used to obtain an accurate estimate of the features being
observed.

Mapping can also be done with sensors that do not measure range at all — so-called
“bearing-only mapping.” Monocular or omnidirectional cameras cannot instantaneously deter-
mine depth information, but by exploiting the motion of the robot and image registration tech-
niques, range information can be estimated in similar fashion to stereo cameras.

1.3.1.4 Bearing accuracy limitations
Many sensors measure the bearing to an observed object. For sensors in an array, the bearings
at which objects can be observed depend on the placement of the individual sensors. Depending
on the beam width of a sensor, measured bearings may be very uncertain. For example, a SONAR
sensor’s beam width is typically around 30◦ and it is impossible to instantaneously determine the
bearing within the beam of an obstacle generating a return. A bump sensor can be considered
to have a “beam width” as well, i.e., the physical width of the bumper that triggers the sensor
toggle. Typically infrared and laser sensors have very small beam widths, and the accuracy of
bearing measurements returned by cameras is limited mainly by the camera resolution.

Analogous to bearing-only mapping is the idea of “range-only mapping.” Sensors that
only measure distance are uncommon in mapping, but one example is the use of RF signal strength
to measure the range to beacons. To build maps encoding the locations of the beacons, one
can compensate for the lack of bearing information by observing beacons from multiple van-
tage points. When faced with highly inaccurate bearing measurements such as those given by
SONAR sensors, one may wish to treat mapping as a range-only problem, as in (Leonard et al.,
2002).

1.3.2 Sensor cost considerations
Barring other considerations, we should use the longest range, highest resolution, most accurate
sensors available to build maps. This has traditionally been the approach taken in robot mapping
research, in which laser rangefinders are predominant. However, for mapping outside the context
of research, there are several tradeoffs to consider depending on the intended purpose of the
robot. These tradeoffs lead to the conclusion that in many circumstances, we must build maps
using limited sensors.

1.3.2.1 Monetary cost
The most immediate consideration is the monetary cost of the sensor. Scanning laser rangefind-
ers typically cost thousands of US dollars, far too much for use in, e.g., consumer products or
“disposable” robots for search and rescue or hazardous waste cleanup. Other reasonably accu-
rate, long-range, high-resolution sensors such as stereo cameras are somewhat less expensive but
remain costly. To build mass-producible robots with tight production cost constraints, cheaper
sensors such as infrared rangefinder arrays or basic monocular cameras must be used.
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1.3.2.2 Power
Many real-world robotics applications are subject to power constraints. For example, mobile
nodes in a sensor network may need to operate for hours or days without recharging. Further-
more, the cost and size of batteries and the power requirements of other devices (such as com-
puters) on the robot may demand the use of sensors that need very little energy to operate. For-
tunately, when compared with the power costs of actuation, computation, and communication,
most sensors are reasonably efficient.

1.3.2.3 Size, weight, and convenience
Related to energy costs are issues of sensor size and weight: a robot must be large enough to
support the sensor it uses, and in many cases larger robots are too cumbersome to be useful.
Laser rangefinders typically consume significant space and weigh at least a kilogram, as opposed
to several (collective) grams for a small array of infrared or SONAR sensors. Cameras (CCD or
CMOS) are also reasonably small, in part due to miniaturization for inclusion in consumer-level
digital cameras and cellular telephones.

Some sensors have special placement requirements as well. For example, an omnidirec-
tional camera must be mounted so as not to be obstructed by any part of the robot. Such require-
ments may be inconvenient depending on the nature of the particular robot.

1.3.2.4 Computational costs
Finally, the computational costs associated with the data produced by a sensor must be consid-
ered. A high-resolution sensor produces many readings per scan that must be processed to build
a map. Generally the amount of computation associated with a sensor for mapping is simply a
function of the amount of data produced by the sensor, and typically much of the computation is
expended in extracting features from the raw sensor returns. For example, image processing for
edge or point extraction is usually applied to pixel data produced by monocular cameras.

Occasionally it is reasonable to use raw sensor data for mapping and no feature extraction
is necessary. This is the case, for example, for laser scan-matching techniques that compare raw
laser readings directly to do mapping. Nevertheless, these techniques still require computation
proportional to the amount of data produced by the sensor, in order to perform the matchings.

1.4 Mapping with limited sensing
The end result of the above discussion is that in many cases we must make do with a sensor
that is less than ideal for mapping. However, most widely used robot mapping algorithms work
poorly with sensors such as infrared or SONAR arrays that produce very little data. To see why,
consider the basic high-level approach used by the majority of mapping techniques, shown in
Algorithm 1.1.

Algorithm 1.1 A basic mapping algorithm
1: loop
2: Move; update the robot’s pose estimate based on proprioceptive information
3: Sense the environment
4: Extract features from the raw sensing data
5: Match features with the current map
6: Based on matches, update the robot’s pose estimate and the estimated map
7: Add unmatched features to the map
8: end loop

This approach relies critically on the ability to extract features from raw sensor data (Step 4).
Typically these features are simple geometric objects, e.g., lines or points. However, the data pro-
duced by severely limited sensors is usually insufficient for feature extraction, as depicted in
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Figure 1.1: Comparison of high- and low-resolution sensors.

Figure 1.1.∗ In the figure, it can be seen that lines representing the sides of the obstacle observed
by the laser are clearly reflected in the data. This is not the case for an infrared rangefinder ar-
ray. Furthermore, range-limited sensors produce no observations whatsoever when the robot is
positioned too far from an obstacle.

The underlying issue in mapping with limited sensing is that it is generally impossible to
instantaneously observe the entire “state” (i.e., all the parameters) of features of the environment.
For example, a line feature to represent a side of the obstacle in Figure 1.1 can be parameterized
by two variables. However, the infrared rangefinder array in the figure only observes a single
point on any edge of the obstacle — insufficient to determine the parameters of a line.

To collect enough data for feature initialization using a sparse array, it is necessary to ac-
quire multiple sensor returns from different robot poses and consider them together. Note that
this is similar to approaches used for bearing-only and range-only mapping described above —
those cases are similarly characterized by the inability to instantaneously observe the complete
state of features in the world. Chapter 4 describes a new mapping algorithm that takes into ac-
count data from multiple poses.

A side effect of extracting features using sensing returns from several poses is that noise in
the robot’s motion is injected into the feature extraction process, from which it affects the accu-
racy of the robot’s map and pose estimates, sometimes dramatically. Thus, as we might expect,
mapping with limited sensing leads to increased uncertainty over approaches that rely on high-
fidelity sensors. We must therefore find ways to manage this uncertainty so that it is still possible
to produce useful maps with limited sensors. Chapters 5 and 6 address this issue.

1.5 Related work
Robot mapping has a long history and remains an area of intensive research. While much of the
recent work on mapping has exploited hardware advances in sensors such as the scanning laser
rangefinder, there is an increasing interest in developing mapping algorithms for robots with less
expensive sensors such as SONAR arrays and monocular cameras. Others have also begun to ask
the simple question: what sensing capabilities are required to build maps? Finally, much of the
recent work in mapping has focused on developing and improving filtering techniques for man-
aging uncertainty and consistently estimating the robot’s trajectory and maps of the environment.

In this section, we first provide a brief chronology of previous work on mapping with lim-

∗As noted earlier, some SLAM algorithms avoid feature extraction altogether by matching the raw sensor data with
the map. In this case, the same issue arises in the matching step.
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ited sensing, and then review in more detail some of the research related to the results presented
in this thesis. Chapter 2 provides a much more thorough review of the robot mapping problem,
and Chapters 4-7 describe specific related work in detail.

1.5.1 Previous work on mapping with limited sensing
A theme that has spread throughout robotics research — not just in mapping — is the idea of
minimalist robotics, which asks the question: what capabilities are needed for a robot to complete
a given task? In the case of mapping, the question is an eminently practical one: most robot
mapping research so far is not easily applicable to inexpensive robots with low-fidelity sensors
and small microcontrollers. Researchers have examined the sensing requirements for various
other problems, from manipulation (Erdmann and Mason, 1988; Goldberg, 1993; Erdmann, 1995)
to localization (Roy and Thrun, 1999; O’Kane and LaValle, 2006b,a) and coverage (Butler et al.,
2001). The coverage problem (which is mostly equivalent to mapping) has been examined by
Acar et al. (2001) for robots with short-range omnidirectional range sensors.

In the realm of mapping, several researchers have recognized the need for mapping ap-
proaches that work with minimal sensing requirements. Tovar et al. (2003) describe a topological
mapping algorithm for a robot with a hypothetical “gap” sensor, capable only of detecting the
bearings to range discontinuities in the surrounding environment. Beevers (2004) and Huang
and Beevers (2005b) describe a mapping algorithm based on very simple behaviors that enables
a robot with low-resolution, short-range sensing to build a topological map. Huang and Beevers
(2005a) also introduce an algorithm to build Voronoi-based topological maps using similar robots.

While several researchers have previously considered the geometrical mapping problem
with various sensing restrictions, this thesis is the first to investigate the case of mapping with
the class of sensors having both low spatial resolution and small beam width, such as with small
arrays of infrared rangefinders. It is also the first to systematically examine the general sensing re-
quirements for mapping. Doty and Seed (1994) describe a behavior-based approach for building
landmark maps with a robot possessing a small infrared rangefinder array and a single SONAR
sensor. Grabowski et al. (1999) use a hierarchical team of robots to do SONAR-based mapping.
Wijk and Christensen (2000); Zunino and Christensen (2001); Leonard et al. (2002); and Tardós
et al. (2002) all address the problem of partially observable features for robots with SONAR arrays.
This problem has also been studied in the context of bearing-only mapping for robots equipped
with monocular cameras (Deans and Hebert, 2000a; Bailey, 2003; Solá et al., 2005; Lemaire et al.,
2005), and in the context of range-only mapping of RF beacons (Kantor and Singh, 2002; Kurth,
2004; Djugash et al., 2005). The ideas of Leonard et al. (2002) are discussed in more detail in Chap-
ter 4, and other work on mapping with partial observability is described further in the following
section, along with a discussion of the contributions of the thesis in this area. The algorithms in
this thesis are mostly focused on the case of mapping with small arrays of infrared rangefinders,
although many of the techniques can be applied independent of sensor modality.

1.5.2 Partial observability
A characteristic common to “limited” sensors is partial observability: the sensors are unable to in-
stantaneously observe all the (geometric) parameters of features in the environment, such as walls
or corners. Some types of sensing, like range-only radio signals from beacons or bearing-only
observations from monocular cameras, are inherently incapable of observing sufficient range-
bearing information to perform feature extraction from a single sensor scan. Others, like the
returns from SONAR arrays, are limited by characteristics of the sensors such as beam width and
noise. A number of researchers have recognized that, when faced with partially observable fea-
tures, it is necessary to combine multiple observations of the features to recover the state of the
environment (Wijk and Christensen, 2000; Zunino and Christensen, 2001; Leonard et al., 2002;
Tardós et al., 2002). This thesis employs similar techniques for feature extraction and develops
general SLAM algorithms for the case where data associations cannot be determined for the ob-
servations from a single scan.

Bearing-only and range-only sensors have recently garnered particular interest in the map-
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ping community. Monocular cameras are relatively inexpensive, offer dense coverage of their
field of view, and enable mapping researchers to draw on the vast computer vision literature,
e.g., for feature extraction using algorithms like SIFT (Lowe, 2004). Much of the work on map-
ping with cameras has focused on the initialization issues that arise with partially observable
features (Bailey, 2003; Solá et al., 2005; Lemaire et al., 2005).

The interest in range-only mapping stems mainly from the recent surge in sensor networks
research, since by far the most common range-only sensor is radio, which relies on beacons in
the environment (e.g., sensor nodes). While data association is generally not an issue with ra-
dio beacons which can transmit unique identifiers, the large uncertainty and limited information
given by radio signal strength observations makes practical range-only mapping a more difficult
problem than bearing-only mapping. Much of the work with range-only sensors has focused
primarily on localization (Olson et al., 2004; Kurth, 2004; Djugash et al., 2005; Detweiler et al.,
2006). Some recent research has examined the SLAM problem using traditional approaches with
range-only sensors (Kurth, 2004; Djugash et al., 2005), while others have applied non-traditional
interval-based uncertainty representations (Detweiler et al., 2006; Stump et al., 2006) to do local-
ization and mapping with radio beacons.

Although the particle filtering algorithms presented in Chapter 4 of this thesis are ap-
plicable to range-only and bearing-only sensors, our focus is mainly on sparse arrays of one-
dimensional sensors such as infrared rangefinders. These sensors give too little data for feature
extraction or data association, unlike cameras or radio beacons. Furthermore, their small beam
width limits the set of observable orientations from a given pose, unlike SONAR sensors, which
have wide beam widths that enable an array to cover all of the in-range orientations.

1.5.3 Sensing requirements for mapping
An interesting avenue of recent research, primarily done by O’Kane and LaValle (2006b,a), has
examined the sensing requirements for the localization problem. Their work has been to “probe”
the boundary between robots that can localize and those that cannot, by considering various
combinations of simple sensors and devising algorithms for localizing with each robot, or proving
that a particular robot is unable to complete the localization task. While they have yet to apply
their approach to mapping, the similarities between localization and mapping are such that doing
so would likely yield interesting results.

Chapter 3 of this thesis, however, takes a different approach to uncovering the sensing
requirements for mapping. Rather than “probing” the space of mapping robots by devising dif-
ferent algorithms for many combinations of primitive sensors, we instead apply a generalized
mapping algorithm and a generic sensor model to broadly characterize the relative capabilities of
many common mapping sensors.

1.5.4 Managing uncertainty and improving consistency
Sensors that give very limited information about the environment inherently lead to more uncer-
tainty in the mapping task. A central component of any mapping approach is a filtering technique
for managing uncertainty. Commonly, extended Kalman filters or particle filters have been used
in mapping. Most of this thesis focuses on designing particle filtering algorithms that work with
limited sensing, and that manage uncertainty appropriately using more of the available informa-
tion than do traditional approaches.

The most common particle filtering SLAM algorithm, FastSLAM (Montemerlo, 2003), works
reasonably well in practice but has been shown to be inconsistent in general because it underesti-
mates its own uncertainty (Bailey et al., 2006).

One way to combat inconsistency and improve estimation accuracy is to incorporate prior
knowledge about the environment in the mapping process. Most previous work in this realm has
focused on enforcing a priori known constraints on the map using EKFs (Durrant-Whyte, 1988;
Wen and Durrant-Whyte, 1992; Smith et al., 1990). In contrast, the work presented in Chapter 5 of
this thesis develops a particle filtering algorithm for exploiting uncertain prior knowledge. The
algorithm performs inference in the space of constraints on the map to determine when priors
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on the relationships between landmarks are applicable. Recent work by Rodriguez-Losada et al.
(2006) has performed similar but simpler inference using a thresholding approach, although they
employ an EKF for mapping.

A variety of other techniques have been developed for improving the estimation of particle
filters for SLAM. (For an introduction to particle filtering SLAM, see Appendix B.) The “improved
proposal distribution” (Montemerlo, 2003; Grisetti et al., 2005), also known as FastSLAM 2, uses
the most recent sensor observations to draw better Monte Carlo samples for filtering, whereas
the traditional particle filter only uses the most recent observations to weight samples drawn
from a higher-variance distribution. Much of the inconsistency encountered in particle filtering is
due to frequent “resampling” with replacement of the current set of particles. Recent techniques
resample only when many of the particles no longer contribute sufficiently to the estimation of
the filter (Liu and Chen, 1995; Grisetti et al., 2005). Chapter 6 of this thesis develops new sampling
approaches for particle filtering SLAM that lead to more consistent and accurate filtering, using
fewer samples, than other current techniques like FastSLAM 2.

1.6 Thesis contributions
The principle contributions of this thesis are as follows.

Theoretical analysis The thesis begins with an analysis of the relative mapping abilities of dif-
ferent sensors. Whereas most previous research has focused on determining whether (and how)
specific sensors can build maps, the analysis in this thesis instead applies a single mapping al-
gorithm with a broad class of sensors. Using this approach, and under several simplifying as-
sumptions on the robot and the environment, we have obtained conditions on each sensor for
convergence of the map, and bounds on the error in the map for sensors that converge.

Sparse sensing Most prior mapping research has relied on sensors that give data “dense” enough
to extract features from a single scan. This thesis describes an algorithm for passive mapping with
sparse (low spatial resolution) sensors, which uses sensor data from multiple consecutive poses
in the robot’s trajectory to do feature extraction, offsetting the sensing limitation by exploiting
the robot’s motion. We introduce simplifications to a system model for this approach that en-
able efficient implementation in a particle filtering framework, and describe enhancements to the
algorithm to enable a tradeoff between filtering accuracy and computation time.

Prior knowledge The thesis develops a new algorithm for incorporating prior knowledge, in
the form of relative constraints on map landmarks, into the mapping process. The use of prior
knowledge about the environment is one way of reducing the large uncertainty associated with
limited sensing. The algorithm uses basic prior information, such as “most walls indoors are
rectilinear,” to infer when landmarks should be constrained. It also employs a new technique for
enforcing constraints, based on a particle filtering approach.

Sampling techniques One of the most restricting problems with current particle filtering algo-
rithms for mapping is the “inconsistency” of the filter. (A filter is inconsistent if it significantly
underestimates its own uncertainty.) Filtering inconsistencies typically result in poor data asso-
ciations, incorrect loop closings, and bad trajectory estimation. Inconsistencies in a particle filter
can be partially alleviated by drawing better Monte Carlo samples. This thesis develops two new
sampling strategies, fixed lag roughening and the block proposal distribution, that exploit more
information than the usual sampling techniques and thus give better samples.

SLAM on a microcontroller The thesis demonstrates a working implementation of a particle
filtering SLAM algorithm on a minimalist robot with an 8-bit microcontroller. In contrast, most
SLAM implementations make use of modern, powerful PCs. The implementation described in
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this thesis shows that real time mapping is possible with inexpensive sensing and computing
suitable for deployment in, e.g., consumer products.

Implementation and experimentation Finally, in addition to the above implementation, all of
the algorithms described in the thesis have been implemented in full. The results in the thesis are
verified experimentally using a combination of simulation, a variety of well-known benchmark
data sets, and new data collected with our own robots.

1.7 Thesis outline
The remainder of the thesis proceeds as follows.

Chapter 2 provides a more thorough introduction to the robot mapping problem and discusses a
number of aspects of the problem in the context of limited sensing, including robot and environ-
ment models, uncertainty representations, online, offline, passive, and active mapping, feature
extraction, data association, and more. Intertwined with this discussion is a detailed review of
the literature on robot mapping and on other approaches for mapping with sensing limitations.

Chapter 3 develops a simple but reasonably complete model for mapping sensors. The model
is employed with some simplifying assumptions and an occupancy grid mapping algorithm to
obtain a bound on maximum likelihood map error in terms of the characteristics of the sensor.
The analysis is applied to real sensors to compare their effectiveness for mapping.

Chapter 4 describes an algorithm for mapping with sparse sensing and presents experimental
results from real-world data sets.

Chapter 5 introduces a technique for exploiting prior knowledge as constraints on the map.
An algorithm is described for enforcing constraints, as is a technique for performing inference
in the space of constraints. The algorithms are implemented for a rectilinearity constraint. Ex-
perimental results with both real-world and simulated data show the efficiency and consistency
improvements given by the approach.

Chapter 6 describes several new sampling strategies for use in particle filtering. Fixed lag
roughening and the block proposal distribution exploit “future” information to improve esti-
mation consistency. Simulated and real-world results show the approaches can lead to dramatic
improvements. The chapter also tests two alternative resampling strategies, residual and gener-
alized resampling.

Chapter 7 demonstrates the feasibility of real time SLAM on limited hardware with an imple-
mentation of particle filtering SLAM on a robot with a five-sensor infrared rangefinder array and
an 8-bit microcontroller as the main processor. The implementation shows that SLAM can be done
with limited sensing, computing, and storage on inexpensive commodity hardware.

Chapter 8 summarizes the previous chapters and the contributions of the thesis.

Appendix A provides an overview of techniques for generating samples from complicated dis-
tributions. Importance sampling, particle filtering, and Markov chain Monte Carlo approaches
are discussed. These techniques are heavily used in the mapping algorithms described in the
preceding chapters.
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Appendix B introduces the probabilistic formulation of simultaneous localization and mapping
(SLAM) upon which much of the thesis is based. SLAM is first formulated in a Bayesian context.
Then, an implementation using an extended Kalman filter (EKF) is described. Finally, a widely
used particle filtering technique, the basis for the algorithms described in Chapters 4-6, is intro-
duced.

Appendix C describes the software used to obtain the results in the thesis. The software is
available online at http://www.cs.rpi.edu/∼beevek/thesis/.



2
THE MAPPING PROBLEM

Simplistically, the robot mapping problem is for a mobile robot to autonomously build a model of
its environment based on feedback from its sensors. In reality there are many considerations that
affect the scope of the problem, including the models of the robot and world, the representation
of uncertainty, the nature (online or offline, passive or active) of the mapping algorithm, and so
on. This chapter provides a broad overview of the mapping problem, highlighting a number of
mapping approaches and making special note of sensing and computational considerations.

2.1 Robot model
Before we can even begin to discuss the specifics of the mapping problem we must first under-
stand the capabilities of the robot that will build the maps. We have already discussed various
sensing capabilities in Chapter 1, so here we focus on the underlying kinematic model of the robot.
In reality, robots operate in a three-dimensional (R3) workspace, although often a planar (R2)
workspace is assumed instead. Most planar robots are oriented (i.e., they have a forward-facing
direction). A common model assumes the robot’s configuration or state xr can be represented by a
point in the configuration space C ⊆ R2 × S1 (the SE(2) manifold), i.e.:

xr = [xr yr θr]T (2.1)

where (xr, yr) is the robot’s position and θr is its orientation with respect to the x-axis of the
coordinate frame. This model, depicted in Figure 2.1, is adopted throughout this thesis.

The robot state evolves according to a discrete-time process or motion model, i.e.:

xr
t = f (xr

t−1, ut) + vt (2.2)

where ut indicates a control input at time t and vt is a random vector representing noise in the
process, which is typically assumed to be zero-mean. Commonly, control inputs specify transla-
tion and rotation distances, i.e.:

u =
[

d
α

]
(2.3)

xr
t , Pr pose estimate/covariance

xm, Pm map estimate/covariance
xm

i ith map landmark

ut control input at time t
zt sensor measurement at time t
nt correspondences at time t

GVD generalized Voronoi diag. (L2)
GVD∞ generalized Voronoi diag. (L∞)
SGVD∞ saturated GVD (L∞)

Notation for this chapter

13
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Figure 2.1: A planar robot with configuration [xr yr θr]T .

A simple process model for such an input is:

f (xr
t−1, ut) =

xr
t−1 + d cos θr

t−1
yr

t−1 + d sin θr
t−1

θr
t−1 + α

+ vt (2.4)

A number of alternative (and more complicated) motion models exist and may be applied, de-
pending on the particular robot; see, e.g., Thrun et al. (2005), Choset et al. (2005), or Chapter 7 of
this thesis.

Irrespective of the particular types of sensing available to a robot, the robot’s observation or
measurement model can be written as:

zt = h(xr
t , xm

t ) + wt (2.5)

where xm
t is some model of the environment.∗ In other words, the measurement returned by the

robot’s sensors is a function of the robot’s configuration and the environment, and is subject to
noise, which we again generally assume is zero-mean. The nature of h depends on a number
of factors, most importantly, the feature extraction approach we employ. (Section 2.7 discusses
feature extraction in more detail.)

2.2 Representing uncertainty
A robot in the real world is subject to uncertainty due to sensor noise, sensing limitations, model
approximations, unmodeled aspects of the environment, and so on. How this uncertainty is
represented is crucial to building any kind of map.

2.2.1 Probabilistic models
By far the most widely used approach in robotics for modeling uncertainty is to represent un-
certain knowledge using probability density functions (PDFs). For example, uncertainty about
the configuration of the robot can be modeled as a PDF p(xr) over the robot’s state space. Inputs
such as control commands or sensing data can be incorporated by conditioning. For example, the
uncertainty in the robot’s state xr

t at time t, given a time series u1:t of previous control inputs and
a time series z1:t of sensor measurements, can be modeled using the conditional PDF:

p(xr
t |u1:t, z1:t) (2.6)

∗Frequently the environment is assumed static and the time subscript dropped from xm; see Section 2.9.4 for discus-
sion of this assumption.
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Motion and measurement models can also be represented probabilistically, i.e. by:

p(xr
t |xr

t−1, ut) (2.7)

and:
p(zt|xr

t , xm
t ) (2.8)

2.2.1.1 Parametric representations
Probabilistic models of uncertainty are conceptually straightforward but in practice bring up the
problem of PDF representation. Methods of representing PDFs can be classified as either parametric
or nonparametric. A parametric PDF is a parameterized equation that meets the conditions of a
probability density. The most common parametric PDF in robotics is the Normal (or Gaussian)
density:

N (µ, Σ) =
1

(2π)n/2|Σ|1/2 exp
(
−1

2
(x− µ)Σ−1(x− µ)T

)
(2.9)

where µ is the n-dimensional mean vector and Σ is an n × n covariance matrix. Frequently
Gaussian representations are assumed for the motion and observation models, in which individ-
ual components of the control input or measurement are assumed to have independent noise. For
example, the motion model is commonly assumed to be:

p(xr
t |xr

t−1, ut) = N
(

f (xr
t−1, ut), Hu

[
σ2

d 0
0 σ2

α

]
HT

u

)
(2.10)

where the Jacobian

Hu =
∂ f (xr)

∂u
(2.11)

is used to obtain a linear approximation of the nonlinear function f .
Figure 2.2(b) shows an example of a Gaussian representation of a 1D PDF. Many mapping

approaches represent the entire state x = [xr xm]T (robot pose and map) parametrically, e.g., by
a single large Gaussian, an approach first applied in the seminal work of Smith et al. (1990).
With a Gaussian representation of the state uncertainty, it is easy to apply an extended Kalman
filter (EKF) to do geometrical mapping. See Appendix B for a discussion of the basic EKF-based
mapping approach.

2.2.1.2 Nonparametric representations
The use of a parametric representation such as the Gaussian density to model state uncertainty
assumes implicitly that the true state uncertainty is approximately distributed according to the
specified distribution. Most of the time in the real world, uncertainty is poorly represented by
parametric distributions. For example, the sensor measurements of a robot with a known map
may match well with several configurations of the robot, in which case p(xr) is multimodal, a
property that cannot be captured by most common parametric PDFs.

One possible remedy is to model uncertainty using mixtures of parametric PDFs in which
a set of weighted distributions, each with different parameters, is combined (and normalized)
to represent a complicated density. Another alternative that has proved particularly useful for
robot mapping is to represent PDFs nonparametrically. The most common nonparametric PDF
representations are grid- or sample-based.

Grids are essentially discretizations of the state space in which each grid cell is assigned
a portion of the probability mass from a continuous PDF. Figure 2.2(c) shows an example of a
grid representation of a 1D PDF. While grid representations have been applied to localization
problems (e.g. Fox et al., 1999), they have mostly been subsumed by sample-based approaches
for computational reasons.

Sampled representations approximate the PDF by a set of (possibly weighted) samples
drawn from the state space according to the PDF using methods such as importance sampling.
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(a) True distribution
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(b) Gaussian representation
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(c) Grid representation
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(d) Sampled representation

Figure 2.2: Probabilistic representations of a multimodal 1D PDF. Note how the nonparametric
approximations capture the multimodal nature of the true PDF, whereas the parametric Gaus-
sian approximation does not.

Figure 2.2(d) shows how a PDF can be represented by samples. Sampled representations have led
to the application of Monte Carlo techniques such as particle filtering for robot mapping. Much of
this thesis is based upon sampling approaches. Appendix B introduces the basic particle filtering
formulation of the mapping problem; Appendix A offers some background on the underlying
statistical techniques.

2.2.2 Interval models
A deficiency of probabilistic uncertainty representations is that they generally require distribution
assumptions that are only weakly justifiable. For example, a common laser observation model as-
sumes zero-mean Gaussian noise, whereas in reality the noise is neither zero-mean nor Gaussian.
An alternative is to use a bounded uncertainty (or interval) model which represents uncertainty us-
ing a set-based approach (see Halpern, 2003). Only the maximum possible error of a measurement
need be specified. Then, the portion of the state space within this bound is a set representing the
uncertainty of the measurement. Interval models have been applied to the localization problem
for bearing-only sensors (Briechle and Hanebeck, 2004; Isler and Bajcsy, 2005), and to localiza-
tion and mapping for range-only sensors (Detweiler et al., 2006; Stump et al., 2006). This thesis
employs an interval model of sensor uncertainty in Chapter 3 to obtain bounds on map error in
terms of the uncertainty (and other sensor parameters).

Difficulties arise with interval representations when it is necessary to select a single, “rep-
resentative” state from the interval, e.g., for use in planning. A natural solution to this problem
exists for probabilistic techniques: take the most probable (maximum likelihood) state. Interval
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(a) Occupancy grid map (b) Landmark map with line segment land-
marks

Figure 2.3: Occupancy grid and landmark-based geometrical maps. An occupancy grid dis-
cretizes the environment into small cells and maintains a belief that each cell is occupied or
free. A landmark map represents the world as a set of parameterized geometrical objects, in
this case line segments. Data set courtesy of Nicholas Roy via Radish (Howard and Roy, 2003).

representations assume no PDF over the feasible set so no feasible state is “better” than any other.

2.2.3 Other approaches
While some other representations of uncertainty exist, they have found little application in robot
mapping. One exception is the Dempster-Shafer representation of belief (Shafer, 1976). Dempster-
Shafer is similar to probabilistic techniques but explicitly represents ignorance. In a state of com-
plete ignorance, Dempster-Shafer assigns no belief mass to any specific possibility. Probabilistic
approaches instead implicitly represent ignorance by assigning equal belief to all possibilities.
The Dempster-Shafer uncertainty representation has found applications in occupancy grid map-
ping (Pagac et al., 1998), in active topological mapping (Beevers, 2004; Beevers and Huang, 2005),
and in sensor fusion (Murphy, 1998), but has computational drawbacks that limit its usefulness
in most robot mapping scenarios.

The book by Halpern (2003) offers a thorough discussion of the uncertainty representations
described above, along with several others.

2.3 Geometrical mapping
Paramount to the development of any mapping algorithm is the model used to represent the
map. Two basic types of maps have been developed in the robotic mapping literature: geometrical
maps, which encode metric information about the locations and relationships of objects in the
environment; and topological maps, which encode “qualitative” structural information about the
relationships of objects. Many mapping techniques combine the two approaches to build hybrid
maps.

Geometrical maps are a natural way to model the environment because sensors measure
geometrical aspects of the world, e.g., distances or bearings to obstacles. Typically, geometrical
maps fall into one of two categories: occupancy maps and landmark maps.

2.3.1 Occupancy maps
An occupancy representation divides the world into grid cells (Moravec and Elfes, 1985). Asso-
ciated with every cell is a belief about the occupancy of the cell (i.e., whether there is an obstacle
in the cell). Typically the belief is represented as a probability and is updated using Bayes’ rule
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whenever the cell is observed. Alternative approaches that employ Dempster-Shafer beliefs have
also been developed (Pagac et al., 1998). Updates to an occupancy grid depend strongly on the
probabilistic sensor model being used. Konolige (1997); Pagac et al. (1998) and Thrun (2003) have
described models for SONAR sensors. Models for more accurate range-bearing sensors such as
lasers or infrared sensors are generally straightforward.

Figure 2.3(a) shows an occupancy grid map of an indoor environment. Intensity of a cell
(pixel) indicates its probability of being unoccupied. Dark cells correspond to walls or other
obstacles, light cells to free space, and gray cells to unobserved or uncertain areas.

Implementation of occupancy grids is relatively straightforward, and they lend themselves
well to range scan matching techniques for data association (discussed in Section 2.8). For these
reasons they have proved fairly popular and are employed in a number of state-of-the art map-
ping implementations (e.g. Grisetti et al., 2005). However, grid maps impose significant memory
and computational requirements that often make them unsuitable for use in inexpensive robots.
Furthermore, the “convergence” of an occupancy grid map relies on obtaining many observations
of each grid cell. While this is reasonable with high-resolution sensors such as laser rangefinders,
it is more difficult for robots equipped with simpler sensors such as infrared rangefinder arrays.
Chapter 3 examines occupancy mapping in detail in the context of limited sensing.

2.3.2 Landmark maps
An alternative approach is to represent the world as a set of objects, or landmarks. Typically,
landmarks are modeled as simple geometric primitives such as lines or points. By representing
the environment in this way, landmark parameters can be incorporated into the system state
vector, i.e., x = [xr xm]T , where xm is the map. For example, suppose the map consists of
line landmarks, with each line parameterized by its distance r and angle θ to the origin. (This
representation is frequently used in this thesis.) Then, our goal is to estimate a map:

xm = [xm
1 xm

2 . . . xm
n ]T = [r1 θ1 r2 θ2 . . . rn θn]T (2.12)

Using a probabilistic representation of the state uncertainty, we wish to compute:

p(xm|u1:t, z1:t, n1:t) (2.13)

i.e., a PDF over maps conditioned on the control inputs u1:t, sensor measurements z1:t, and cor-
respondences n1:t between measurements and landmarks in the map. (The problem of finding
correspondences, known as data association, is discussed below.)

Many researchers have employed landmark-based mapping techniques, e.g., Smith et al.
(1990); Newman (1999); Bailey (2002); Leonard et al. (2002); Montemerlo (2003). Figure 2.3(b)
shows a landmark map of an indoor environment consisting of line features. Extent information,
encoding which portions of the landmarks have been observed, is used for rendering purposes
but is not included as part of the map state.

2.3.2.1 Initialization
A critical issue in landmark mapping is the initialization of new landmarks when they are first
observed. If a sensor return provides sufficient data to observe the entire state of a new landmark
(i.e., to extract features), landmark initialization is relatively straightforward: the map vector xm is
extended to include the observed new features. (Other initialization may be required, depend-
ing on the uncertainty representation used for mapping.) Section 2.7 discusses techniques for
extracting features from sufficient range-bearing data.

Unfortunately, most inexpensive sensors like monocular cameras and infrared or SONAR
arrays provide insufficient data to initialize a new landmark from a single return. It is therefore
necessary to extract features using data from several robot poses. How this is done depends on
the sensing modality. Various researchers have investigated multi-pose landmark initialization
using SONAR data (Wijk and Christensen, 2000; Zunino and Christensen, 2001; Tardós et al., 2002;
Leonard et al., 2002); monocular cameras (Deans and Hebert, 2000a; Bailey, 2003; Lemaire et al.,
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2005; Solá et al., 2005); and RF or acoustic range measurements to beacons (Kantor and Singh,
2002; Kurth, 2004; Olson et al., 2004; Djugash et al., 2005). This thesis addresses the case of in-
frared rangefinder arrays, which, of the above modalities, are most similar to SONAR arrays. In
Chapter 4 we discuss in more detail existing approaches for multi-pose landmark initialization
using SONAR, and develop a new approach which we apply to infrared arrays.

2.4 SLAM
Note that in computing the map PDF (Equation 2.13) it is convenient to also estimate the robot’s
pose, i.e., to jointly estimate the robot state and the map:

p(xr
t , xm|u1:t, z1:t, n1:t) (2.14)

This is the simultaneous localization and mapping (SLAM) problem. The vast majority of robot map-
ping research falls into the context of SLAM, since a primary factor in constructing an accurate
map is knowledge of the robot’s location with respect to the map. The SLAM formulation is not
unique to landmark-based mapping and is equally applicable in constructing any type of map,
although it is most often applied in conjunction with geometrical representations.

Since SLAM techniques form the basis for much of this thesis, we introduce them in some
detail here. For a more complete discussion, Appendix B fully formulates the problem and de-
scribes the two most widely used approaches for doing SLAM.

2.4.1 Bayesian formulation
One can address SLAM in a Bayesian filtering framework in which the posterior (2.14) is estimated
recursively:

p(xt|u1:t, z1:t, n1:t) = ηp(zt|xt, nt)
∫

p(xt|xt−1, ut)p(xt−1|u1:t−1, z1:t−1, n1:t−1) dxt−1 (2.15)

Here, η is a normalization constant. (It is generally sufficient to estimate the posterior up to a
normalization factor.) Typically, the filtering is done with an EKF, which models the posterior as
a multivariate Gaussian. A derivation of Equation 2.15 and an EKF-based implementation can be
found in Appendix B.

2.4.2 Particle filtering SLAM

An alternative is to incorporate the entire robot trajectory or pose history into the state vector:

x = [xr
1 xr

2 . . . xr
t xm]T (2.16)

Estimating the posterior over this space is often called the “full” SLAM problem (see Thrun et al.,
2005), since the goal is to recover not just the map and current robot pose, but also the path taken
by the robot. It has been observed that, assuming the environment is static and the state is com-
plete,∗ landmarks in the map are independent when conditioned on the robot’s trajectory (Mur-
phy, 2000). (See Section 2.9.4 for further discussion of this assumption, often called the Markov
assumption; also see Chapter 5, which argues that in structured environments the Markov as-
sumption is not met.) This independence occurs because correlation between independently dis-
tributed landmarks arises only through robot pose uncertainty. Murphy (2000) used this fact to
show that the posterior over robot trajectories and maps can be factored:

p(xr
1:t, xm|u1:t, z1:t, n1:t) = p(xr

1:t|u1:t, z1:t, n1:t)
n

∏
i=1

p(xm
i |xr

1:t, z1:t, n1:t) (2.17)

∗The state xt = [xr
1:t xm]T is complete if no state variables or observations prior to time t may influence the stochastic

evolution of future states (Thrun et al., 2005).
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Figure 2.4: A simple topological map in which nodes represent rooms and edges represent
different types of paths between rooms. A robot capable of room recognition, doorway recog-
nition and traversal, hall following, and secret passageway finding can navigate with this map.
(This map was hand-made for illustration purposes.)

This factorization is known as Rao-Blackwellization (Liu, 2001). It has led to the development
of the current state-of-the-art in robot mapping: particle filtering techniques that represent the
posterior over trajectories, p(xr

1:t|u1:t, z1:t, n1:t), using samples (particles). Associated with each
particle is a map consisting of a number of separate small filters (typically EKFs) for each land-
mark. This approach is known as Rao-Blackwellized particle filtering (RBPF) and is the basis for
the well-known FastSLAM algorithm (Montemerlo, 2003) and variations, e.g., (Grisetti et al., 2005;
Stachniss et al., 2005a).

While other techniques have been developed to solve the full SLAM problem, e.g., (Lu and
Milios, 1997; Thrun et al., 1998a), they are mainly intended for offline mapping and are thus less
interesting than the RBPF approach, which can be applied recursively and online. A detailed
introduction to the RBPF algorithm for SLAM can be found in Appendix B.

2.5 Topological mapping
A markedly different approach to map representation is to maintain purely structural information
about places in the environment and relationships between these places, i.e., to encode the topol-
ogy of the environment rather than its geometry. Topological maps, first described by Kuipers
(1978) and since developed into a more general theory (Kuipers, 2000; Remolina and Kuipers,
2004), are typically actualized as graphs, in which vertices correspond to distinctive configura-
tions in the environment and edges represent distinctive paths between these configurations. An
important advantage of the topological approach is the ease of planning and navigating with a
topological map, since simple graph search techniques can be directly applied.

2.5.1 Distinctive configurations and paths
Distinctive configurations are robot states at which the exteroceptive sensor returns meet some
particular conditions for distinctiveness. These conditions depend upon the underlying repre-
sentation of the environment’s topology. We discuss several topology representations below and
address the issue of recognizing distinctive states.

Typically, distinctive paths in topological maps correspond to paths that can be followed
by a robot executing simple behaviors, based mainly on local sensory information. For example,
in previous work (Beevers, 2004; Huang and Beevers, 2005c), we have built topological maps
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(a) GVD (b) GVD∞ (c) SGVD∞

Figure 2.5: Voronoi diagrams.

with sparse infrared rangefinder arrays by executing simple wall- and hall-following behaviors
between corners and junctions in an indoor environment.

Often, topological maps are augmented with geometrical information such as odometry
readings (e.g. Kuipers and Byun, 1991; Rybski et al., 2003; Beevers and Huang, 2005) or sensor
“signatures” at distinctive configurations (e.g. Kuipers and Beeson, 2002). Occasionally, struc-
tural information can be extracted directly from an available geometrical map (as in Chatila and
Laumond, 1985; Thrun and Bücken, 1996), but usually topological maps are built online by an
actively exploring robot (e.g. Kuipers and Byun, 1991; Choset and Nagatani, 2001; Tovar et al.,
2003).

Figure 2.4 shows an example of a simple topological map. Distinctive places correspond to
rooms, and distinctive paths to various ways of moving between the rooms. A robot that is able
to recognize particular rooms, find exits from the rooms, and traverse doorways and corridors
can build the map by actively exploring the graph.

2.5.2 Voronoi-based approaches
A popular way to represent the structure of a workspace is by its Voronoi diagram (see Aurenham-
mer, 1991; Latombe, 1991) or medial axis. Given a set of points in the plane, or sites, the Voronoi
diagram is defined as the locus of points equidistant to the two closest sites. Alternatively, the
Voronoi diagram can be defined as the union of the boundaries of the Voronoi regions of the sites.
The Voronoi region of a site is the set of points closer to that site than to any other. An advantage
of Voronoi-based maps is that they offer good (in fact, the best possible) clearance properties for
navigation when following paths on the Voronoi diagram.

Voronoi diagrams can also be defined in higher dimensions and with different distance
metrics such as the L∞ metric (see Lee, 1980). For mapping in realistic environments, it is useful
to define Voronoi diagrams with non-point sites, termed generalized Voronoi diagrams (GVDs) (see
Kirkpatrick, 1979; Lee and Drysdale, 1981). Figure 2.5(a) depicts an example of the GVD of a
simple polygonal environment; Figure 2.5(b) shows the the GVD computed using the L∞ distance
metric, which we call the GVD∞ (Huang and Beevers, 2005a). Under the L2 (Euclidean) metric a
GVD consists of line segments and circular arcs; under the L∞ metric it consists of line segments
and regions (as with the gray region in the figure). One can represent the GVD as a graph in which
intersections of Voronoi segments (meet points) are nodes, and segments and region boundaries
are edges.

2.5.2.1 Mapping the GVD

Choset (1997) and Choset and Nagatani (2001) have shown that the GVD of an environment can
be mapped by a robot using relatively simple local behaviors. A robot can “trace” the Voronoi
diagram by moving along the arc equidistant to the two nearest obstacles. Meet points are easily
recognized when more than two obstacles are equidistant to the robot. Thus, by incrementally
tracing Voronoi arcs a robot can actively explore the GVD to build a topological map, or use the
GVD to guide exploration when building a geometrical map. However, this approach relies on the
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ability of the robot to detect the range and bearing to obstacles with an omnidirectional, infinite-
range sensor, since the distance of GVD arcs from obstacles is unrestricted.

2.5.2.2 The SGVD and SGVD∞
In the context of coverage, Acar et al. (2001) extended the GVD approach to deal with short-range
sensing by introducing the saturated generalized Voronoi diagram (SGVD). In regions where the
distance to the two closest sites is less than the “saturation distance” (sensor range), the SGVD is
identical to the GVD. At points on the GVD that are equidistant to two sites such that the distance
to the sites is equal to the saturation distance, the SGVD “diverges,” maintaining the saturation
distance to a single site. Formally, ifM is the Minkowski sum of the workspace obstacles with a
disk of radius equal to the saturation distance, then:

SGVD = (GVD ∩M) ∪ ∂M (2.18)

where ∂M denotes the boundary ofM (Huang and Beevers, 2005a). The SGVD can also be traced
with relatively simple behaviors and used as a topological map. This approach is related to the
idea of “coastal navigation” (Roy and Thrun, 1999) in which a robot attempts to stay within sens-
ing range of objects in the environment to minimize uncertainty.

In (Huang and Beevers, 2005a), behaviors are developed that enable a robot to explore a
version of the SGVD defined under the L∞ distance metric (the SGVD∞), under the assumption
that the environment is rectilinear. The advantage of the SGVD∞ is that its arcs are aligned along
a fixed set of orientations. Thus, it is possible to develop behaviors for tracing the SGVD∞ using
sparse (low-resolution) sensors. Huang and Beevers (2005a) exhibit an algorithm for exploring
the SGVD∞ using an array of infrared sensors and show that it is complete. Figure 2.5(c) depicts
the SGVD∞ of a simple environment.

2.5.3 Probabilistic approaches
Voronoi-based topological mapping techniques lead to map representations and exploration strate-
gies for active mapping, but do not inherently address the issue of uncertainty in the mapping
process like probabilistic geometrical mapping algorithms. Typically a robot will experience some
error in place recognition and path following, particularly when “places” are not completely
unique, so representing uncertainty in the robot state and the topological map is an important
issue.

Several techniques have incorporated probabilistic measurement and motion models di-
rectly into the topological mapping process. One approach is to represent the topological map
as a hidden Markov model (HMM) with the goal of recovering the steady-state transition proba-
bilities between distinctive places (e.g. Koenig and Simmons, 1996; Shatkay and Kaelbling, 2002).
More recently, Ranganathan et al. (2005) and Ranganathan and Dellaert (2006) have introduced
techniques based on Markov chain Monte Carlo (MCMC) and RBPF sampling methods that esti-
mate a joint posterior over the locations of distinctive places and the paths between them. They
equate topologies of the environment with set partitions of distinctive place observations, and use
this approach to do inference in the space of topologies. Similar approaches for inferring topology
using Bayesian techniques have been described in (Modayil et al., 2004) and (Savelli, 2005).

2.6 Hybrid techniques
The strength of geometrical map representations is their ability to accurately reflect the local re-
lationships between objects in the environment. On the other hand, the reduced representations
used by topological techniques are conducive to recovering global information about the rela-
tionships between important places in the environment. Several mapping algorithms have been
developed to exploit this dichotomy by building hybrid maps that include both topological and
geometrical information.∗ While this thesis is mainly focused on geometrical mapping, the tech-

∗Combining topological and geometrical mapping techniques is not the only notion of a “hybrid” map. For exam-
ple, Guivant et al. (2004) combine landmark-based and occupancy grid mapping techniques to exploit advantages of both
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Figure 2.6: One type of hybrid topological-geometrical map. Here, local occupancy grid maps
are built at each distinctive place in the environment and stored as topological nodes. Simple
behaviors take the robot between distinctive places. (This map was hand-made for illustration
purposes.)

niques may be useful in hybrid mapping scenarios, so we review hybrid maps briefly here.
Early approaches simply extracted topological maps from geometrical maps (e.g. Chatila

and Laumond, 1985; Thrun and Bücken, 1996). This approach relies on the availability of a topo-
logically correct geometrical map, but does not actually exploit structure when building the geo-
metrical map. Similarly, some techniques first build topological maps and then extract geometri-
cal maps, e.g., by taking a second pass through the raw data as in (Thrun et al., 1998c).

Other approaches incorporate basic geometrical information into topological maps as an-
notations of nodes and edges (e.g. Kuipers and Byun, 1991; Shatkay and Kaelbling, 2002; Huang
and Beevers, 2005c; Beevers and Huang, 2005). This information is used to ensure consistent
topologies and can also be used to embed topological maps in a metric space, e.g., the plane as
in (Duckett and Saffiotti, 2000; Frese et al., 2005; Olson et al., 2006).

Two dominant hybrid mapping paradigms have emerged, and we discuss these in more
detail.

2.6.1 Geometrical maps at topological nodes
One can exploit the strengths of each mapping technique directly by building geometrical maps in
the vicinity of each distinctive state (node) in the topological map. The geometrical maps are small
in scale and are typically represented as occupancy grids (e.g. Modayil et al., 2004; Kuipers et al.,
2004; Savelli, 2005) or landmark-based maps (e.g. Tomatis et al., 2002a,b). Because of the limited
size of the geometrical maps, they are mostly unaffected by error propagation in the robot’s pose
estimate. Figure 2.6 shows a simple example of this type of hybrid map.

Building accurate geometrical maps at nodes yields several important advantages in con-
structing a global topological map:

• Rather than requiring the robot to exactly move to the distinctive configuration associated
with the node — which is normally done with a potentially time-consuming hill-climbing
strategy (Kuipers and Byun, 1991) — the robot can use the local geometrical information to
localize itself with respect to the distinctive configuration (Kuipers et al., 2004).

approaches.
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• By constructing an accurate map of the area around the topological node, the robot can di-
rectly extract local structure from the geometrical information, e.g., the set of paths leading
away from a node in the topological map. For example, Kuipers et al. (2004) construct the
Voronoi diagram of a local geometrical map. Outgoing edges that overlap the edges of the
local map are considered distinctive paths connected to the node in the global topological
map.

• Maps at nodes can be used as “sensing signatures” for accurately recognizing the location
of the robot in the topological map, as in (Martinelli et al., 2003).

Hybrid maps based on the idea of building geometrical maps at topological nodes have
been applied in several circumstances. Martinelli et al. (2003) use a scanning laser rangefinder to
build local maps and a fingerprinting approach based on images from an omnidirectional camera
to build the global topological map. They used structural information mainly to ensure consis-
tency in cases of large odometric error, e.g., when the robot is “kidnapped” and repositioned.
Kuipers et al. (2004), Savelli (2005), and Tomatis et al. (2002a,b) use local geometrical knowledge
to do structural reasoning and ensure global topological consistency. Modayil et al. (2004) extend
the idea to first build a consistent topological map and then extract a global geometrical map
based on the recovered topology.

2.6.2 Local submaps
An alternative but related approach is to break up a global geometrical map into a sequence of
“local submaps” (e.g. Gutmann and Konolige, 1999; Leonard and Feder, 1999). The difference
from the previous technique is that submaps need not be associated with any particular place or
distinctive configuration. Local submaps are based on the intuition that estimates of landmarks
are locally highly correlated, but less so as the distance between landmarks increases — mainly
because a robot’s pose uncertainty is small over short portions of its trajectory, but accumulates
rapidly over longer portions. (The approach thus applies equally to occupancy grid maps as
well.)

Local submaps can be combined to produce globally consistent geometrical maps. Leonard
and Newman (2003) register landmarks from nearby submaps using an iterative procedure to
recover transformations between local frames of reference. Gutmann and Konolige (1999) ap-
ply laser scan-matching techniques to compute the transformations. Atlas (Bosse et al., 2004),
GraphSLAM (Thrun et al., 2005), and related techniques (e.g. Folkesson and Christensen, 2004)
represent the sequence of local submaps as a graph. Each vertex is a local submap coordinate
frame, and edges represent transformations between submaps in the sequence visited by the
robot. Subgraph matching techniques and a nonlinear optimization step can be employed to ob-
tain global consistency from the local submaps (see, e.g., Duckett and Saffiotti, 2000; Frese et al.,
2005; Olson et al., 2006).

2.7 Feature extraction and place recognition
Up until now we have largely sidestepped the problem of converting raw sensor data, e.g., laser
scans, SONAR returns, or infrared measurements, into forms useful for map building. Specifi-
cally, landmark mapping techniques require feature extraction methods that obtain parameters of
geometric primitives from the raw data, and topological mapping approaches must be capable of
distinctive place recognition. In both cases, sensor limitations such as resolution and range restric-
tions affect the process. We briefly discuss some common techniques for feature extraction and
place recognition and make note of issues due to limited sensing.

2.7.1 Extracting features
We do not address the problem of extracting features from images produced by cameras. Instead,
we focus on extracting features from range-bearing data like that produced by scanning laser
rangefinders or SONAR and infrared rangefinder arrays. While many types of features can be
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Figure 2.7: Line segments extracted from laser data using IEPF.

used, line and point features are by far the most common and there are a variety of techniques for
extracting them from range-bearing data.

2.7.1.1 Extracting lines
A number of researchers have employed line or segment features for SLAM, e.g., Leonard et al.
(2002); Tardós et al. (2002); Rodriguez-Losada and Matia (2003); Yuen and MacDonald (2003);
Brunskill and Roy (2005). Line extraction typically proceeds in two phases: data segmentation
(i.e., clustering), and line estimation. In the segmentation phase, the raw sensor returns — indi-
vidual range-bearing measurements, e.g., from each sensor in an array or from each orientation of
a laser scanner — are partitioned into groups corresponding to each feature. Then, in the estima-
tion phase, lines are fit to the data from each group. Typically, the estimation phase also includes
covariance estimation so that landmarks can be represented using EKFs.

Most segmentation algorithms for range-bearing data assume radially ordered data, like
that from a laser rangefinder. A common approach uses an adaptive breakpoint detector (Borges
and Aldon, 2004) to form initial clusters and then applies an iterative endpoint filter (IEPF) (see
Duda and Hart, 1973) to further split the clusters. This is an attractive option due to its simplicity,
both for implementation and computation. Figure 2.7 shows line segments extracted from laser
data using the technique. In Chapter 4 we describe a related technique that works with data from
multiple robot poses.

Fitting lines to clustered data can simply be done using least squares, although this does
not take into account the covariance of individual range-bearing measurements. Pfister et al.
(2003) derive a full maximum likelihood line estimator for range-bearing data from a radial scan.

Several researchers have applied the Hough transform, a technique originally used for
extracting features from image data (described by Duda and Hart, 1972), to range-bearing data
with the goal of extracting line features. Note that a line can be represented by its distance r from
the origin and angle θ to the x-axis, as shown in Figure 2.8(a). Furthermore, note that for a point
(x, y) in Cartesian space, there are an infinite number of lines through the point. These constitute
a sinusoidal curve in the (r, θ) Hough parameter space:

r = x cos θ + y sin θ (2.19)

Figure 2.8(c) illustrates the transformation of points in Cartesian space (Figure 2.8(b)) into Hough
space. Feature extraction using the Hough transform works by finding intersections of the trans-
formed curves from several data points. Typically this is done by discretizing the Hough space,
associating an accumulator with each discrete cell, and accumulating the cells through which a
transformed sinusoidal curve passes. Peaks in the accumulation indicate line parameters for the
data. The Hough transform has been applied to laser rangefinder data (e.g. Larsson et al., 1996),
but has mainly found its success in extracting lines from sparse and noisy SONAR scans (e.g. Yun
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Figure 2.8: The Hough transform. Each curve in the Hough space corresponds to a point in
Cartesian space. The intersection of the curves gives the parameters of the line through the
points.

et al., 1998; Großman and Poli, 1999; Tardós et al., 2002).
For purposes of data association (see below) and rendering, maps composed of infinite

lines are cumbersome. One alternative is to extract line segment features instead. A typical ap-
proach is to simply project clustered data points onto the estimated line. Extremal points become
segment endpoints. A problem with segment features is their higher dimensionality. Occasion-
ally, line features are used and extent information (obtained via the same projection operation) is
kept separately from the state, an approach adopted in the experiments in this thesis.

2.7.1.2 Extracting points
It is sometimes desirable to represent landmarks as points. Most often point features are extracted
from camera images, but occasionally corner features are extracted from range-bearing data and
represented as points. One approach is to first extract lines, e.g., using IEPF or the Hough trans-
form, and then find intersections of the lines. An alternative is to use the Hough transform di-
rectly to extract points using a similar approach to that for extracting lines, as in (Tardós et al.,
2002). Finally, in outdoor scenarios, it is common to extract point features corresponding to trees
by finding local minima in a range scan (e.g. Guivant and Nebot, 2000).

2.7.2 Recognizing distinctive places
Distinctive place recognition is the topological mapping analogue of feature extraction. In the
case of Voronoi-based topological maps, the problem is one of meet point detection. For a robot
with an omnidirectional sensor, it is typically straightforward to detect meet points by simply ex-
amining minima in the sensor returns and recognizing when more than two minima are equidis-
tant (Choset and Nagatani, 2001; Acar et al., 2001). In practice, it is often necessary to employ
some sort of local hill climbing approach to move the robot directly to a meet point, after de-
tecting one in the vicinity. This idea was first applied by Kuipers and Byun (1991), albeit not
specifically in the context of Voronoi-based mapping.

More elaborate techniques are necessary for a robot with low-resolution sensing such as
an infrared rangefinder array. This is mainly due to the fact that small objects (such as chair legs)
may not be observed by the robot until they are quite close. Thus, the robot may “miss” some
meet points and leave the GVD. Huang and Beevers (2005a) describe behaviors for a robot with
sparse sensing to recognize meet points and return the the GVD when a meet point is missed.

A number of alternative place detection methods exist for non-Voronoi based topological
mapping. Beevers (2004) and Huang and Beevers (2005c) describe a topological mapping algo-
rithm for robots with sparse, short-range sensing in which distinctive places are corners, easily
detectable as termination conditions for wall- and hall-following behaviors. Kuipers and Byun
(1991) recognize junctions of corridors and hill climb to reach midpoints in the junctions. Mozos
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et al. (2005) apply supervised learning to classify places in the environment into semantic cate-
gories. Hybrid mapping approaches often arbitrarily divide the environment into local regions
which are not necessarily “distinctive.” Another common approach is to have a human operator
simply specify when the robot has reached a distinctive place.

2.8 Data association and loop closure
An important component of most mapping algorithms is the ability to match current sensor re-
turns against the map. In geometrical mapping approaches, this is usually referred to as data
association or the correspondence problem — determining, e.g., which features from the current scan
correspond to landmarks in the map. In environments with cycles, the additional problem of
closing loops, or recognizing when the robot has returned to a place it has already been, must also
be solved.∗ Typically the correspondence problem is dealt with only in the geometrical mapping
case, but the loop closing problem is universal to all map representations and mapping algo-
rithms.

2.8.1 Finding correspondences
A popular approach for robots equipped with high-resolution sensors is to directly match the raw
sensor data with the map, i.e., to do “scan matching.” This idea, which is highly related to image
registration techniques like iterative closest point (ICP) (Besl and McKay, 1992), was first applied
for offline mapping algorithms (Lu and Milios, 1997; Gutmann and Konolige, 1999), but has since
found great success in online SLAM algorithms. This is particularly true for approaches that build
occupancy grid maps, since laser scan data can be directly compared with individual pixels in
the map, as in (Grisetti et al., 2005). In fact, given sufficient data, scan matching can be used to
estimate the motion of a robot more accurately than a proprioceptive odometry sensor (see, e.g.,
Bailey, 2002).

Despite the success of scan matching techniques, most data association methods are based
on instead matching the parameters of extracted features to those of already-mapped landmarks.
Assuming probabilistic representations of feature and landmark uncertainty are available, the
most popular approach is to compute the maximum likelihood correspondence of a feature,
i.e., the landmark in the map that most probably matches the feature. For an EKF-based repre-
sentation of the map, and for a feature y with covariance Py, this is computed as:

nt,y = argmin
xm

i ∈xm

√
(xm

i − y)
(
HhPmHT

h + Py
)−1 (xm

i − y)T (2.20)

i.e., the landmark with the smallest Mahalanobis distance from y is chosen as the correspondence.
Here, Hh linearizes the measurement function h (see Appendix B for details of the linearization).
Typically, if the minimum Mahalanobis distance is above some threshold value, the feature is
determined to constitute a new landmark and is added to the map.

In mapping approaches that represent the map using a single large EKF, a single corre-
spondence (if any) must generally be chosen for each extracted feature. Cox and Leonard (1994)
describe an approach for instead considering multiple data association hypotheses by decoupling
correspondence uncertainty from measurement uncertainty. They maintain a tree of possible cor-
respondences in which each path from the root to a child (i.e., each hypothesis) represents a dif-
ferent assignment of measurements to landmarks.

The approach of Cox and Leonard (1994) is essentially a deterministic version of the “ran-
domized” approach taken by particle filtering SLAM algorithms, e.g., (Montemerlo, 2003), for
finding correspondences. Particle filters estimate different maps for each particle, and thus do
correspondence finding on a per-particle basis. As such, each particle constitutes a different data

∗While loop closing is really a special case of data association, it is generally treated as a separate problem because
pose uncertainty with respect to parts of the environment mapped long in the past is much higher than with respect to
the robot’s immediate surroundings.
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(a) Map produced from uncorrected odometry (b) Map produced with cycle detection

Figure 2.9: The loop closing problem. Without cycle detection maps are subject to significant
perceptual aliasing. Data set courtesy of Andrew Howard via Radish (Howard and Roy, 2003).

association hypothesis, and resampling of particles prunes maps with incorrect data associations.
Montemerlo (2003) uses maximum likelihood data association on a per-particle basis, and also
describes an approach for “data association sampling,” i.e., choosing a correspondence with prob-
ability proportional to its likelihood.

2.8.2 Detecting cycles
Loop closing is one of the most difficult problems in mapping. Figure 2.9 illustrates the under-
lying issue: mapping algorithms that rely only on a robot’s uncorrected and noisy odometry
are subject to significant “perceptual aliasing” (or alignment) problems because the pose error
of most robots accumulates rapidly over trajectories of more than a few meters. Early mapping
approaches based on EKFs ignored the cycle detection problem (e.g. Smith et al., 1990), but it has
become a significant focus of recent research.

The simplest approach for closing loops is to modify the environment, e.g., by leaving
markers at junctions to recognize when a loop has been closed. For example, Bender et al. (1998)
show that in an environment modeled as a graph, a single “pebble” suffices for a robot to map
the environment as long as an upper bound on the number of vertices in the graph is known.
However, in most practical scenarios modifying the environment is not an option.

Robots with high-fidelity sensors can take snapshots or “sensing signatures” of places in
the environment and use these for closing loops. Kuipers and Beeson (2002) describe a supervised
learning approach for recognizing distinctive places in topological maps based on their sensing
signature. While this approach is reasonable for robots with scanning laser rangefinders or cam-
eras in environments that do not exhibit too much self-similarity, it is not applicable for robots
with more limited sensing.

Other work on loop closing in topological maps has focused largely on structural matching
techniques. In environments with structural asymmetries, a robot can simply traverse its map to
a differentiating place in order to determine the correct loop closing hypothesis (e.g. Kuipers and
Byun, 1991; Choset and Nagatani, 2001). Rather than exhaustively eliminate all hypotheses, oth-
ers have taken an evidential approach in which geometrical information is employed to determine
the correct hypothesis (e.g. Tomatis et al., 2002a,b; Beevers and Huang, 2005). In some cases, prior
knowledge, such as planarity constraints on embeddable topological maps, can be employed to
aid in loop closing, as in (Savelli and Kuipers, 2004; Savelli, 2005). Related structural matching
techniques have also been successfully applied in hybrid mapping approaches (e.g. Bosse et al.,
2004; Thrun et al., 2005).

Geometrical mapping algorithms frequently rely on data association to detect cycles. For
particle filtering algorithms or other approaches that maintain several data association hypothe-
ses, this method can be sufficient in reasonably complicated environments (Montemerlo, 2003).
Others have examined approaches for actively closing loops. For example, Stachniss et al. (2005a)
describe an exploration algorithm for particle filter mapping based on POMDP-like decision mak-
ing in which the robot actively seeks to verify loop-closing hypotheses.
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2.9 Other considerations
There are many other aspects of the robot mapping problem that we have not discussed above.
Here, we briefly touch upon several more considerations for designing mapping algorithms.

2.9.1 Planar and 3D mapping
Maps that include geometrical information are generally embedded in R2 or R3. The vast major-
ity of robot mapping research has focused on the 2D case since it is suitable for navigation in many
interesting circumstances, e.g., indoors or in structured outdoor environments. More recently, as
robots begin to venture into less structured conditions, maps that incorporate full 3D information
and six degrees of (robot) freedom have been investigated.

This thesis focuses on building planar maps. We note that sensing that is “high-fidelity” in
the planar case may be much less so in the 6-DOF case. For example, a scanning laser rangefinder
that provides dense coverage of a 2D “slice” of the world can be used to build very accurate
planar maps, but must be augmented in the 3D case, by moving or re-orienting the sensor, using
several sensors, or both. Similarly, a simple 1D sensor such as an infrared rangefinder can be
used to build accurate maps in a (hypothetical) 1D environment but is less sufficient in a planar
environment. In this sense, by studying the problem of 2D mapping with limited sensing we can
develop techniques that are useful in the 3D case as well.

2.9.2 Online and offline mapping
Robot mapping algorithms can be divided into techniques that can be applied online and those
that are executed offline. Online approaches, e.g., (Smith et al., 1990; Kuipers and Byun, 1991;
Choset and Nagatani, 2001; Montemerlo, 2003), construct a map sequentially as data arrives. Of-
fline approaches, e.g., (Lu and Milios, 1997; Thrun et al., 1998b), compute maps from all the data
collected by the robot over the course of its deployment and need not be sequential in nature.
Offline methods are usually subject to fewer computational restrictions since online algorithms
must typically meet realtime requirements.

Generally, online mapping algorithms that enable a robot to use its map for planning, nav-
igation, and localization while the map is being built are the most practically useful techniques.
This thesis is focused on developing online algorithms. However, algorithms primarily devel-
oped for offline mapping can play roles in online scenarios, e.g., as post-processing steps when
extra computation time is available. Furthermore, the notion of using as much available infor-
mation as possible, typical of offline mapping, can also be applied to online algorithms and is
the main principle behind the new algorithms presented in Chapter 6. In these algorithms, new
information, as it arrives, is used to improve past pose and map estimates.

2.9.3 Passive and active mapping
An advantage of online mapping approaches is that, when feasible, the current map can be used
to direct the exploration of the robot, e.g., to reduce uncertainty in the map. Mapping algo-
rithms that direct the robot’s exploration are known as active techniques, as opposed to passive
approaches that simply build the map opportunistically from sensing inputs obtained as the robot
goes about some other task.

Most robot mapping algorithms are passive. Completely passive approaches can be dis-
advantageous if the sensing capabilities of the robot are restricted, since certain actions, such as
spinning rapidly in place, lead to large uncertainty if a robot’s odometry is subject to significant
noise and exteroceptive sensing is limited. Commands that direct a robot to cross a large, empty
room deprive the robot of sensing feedback when its sensors have limited range (Roy and Thrun,
1999). In general, there are classes of actions that are are inappropriate for creating accurate maps.
Thus, approaches that automatically consider which actions will lead to accurate maps are often
desirable (see, e.g., Shatkay and Kaelbling, 2002; Stachniss et al., 2005a).

However, there are certainly many situations that call for the application of passive map-
ping techniques. A robotic car should not switch lanes on a busy highway just to improve its
knowledge of the surrounding vehicles. Nor should a robot with a specific goal (beyond creating
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a map) direct more effort to mapping than necessary.
The development of successful passive mapping approaches is also compelling because

the same techniques remain applicable in an active mapping context. In fact, the main problem
addressed by active mapping algorithms is one of exploration, i.e., how to efficiently direct the
robot so a given passive algorithm generates an accurate map. This thesis focuses on passive
mapping algorithms and does not address the exploration issue, although we note that some
of the techniques described earlier for topological mapping, such as tracing the SGVD∞ of the
environment, may be useful in this respect.

2.9.4 Dynamic environments
Robots in the real world must deal with evolving scenarios: cars drive at different speeds down
a busy street, doors open and close, people crowd and jostle a robot in their curiosity. Regardless
of a robot’s sensing capabilities, observing dynamic components of the environment reliably can
be extremely difficult. For this reason, most current robot mapping work assumes the workspace
of the robot is static. Thus, the environment model xm is not time-dependent so, as noted earlier,
the robot’s observation model (2.5) can be rewritten as:

zt = h(xr
t , xm) + wt (2.21)

i.e., measurements depend only upon the current configuration of the robot with respect to the
environment, as long as the system model is otherwise complete. This is sometimes known as the
Markov (or “complete state”) assumption.

In practice it is impossible to model all aspects of the environment and the robot that affect
sensor measurements. Thrun et al. (2005) list several potential violations of the Markov assump-
tion, including:

• dynamic elements in the environment, e.g., people;

• inaccuracies in the motion and measurement models (Equations 2.7 and 2.8, respectively);
and

• approximation errors due to uncertainty representations such as grids or samples.

While some work has been done on recognizing dynamic components of the environ-
ment (e.g. Fox et al., 1999; Biber and Duckett, 2005), this remains a challenging problem even
with high-fidelity sensors and it is not addressed in this thesis. However, as noted by Thrun et al.
(2005) and others, probabilistic mapping algorithms such as particle filtering approaches have
shown themselves to be reasonably robust to violations of the Markov assumption in practical
scenarios.

2.9.5 Multi-robot mapping
When multiple robots exist in the same workspace and can communicate, it is sometimes reason-
able for the robots to work together to build maps. The robots can share data to combine partial
maps, distribute computation and storage, and even serve as “cooperative landmarks” to aid in
mapping. Many researchers have studied the multi-robot mapping problem (e.g. Dudek et al.,
1998; Dedeoglu and Sukhatme, 2000; Thrun, 2001; Fenwick et al., 2002; Ko et al., 2003; Konolige
et al., 2003; Huang and Beevers, 2005b). While the focus of this thesis is on single-robot map-
ping, many of the techniques described here can be used in a multi-robot context by applying
algorithms for merging the maps of individual robots.



3
THE INFLUENCE OF SENSING

CAPABILITIES ON MAP QUALITY

Most research on robot mapping focuses on developing algorithms for mapping with particular
sensors, such as laser rangefinders, stereo cameras, or SONAR arrays. Parts of this thesis, for
example, examine the case of mapping with a small infrared rangefinder array. However, in
this first technical chapter we instead take a broad approach and apply a single simple mapping
algorithm to a large class of sensors, with the goal of uncovering basic relationships between
different sensor capabilities and the quality of maps built by the sensors.

In order to perform such a theoretical analysis, we make some simplifying assumptions
about the robot’s trajectory, correlation between observations, and structure in the environment.
We first describe these assumptions, and then detail a sensor model which encapsulates most
of the interesting aspects of range-bearing sensors used for mapping, including sensing radius,
beam width, range and bearing noise, and so on. We then apply the model to occupancy grid
mapping and prove a bound on the expected error in the map, in terms of the sensor charac-
teristics and trajectory length. In doing so, we also obtain a bound on the expected number of
observations of each cell and conditions on the sensor for convergence to the correct map. The
model is implemented in simulation and we show that our bounds match the empirical results.
In addition, we apply the model using parameters from several real-world sensors, enabling us
to quantify the relative usefulness of the sensors for mapping.

3.1 Overview
The vast majority of robot mapping research has the goal of developing algorithms to build maps
with specific robots. For example, much of the modern research on simultaneous localization and
mapping (SLAM) assumes the availability of a scanning laser rangefinder. (A decade ago, on the
other hand, most SLAM research used arrays of SONAR sensors.) There are specific algorithms
tailored to mapping with lasers (Grisetti et al., 2005), infrared rangefinder arrays (Beevers and
Huang, 2006a; this thesis, Chapter 4), SONAR arrays (Leonard et al., 2002; Tardós et al., 2002),
monocular cameras (Deans and Hebert, 2000a; Solá et al., 2005), radio beacons (Detweiler et al.,

mij map grid cell (row i, col. j)
M num. map rows and columns
δ length (m) of a grid cell side
d cell occupancy probability
xr

t pose at time t ∈ [0, T]

ρ readings per scan
r+ maximum sensing radius (m)
r̂ reported range (m)
∆β beam width (rad)
σβ bearing uncertainty (rad)
σr range uncertainty (m)

F sensor firing frequency
εE false negative rate
εF false positive rate
oij num. observations of cell mij
ν error in max. likelihood map

Notation for this chapter
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2006), and so on.
One shortcoming of the sensor-specific approach to mapping is that when a different al-

gorithm is designed for every sensor, it is difficult to say anything general about the sensing
requirements for mapping. Recent work by O’Kane and LaValle on localization with limited sens-
ing (O’Kane and LaValle, 2006b,a) has introduced several important concepts — robot primitives,
the notion of “dominance” of one robot over another with respect to a task, and equivalence
classes of robots for a given task — which enable binary characterization of a robot’s ability to
perform a task. They have used these tools to show, for example, that a robot with a compass
and a contact sensor can localize itself in a polygonal environment, but a robot with an angular
odometer and a contact sensor cannot. However, their approach still requires the development of
specialized algorithms for each equivalence class.

In this work we take a different approach: we employ a single occupancy mapping al-
gorithm for a broad sensor model that encompasses most types of sensors used for mapping.
This enables us to characterize which sensors are able to build a map, and also to provide quality
bounds on the map for a particular sensor. Our bounds are in terms of the parameters of the
sensor model, which enables us, for example, to verify if the map made by a given sensor con-
verges to the correct one in the limit; if it converges, we can additionally lower-bound the rate of
convergence.

We employ a simple occupancy model of the environment and build an occupancy grid
map using a bounded-uncertainty model of a range-bearing sensor. Our model makes several
simplifying assumptions, which are stated in Section 3.2. The model, described in detail in Sec-
tion 3.3, incorporates several sensor characteristics: maximum sensing radius, number of read-
ings per scan, beam width, firing frequency, range and bearing noise, and false positives and
negatives. We first prove a lower bound in Section 3.4 on the expected number of times a cell
in the map is updated. We then use this bound in Section 3.5 to give conditions on the sensor
parameters for convergence to the correct map; we also derive an upper bound on the error in the
map in terms of the sensor and the trajectory length.

To empirically validate our results, we implemented our sensor model and mapping algo-
rithm in simulation. Section 3.7 examines the effects of each of the model parameters for a variety
of different “base” sensors, including a SONAR-like sensor, a laser-like sensor, and bearing- and
range-only sensors. We also empirically address some of the simplifications employed in deriv-
ing the analytical bounds, and point out interesting cases for future study. Finally, we describe
an analytical comparison, using our bounds, of the mapping capabilities of real sensors including
infrared arrays, SONAR arrays, and a scanning laser rangefinder.

3.2 Assumptions
To obtain the theoretical results described in this chapter, we made several assumptions about the
robot, the sensors, and the environment. This section briefly states the assumptions, which are
discussed further in the following sections.

We assume the observations are taken from a sequence of poses drawn independently
and uniformly at random from within the environment. This is in contrast to a more realistic
continuous trajectory. In Section 3.7 we show in simulation that the analytical results obtained
under this assumption still match well with the case of continuous trajectories.

We also assume that false negatives and false positives — i.e., errors in readings of a cell in
the environment — occur independently for each reading. In reality, situations may instead arise
where repeatedly observing the same cell or environment feature consistently yields incorrect
readings. Potentially, our model could be extended to include such effects by assigning false
negative and positive rates on a per-cell basis.

Finally, our analysis assumes that the environment is unstructured, i.e., that no correlation
exists between the occupancies of different cells in our occupancy model. Section 3.7.1 discusses
this assumption in more detail, shows the effect of structure on map quality using simulations,
and describes a possible extension to our approach to incorporate structure by using a Markov
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(a) Sensor arrangement.
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Figure 3.1: Illustration of the sensor model. In (a), the regions CF, C∗E, and C∆
E are depicted in

different shades. Beams are arranged radially around the robot.

random field (MRF) model of the environment.

3.3 Model
We begin by introducing the environment, sensor, and map update models which we use for the
analysis in Sections 3.4–3.5.

3.3.1 Environment model
We consider an environmentM consisting of an M×M grid of cells mij, each of size δ× δ. Cells
are either full (F) with a priori probability d or empty (E) with probability 1− d. In our analysis we
assume for simplicity that the environment is toroidal, i.e., a boundary is connected to its opposite
side. We also assume that the occupancy of each cell is independent, although we address the case
of structured environments empirically in Section 3.7.

3.3.2 Robot and sensor model
In our analysis, the robot’s trajectory xr

t = [xr
t yr

t θr
t ]

T , t ∈ [0, T] consists of a sequence of randomly
selected poses in M× S1. We empirically examine the more realistic case of trajectories with
velocity and turning constraints, and show that our simplifying assumption yields very similar
results.

The robot has a range-bearing sensor with maximum range r+ which fires at frequency
F. The sensor takes ρ readings per scan (i.e., it fires ρ “beams”). The beams are placed at an-
gles {β1, . . . , βρ} where βi = i 2π

ρ + U[−σβ, σβ], i.e., the beams are approximately evenly spaced
around the perimeter of the robot but there is some bearing error, distributed uniformly over
an interval of range 2σβ. Each beam has beam width 2∆β. The beam continues outward from
the robot until it detects an occupied cell. For a particular empty cell observed by the beam, a
false positive is registered with likelihood εF. A false negative occurs for an occupied cell with
likelihood εE. The sensor returns the range r̂ to the closest cell mmin which is detected as oc-
cupied. The range is corrupted by uniformly distributed noise, i.e., if the robot is in cell mij,
r̂ = ||mmin −mij||+ U[−σr, σr].

In our analysis of mapping, we focus on the sensor characteristics described above and
as such, we assume the trajectory of the robot is perfectly known. In Section 3.6 we discuss
extensions to the model which may enable analysis in the SLAM case.
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3.3.3 Mapping
The robot builds an occupancy grid map. Updates are applied to a cell when it intersects the
sensor beam. The map updates employ a bounded uncertainty model: the beam width is inflated
from 2∆β to 2(∆β + σβ) to account for bearing error, and the beam range is inflated from r̂ to r̂ + σr
to account for range error. The beam is divided into regions as shown in Figure 3.1; we further
define C∆

E = C∆,1
E ∪ C

∆,2
E and CE = C∗E ∪ C

∆
E; define C∆

F and CF similarly; and define C = CE ∪ CF.
Based on the returned range r̂ of a beam, we determine a measurement zij ∈ {E,F} for

each cell mij contained within the beam. If mij ∈ CF the measurement is zij = F; if mij ∈ CE
it is zij = E. We use a simple additive update model. If zij = F, the belief p̂(mij = F) in the
occupancy of a cell is incremented by p0, i.e., p̂(mij =F|zij =F) = p̂(mij =F) + p0; similarly, if
zij = E, the belief is decremented by the same p0. This update model is simplistic and in practice
one might instead use Bayesian or Dempster-Shafer updates (Pagac et al., 1998) along with a more
complicated sensor model (Konolige, 1997; Thrun, 2003). However, our focus is on analysis and
the additive approach is both convenient and effective in practice.

3.4 Bound on cell updates
In this section we prove a lower bound on the expected number of times an update is applied to
each cell in the grid. In the next section we use this result to establish a bound on the expected
error in the map.

For convenience, we define EE = ((1− d)(1− εE)+ dεF) and EF = (d(1− εF)+ (1− d)εE)
as the probabilities that some cell in a beam registers as empty or full, respectively.

Theorem 3.1. In T time steps, for a sensor as described in Section 3.3, the expected number of updates of
any cell mab ∈ M is bounded by:

E[oab] ≥
2TFρ(∆β + σβ)

M2

⌈
r++σr

δ

⌉
∑
τ=0

τ · pobs (3.1)

where:
pobs ≥ E

∆βτ2

E (3.2)

Proof. Let nij be the number of times the sensor is fired when the robot is in cell mij. Furthermore,
define obs(mab, k) as the event that mab is observed by beam k, 1 ≤ k ≤ ρ, and define B(mab, k) as
the event that mab intersects the maximum-range beam k. Then:

E[oab] = ∑
i,j

E[nij]
ρ

∑
k=1

p(obs(mab, k)|B(mab, k), xr
t ∈ mij)︸ ︷︷ ︸

pobs

× p(B(mab, k)|xr
t ∈ mij)︸ ︷︷ ︸

pbeam

(3.3)

Under our assumption of uniformly distributed poses and since the beam angles are all uni-
formly distributed with the same variance, the terms in the internal summation are identical for
all beams. Thus:

E[oab] =
TFρ

M2 ∑
i,j

pobs · pbeam (3.4)

We now turn to pbeam. Note that for mab such that ||mab −mij|| > r+ + σr, this likelihood
is zero. Define N (mab) =

{
mij : ||mab −mij|| ≤ r+ + σr

}
. We ignore cells not in N (mab). Now it

is easily seen that the likelihood that mab intersects beam k is simply the ratio of cells in N (mab)
intersecting a beam of width ∆β + σβ and range r+ + σr to the total number of cells in N (mab),
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i.e.:

p(B(mab, k)|xr
t ∈ mij) = Ω

(∆β + σβ

π

)
(3.5)

With this we can rewrite (3.4):

E[oab] ≥
TFρ(∆β + σβ)

πM2 ∑
mij∈N (mab)

pobs (3.6)

Reparameterizing the summation by the integral range τ to the cells yields:

≥
TFρ(∆β + σβ)

πM2

⌈
r++σr

δ

⌉
∑
τ=0

⌈
2πτδ

δ

⌉
pobs (3.7)

where d2πτδe
δ is the number of cells at integral range τ from mab. Simplifying:

≥
2TFρ(∆β + σβ)

M2

⌈
r++σr

δ

⌉
∑
τ=0

τ · pobs (3.8)

Only pobs, the probability that we actually update our estimate of the occupancy of mab,
remains. The cell will not be updated only if it is occluded by another cell detected as occupied,
closer to the robot. Let τδ be the distance ||mab − mij||. Then mab is observed only if (a) no cell
mqr such that ||mqr − mij|| < τδ − 2σr is detected as being occupied, and for all cells such that
τδ− 2σr ≤ ||mqr − mij|| < τδ, either (b) none of the cells is detected as occupied; or (c) a cell is
detected as occupied but the (noisy) reported range is less than τδ− σr. In all other cases, some
update will be applied to cell mab. We focus only on (a) and (b) since our objective is simply to
bound the number of observations.

Define pa and pb as the probabilities of events (a) and (b), respectively, and define Wc =
{mqr : B(mqr, k)∧ ||mqr−mij|| < τδ− 2σr} and Wn = {mqr : B(mqr, k)∧ τδ− 2σr ≤ ||mqr−mij|| ≤
τδ}. It is straightforward to see that:

|Wc| = O
(∆β

δ2 max{0, τδ− 2σr}2
)

(3.9)

and:

|Wn| = O
(∆β

δ2

(
(τδ)2 −max{0, τδ− 2σr}2

))
(3.10)

The probability that a cell mqr ∈ Wc is detected as unoccupied is just EE, so pa ≥ E
∆β

δ2 (τδ−2σr)2

E
if τδ > 2σr, and pa = 1 otherwise. Similarly, the probability that all cells in Wn are detected

as unoccupied is pb ≥ E
4

∆β

δ2 (τδσr−σ2
r )

E if τδ > 2σr, and pb = E∆βτ2

E otherwise. Multiplying pa
and pb yields the lower bound on pobs stated in (3.2). We omit a derivation here but it is also
straightforward to obtain a bound on pc. Specifically, for the case τδ > 2σr:

pc ≥
1
2

min
{

1,
4EF∆β

δ2 (τδσr − σ2
r )
}

(3.11)

In practice we have found that pc generally has little effect on E[oab] so we do not include it in the
main bound.

Combining the above results yields the bound.
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3.4.1 Discussion
The key result we have shown so far is that some sensing parameters have diminishing returns.
For example, the improvements obtained by increasing sensing radius or beam width decay ex-
ponentially after a certain point (as seen in Equation 3.2). On the other hand, increasing the
number of readings per scan always increases the number of updates, as does increasing the fir-
ing frequency. Of course, increased sensor noise also causes us to make more updates, but these
updates will frequently be incorrect. We therefore now turn to a more definitive metric, the error
in the resulting map, and show how it is related to the various sensor parameters.

3.5 Bounds on map error
In this section we prove an upper bound on the expected error in the maximum likelihood map
estimate and give conditions on the sensor for convergence to the correct map. The maximum
likelihood map estimate for cell mij is defined as mmax

ij = argmaxs∈{E,F} p̂(mij = s). The error νij

for the cell is 0 if mmax
ij = mij and 1 otherwise, and the error for the entire map is ν = ∑i,j νij. We

begin by characterizing the probability that a particular update of a cell is incorrect.

Lemma 3.2. If cell mij is unoccupied, the probability p(inc|mij = E) that an update to mij is incorrect
(i.e., p̂(mij = F) is increased) is at most:

⌈
r++σr

δ

⌉
∑
τ=0

pobs · pf ·
(τδ + σr)2 −max{0, τδ− σr}2

(τδ + σr)2 (3.12)

where:

pf = min
{

1,
∆βEF

δ2

(
(τδ + σr)2 −max{0, τδ− σr}2

)}
(3.13)

Proof. An update to an unoccupied cell is incorrect if the cell falls in CF in some sensor beam. It
is easily seen that:

p(inc|mij = E) ≤

⌈
r++σr

δ

⌉
∑
τ=0

p (dτδ− δe ≤ r̂ ≤ dτδ + δe)
|Cτδ
F |
|Cτδ|

(3.14)

where the first term in the summation is the probability of obtaining a set of particular range
measurements, and |Cτδ| indicates the number of cells in the beam of range τδ. A simple bound
can be obtained based on pobs from the preceding section:

p(inc|mij = E) ≤

⌈
r++σr

δ

⌉
∑
τ=0

pobs|C∗,τδ
F |EF

|Cτδ
F |
|Cτδ|

(3.15)

Setting pf = |C∗,τδ
F |EF we obtain the bound.

Lemma 3.3. If mij is occupied:

p(inc|mij = F) ≤

⌈
r++σr

δ

⌉
∑
τ=0

pobs · pf ·
max{0, τδ− σr}2

(τδ + σr)2 (3.16)

Proof. The proof is identical to that of Lemma 3.2, replacing
|Cτδ
F |
|Cτδ | with

|Cτδ
E |
|Cτδ | .
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Theorem 3.4 (Convergence conditions). Let pinc = d · p(inc|mij=F) + (1− d) · p(inc|mij=E). If
pinc > 1

2 the maximum likelihood map error diverges.

Proof. Note that pinc is the probability that an update of an arbitrary cell is incorrect. If pinc > 1
2 ,

the frequency of incorrect updates outnumbers that of correct updates. Since we use an additive
approach to update the map, the error in the maximum likelihood estimate only increases with
more measurements.

Theorem 3.5 (Error bound). If pinc ≤ 1
2 , the expected error ν of the maximum likelihood map is bounded

from above by:

E[ν] ≤ M2 exp

{
−2E[oab]

(
1
2
− pinc

)2
}

(3.17)

Proof. The result is a direct application of the Chernoff bound. From Theorem 3.1 we have an ex-
pression for the expected number of times an update is applied to a cell in the map. Lemmas 3.2
and 3.3 are combined to obtain pinc, the probability that any particular update is incorrect. The
Chernoff bound states that likelihood of error in the maximum likelihood estimate of a cell de-
creases exponentially in the number of updates, at a rate inversely proportional to the probability
of an incorrect update. The total error is over M2 cells, yielding the bound.

Corollary 3.6. If pinc > 1
2 the expected error is bounded from below by:

E[ν] ≥ M2 ·
(

1− exp

{
−2E[oab]

(
pinc −

1
2

)2
})

(3.18)

3.5.1 Discussion
An interesting consequence of Theorem 3.4 is that it reveals one way in which our mapping ap-
proach may be unrealistic. In particular, consider a bearing-only sensor, such as a monocular cam-
era, for which σr ≈ r+ since a camera cannot detect depth. According to Theorem 3.4, the map
diverges for such a sensor — i.e., the error in the maximum likelihood map increases with more
observations. Nevertheless, a number of researchers have demonstrated mapping with cameras.
The difference between the occupancy-based technique we employ and some practical mapping
algorithms is that the occupancy approach does not rely on (or make use of) correspondence in-
formation, e.g., a “landmark id” assigned to a particular measurement. Our results suggest that
without such correspondence information, or some other source of knowledge, it is impossible
for bearing-only sensors to build a correct map. This is similarly the case for range-only sensors
in certain environments, since pf is proportional to the beam width ∆β.

3.6 Extensions
While we have focused on a particular scenario — occupancy mapping with random poses in
unstructured environments — the approach we have taken has implications for a variety of sce-
narios and can be extended in several ways.

Feature-based mapping, with known or unknown correspondences, can be analyzed in
our framework by maintaining separate grids for each landmark ID, updating a grid only when
the associated landmark is observed (and with unknown correspondences, scaling the update
magnitudes by a correspondence likelihood). We additionally note that Theorem 3.1 has direct
implications for feature-based mapping. Specifically, for a given “minimum feature size,” the
bound on E[oab] is also a bound on the expected number of single-beam observations of each
feature in the environment. Coupled with an analysis similar to that in Section 3.5 (specific to the
type of features being estimated), a bound on feature-based map error can be obtained in terms
of the robot’s sensing capabilities.
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Explanation SONAR Laser Bearing Range
ρ readings/scan 16 180 60 1
r+ max. range 10 10 10 10
∆β beam width 17◦ 0.3◦ 0.3◦ 360◦

σβ bearing unc. 0.06◦ 0.06◦ 0.3◦ 0◦

σr range unc. 0.1 0.02 8 0.1
εE false neg. 0.01 0.001 0.001 0.01
εF false pos. 0.02 0.001 0.01 0
d env. density 0.01 0.01 0.001 0.001

Table 3.1: Synthetic sensor parameters

Empirical evidence presented in the following section suggests that, at least in unstruc-
tured environments, our assumption of random poses may not be a bad one since adding cor-
relation between mapping poses changes performance only slightly in most cases. (This is less
the case in structured environments where the “view” from one instant to the next changes only
slightly.) A first step toward analyzing constrained trajectories would be to incorporate a simple
random walk process model in the framework.

Finally, pose uncertainty can be included in our model by maintaining a grid-based rep-
resentation of the uncertainty and convolving the grid with map updates. Our conditions for
convergence do not apply in this “SLAM”-like case, but we believe a similar approach may yield
useful results.

3.7 Experimental results
To verify our results, we implemented simulations of the environment, sensor, and map update
models from Section 3.3. The simulations take place on a 200× 200 cell grid with δ = 0.1 m. Most
of our simulations were with sparse environments (d = 0.01 or less) since denser worlds do not
exhibit much variation in map quality for different sensors.

We simulated several synthetic “base” sensor models, varying individual parameters for
each experiment. Here we mostly present results from a SONAR-like sensor array; we also include
some interesting results from other types of sensors. The parameters for each of the sensors we
tested are shown in Table 3.1. Distances are given in meters and angles in degrees. All of the
sensors fired at F = 5 times per second and ran for T = 25 sec. Figure 3.2 shows an environment
with density d = 0.01 along with typical maps produced by each of the (base) sensors.

The left-hand side of Figure 3.3 shows plots of the mean cell update count for the SONAR-
like sensor as each sensor parameter is individually varied. Each plot contains both the simulated
result and the predicted upper bound from Theorem 3.1. We additionally show the update count
obtained from simulations with a realistic trajectory with velocity and turning constraints. The
right hand side of Figure 3.3 shows similar plots for the error in the maximum-likelihood maps. In
computing the empirical error, a fair coin was flipped to determine the occupancy of unobserved
cells.

In nearly all cases, the predicted observation counts match very well with the empirical
results. The upper bound on map error is less tight but is still reasonably close to the empirical
result for every sensor parameter.

Figure 3.4 shows two interesting cases illustrating map divergence for bearing- and range-
only sensors, as described in Section 3.5.1. Increasing the range uncertainty σr of a range-only
sensor handicaps its ability to make any useful observations about the environment, and because
the full 360◦ of the sensor beam is updated for each measurement, as σr increases so does |CF|
until most map updates are incorrect. As discussed previously, a bearing-only sensor has little
hope of building a correct occupancy map to begin with; increasing the beam width of the sensor
only exacerbates the issue.
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(a) Ground truth (b) SONAR-like sensor (c) Laser-like sensor

(d) Bearing-only sensor (e) Range-only sensor

Figure 3.2: An example world with d = 0.01 and typical maximum likelihood maps produced
by each of the sensors. Occupied cells are black, empty cells white, and unobserved cells are
shown here as gray for clarity. For an explanation of the bearing-only map, see Section 3.5.1.

3.7.1 Structured environments
In our analysis, we assumed unstructured environments (cells are independent). In practice,
nearly every environment exhibits some kind of structure. While it may be possible to address
these issues analytically, a good first step is to examine them empirically to improve our under-
standing of how structure affects map quality for different sensors.

To obtain structured simulated environments, we generated worlds based on a pairwise
Markov random field (MRF) model using an approach similar to that of Rachlin et al. (2005). In
a pairwise MRF, the occupancies of a cell mab in the “neighborhood” N(mij) of mij are related
to that of mij through a compatibility function ψij,ab(mij, mab); for our purposes, the compatibility
function can be thought of as a likelihood function for mij conditioned on the occupancy of mab.
The distribution of environments in our MRF model can be written as:

p(M) = η ∏
i,j

d ∏
mab∈N(mij)

ψij,ab(mij, mab) (3.19)

where d is the base occupancy likelihood of a cell. Intuitively, a pairwise MRF model generates an
environment with local structure which depends on the definition of N(mij) and the compatibili-
ties ψij,ab. In the results given here, we used d = 0.5 and simple rectilinear 4-neighborhoods, with
the likelihood of two adjacent cells having the same occupancy set to 0.9, and the likelihood of
different occupancies set to 0.1. We obtained simulated environments by applying 20 iterations
of Gibbs sampling to (3.19). Figure 3.5 shows a typical MRF-sampled environment and maps
produced with the SONAR-like and laser-like sensors.

The results of simulations in MRF-generated environments with the SONAR-like sensor and



40 THE INFLUENCE OF SENSING CAPABILITIES ON MAP QUALITY

0 20 40 60 80 100
0

5

10

15

20

Readings per scan (ρ)

M
ea

n 
# 

up
da

te
s

0 20 40 60 80 100
0

1

2

3

x 10
4

Readings per scan (ρ)

M
L 

m
ap

 e
rr

or

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

Maximum range (r+)

M
ea

n 
# 

up
da

te
s

0 2 4 6 8 10
0

1

2

3

x 10
4

Maximum range (r+)

M
L 

m
ap

 e
rr

or

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

1

2

3

Beam width (∆
β
)

M
ea

n 
# 

up
da

te
s

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

1

2

3

x 10
4

Beam width (∆
β
)

M
L 

m
ap

 e
rr

or

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08
0

1

2

3

Bearing uncertainty (σ
β
)

M
ea

n 
# 

up
da

te
s

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08
0

1

2

x 10
4

Bearing uncertainty (σ
β
)

M
L 

m
ap

 e
rr

or

0 1 2 3 4 5 6 7 8 9 10
0

100

200

Range uncertainty (σ
r
)

M
ea

n 
# 

up
da

te
s

0 2 4 6 8 10
0

2

4
x 10

4

Range uncertainty (σ
r
)

M
L 

m
ap

 e
rr

or

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

1

2

3

False neg. (ε
E
)

M
ea

n 
# 

up
da

te
s

0 0.1 0.2 0.3 0.4 0.5
0

1

2

3
x 10

4

False neg. (ε
E
)

M
L 

m
ap

 e
rr

or

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

2

4

False pos. (ε
F
)

M
ea

n 
# 

up
da

te
s

0 0.1 0.2 0.3 0.4 0.5
0

1

2

3

x 10
4

False pos. (ε
F
)

M
L 

m
ap

 e
rr

or

0 2 4 6 8 10 12 14 16 18
0

5

10

Frequency (F)

M
ea

n 
# 

up
da

te
s

0 5 10 15
0

1

2

3

x 10
4

Frequency (F)

M
L 

m
ap

 e
rr

or

Figure 3.3: Left: mean cell update count for the SONAR-like sensor while varying individ-
ual parameters. Right: maximum likelihood map error. The solid black line is the analytical
bound; the dashed line is the empirical value for random poses; and the gray line is the empir-
ical value for realistic trajectories.
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Figure 3.4: Map divergence as σr increases for a range-only sensor (left), and as ∆β increases
for a bearing-only sensor (right).

(a) Ground truth (b) SONAR-like (c) Laser-like

Figure 3.5: A MRF-generated environment and maps.

random poses are given in Figure 3.6. The main observation is that structure in the environment
clearly invalidates our bound on observation count. This we might easily expect since we make
heavy use of the independence assumption, particularly in computing pobs. An interesting ap-
proach might be to incorporate the MRF model directly in our framework, i.e., computing the
marginals of (3.19) as a step in determining the likelihoods EE and EF.

3.7.2 An analytical comparison of real sensors
In addition to the experiments with synthetic sensors, we obtained parameters for our model for
three real mapping sensors: the SICK LMS 200-30106 scanning laser rangefinder (SICK AG, 2003),
the Polaroid 6500 series SONAR ranging module (SensComp/Polaroid, Inc., 2003), and the Sharp
GP2D12 infrared rangefinder (Sharp Corp., 2005). Using our results, we analytically examined
the relative mapping capabilities of sensors in the following configurations:

• Laser: two “back to back” rangefinders each covering 180◦ for total coverage of 360◦

• SONAR-16, SONAR-24: an array of 16 (resp. 24) SONAR sensors at evenly spaced angles

• IR-5, IR-16: an array of 5 (resp. 16) IR sensors at evenly spaced angles

The model parameters for each configuration, gleaned mainly from the product datasheets, are
listed in Table 3.2.

3.7.2.1 Basic comparison
First we apply the model assuming each robot has the same amount of time for exploration and
mapping. Figure 3.7 shows the expected error versus time for each sensor in several environ-
ments. In most cases, the laser rangefinder is dramatically better than any of the SONAR or IR
configurations. The improvement obtained from a 24-sensor SONAR ring over a 16-sensor ring is
relatively small; this is similarly the case for a 16-sensor IR ring versus a 5-sensor ring, particularly
in the sparse environments. Clearly, the range limitation and smaller beam width of the infrared
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Figure 3.6: Mean cell update count (left) and map error (right) for the SONAR-like sensor in
MRF-generated structured environments. The solid black line is the analytical bound; the
dashed line is the empirical value for random poses.
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Explanation Laser SONAR-16 SONAR-24 IR-5 IR-16
F firing frequencya (Hz) 20 12 8 25 10
ρ readings/scan 360 16 24 5 16
r+ sensing radius (m) 10 10 10 0.8 0.8
∆β half beam width (◦) 0.6 15 15 1.8 1.8
σβ bearing uncertaintyb (◦) 0.06 0.06 0.06 0.06 0.06
σr range uncertainty (m) 0.015 0.1 0.1 0.015 0.015
εE false negative rate 0.02 0.08 0.08 0.02 0.02
εF false positive rate 0.001 0.01 0.01 0.001 0.001

aMost SONAR or IR arrays rely to some extent on sequential collection of data from each sensor, due to bus limitations.
Thus, adding more sensors reduces the effective firing frequency.

bThis is mainly a function of accuracy in mounting the sensors.

Table 3.2: Parameters for real sensors in several configurations

small sparse
(M = 200, d = 0.01)

small dense
(M = 200, d = 0.1)

large sparse
(M = 1000, d = 0.01)

large dense
(M = 1000, d = 0.1)

Laser
0

3.0e+04

0

3.0e+04

0

1.0e+06

0

1.0e+06

SONAR-24
0

3.0e+04

0

3.0e+04

0

1.0e+06

0

1.0e+06

SONAR-16
0

3.0e+04

0

3.0e+04

0

1.0e+06

0

1.0e+06

IR-16
0

3.0e+04

0

3.0e+04

0

1.0e+06

0

1.0e+06

IR-5
0

3.0e+04

0

3.0e+04

0

1.0e+06

0

1.0e+06

1 1800Running time (T) 1 1800Running time (T) 1 1800Running time (T) 1 1800Running time (T)

Figure 3.7: Expected maximum likelihood map error for the different sensors in several envi-
ronments. In all cases, the cell size is δ = 0.1 m.

array is a major handicap versus the SONAR array, despite the SONAR sensor’s less favorable error
rates.

In sparse environments, all of the sensors converge to essentially the correct map within a
reasonable time limit. To examine this more closely, Figure 3.8 depicts the running times required
by each sensor to achieve a given bound on the expected map error. The error bound is specified
in terms of the “quality” Q of the map, expressed as the percentage of correct cells, i.e., Q =
(M2 − E[ν])/M2.

In effect, the plots show how much “work” must be done (i.e., how much time is required)
by a robot equipped with each sensor to build a map with the desired quality. Our results indi-
cate, for example, that a robot with a 16-SONAR array must do (approximately) between 19 and
62 times more work than a laser-equipped robot to build a comparable map in fairly sparse envi-
ronments. A robot with only a 5-sensor infrared ring must do between 189 and 707 times more
work. Interestingly, the ratio of work between different sensors can be seen to depend on the
density of of the environment, but not the size of the environment or the desired map quality.
A summary of the work required to attain several map error values in different environments
appears in Table 3.3.

3.7.2.2 Laser-normalized running time
As mentioned above, the relative work required by different sensors to attain a particular map
quality is independent of the size of the environment and the desired quality. This suggests a use-
ful notion of relative sensor capability that depends only upon the complexity of the environment
(density in our model) and the characteristics of the sensors.
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small sparse
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(M = 200, d = 0.1)
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(M = 1000, d = 0.01)
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(M = 1000, d = 0.1)
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Figure 3.8: Running time required to achieve a desired expected map error in several environ-
ments. In all cases, the cell size is δ = 0.1 m.

d M Sensor T/Tlaser T(0.999) T(0.99) T(0.9) T(0.7)
0.01 200 Laser 1 2.26 1.50 0.75 0.39

1000 56.42 37.61 18.81 9.83
200 SONAR-16 61.61 139.05 92.70 46.35 24.23
1000 3476.26 2317.51 1158.75 605.89
200 SONAR-24 41.07 92.70 61.80 30.90 16.16
1000 2317.51 1545.00 772.50 403.92
200 IR-5 706.47 1594.44 1062.96 531.48 277.90
1000 39861.05 26574.04 13287.02 6947.50
200 IR-16 220.77 498.26 332.18 166.08 86.84
1000 12456.58 8304.39 4152.19 2171.09

0.1 200 Laser 1 10.09 6.72 3.36 1.76
1000 252.14 168.09 84.05 43.95
200 SONAR-16 18.90 190.67 127.11 63.56 33.23
1000 4766.67 3177.78 1588.89 830.80
200 SONAR-24 12.60 127.11 84.74 42.37 22.15
1000 3177.78 2118.52 1059.26 553.86
200 IR-5 189.05 1906.70 1271.13 635.57 332.32
1000 47667.56 31778.37 15889.19 8308.12
200 IR-16 59.08 595.84 397.23 198.61 103.85
1000 14896.11 9930.74 4965.37 2596.29

Table 3.3: Work T(Q) (time in seconds spent on exploration and mapping) to attain a given
expected map quality Q = (M2− E[ν])/M2; in all cases, δ = 0.1. Note that the laser-normalized
running times (T/Tlaser) are independent of Q.

Specifically, we normalize the required work by each sensor with respect to that for a “ref-
erence” sensor, using arbitrary values of M and Q, to obtain the work required by the sensors
relative to the reference sensor for all environments of a particular density. For example, the col-
umn T/Tlaser in Table 3.3 does this for two different environment densities using the laser as the
reference sensor. We term this notion of normalized work laser-normalized running time since it
specifies the time for each sensor, relative to the laser sensor model, required to build a map of
equal expected quality to that built by the laser. (One could just as easily define the normalized
running time with respect to any other sensor in our model. We have chosen the laser since it is
the most commonly used sensor for mapping.)

Figure 3.9 shows the laser-normalized running times for each sensor with respect to the
density of the environment. As the density of the environment increases, the relative capabilities
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Figure 3.9: Analytically determined laser-normalized running times for the different sensors,
versus density (d) of the environment. (The laser-normalized running time for the laser is
always, of course, 1.)

of a laser rangefinder and an infrared array converge. This is reasonable since the laser’s longer
range and higher spatial resolution are less useful in highly cluttered environments where many
nearby cells are occupied; aside from those characteristics, the capabilities of a laser rangefinder
and infrared array are mostly the same.

The behavior of the SONAR arrays is more complex, with the work required relative to the
laser rangefinder increasing dramatically between environment densities of around d = 0.5 to
d = 0.8. This increase is due to the beam width of the SONAR sensors. Specifically, for environ-
ments with densities in this “middle” range, empty cells frequently fall into the region CF and
are updated incorrectly; similarly, occupied cells frequently fall into C∆

E. Our model thus suggests
that occupancy mapping with SONAR sensors should be avoided in particularly cluttered envi-
ronments. (While the model shows improvement in extremely dense environments since beam
width is less of a factor, such environments are mostly impossible to map in practice anyway
since a robot cannot move inside an obstacle.)

3.8 Summary
In this chapter we have described a sensor model which is detailed enough to capture much of the
interesting behavior of real-world mapping sensors, and we have applied the model with a basic
occupancy grid mapping algorithm, under several simplifying assumptions, to prove three main
results. First, we derived a lower bound on the number of map updates applied to each cell in the
grid, in terms of the sensor characteristics. Second, we gave conditions which, if met, guarantee
the eventual convergence of the maximum likelihood map to the ground truth; if not met, the map
diverges. Finally, we used the preceding two results to obtain an upper bound on the expected er-
ror in the maximum likelihood map for a given sensor and trajectory length. We implemented the
sensor model in simulation with various synthetic sensors and found that our analytical bounds
match well with the empirical results. In addition, we applied the model with real-world sen-
sors, including a scanning laser rangefinder, SONAR arrays, and infrared rangefinder arrays, to
analytically compare the mapping capabilities of the sensors.

There are several shortcomings to our approach. Most importantly, our bounds assume un-
structured environments and “trajectories” consisting of random poses. Our empirical evidence
suggests that in unstructured environments, the difference in map quality between realistic tra-
jectories and random poses is slight. However, structure in the environment has a significant
effect on the ability of a robot to build a map, motivating further study of how to analyze sensing
capabilities in the presence of structure. Finally, we believe our framework may also be useful in
studying feature-based mapping, sensor-based exploration strategies, and SLAM.

The theoretical analysis presented in this chapter shows that, when faced with sensing
limitations, one must do more “work” — i.e., take more measurements — to build a high-quality
map. In the following chapters, we develop practical algorithms for feature-based mapping with
limited sensors similar to the small infrared arrays described earlier. These sensors are only able
to partially observe the parameters of environment features with a single scan, but by doing more
work — collecting data from several scans at different poses — we are able to obtain enough
information to do feature extraction.
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4
SLAM WITH SPARSE SENSING

This chapter examines the simultaneous localization and mapping (SLAM) problem (see Sec-
tion 2.4 and Appendix B) for robots with low spatial resolution range-bearing sensors, such as
infrared rangefinder arrays. These sensors provide too little data to extract features of the en-
vironment from a single scan, so we develop a particle filtering SLAM algorithm which groups
several scans taken as the robot moves into multiscans, which contain sufficient information for
extraction and data association. We formulate a full system model for this approach, and then
introduce simplifications that enable efficient implementation using a Rao-Blackwellized parti-
cle filter. We additionally describe a simple algorithm for feature extraction of line features from
multiscans, and enhancements to our approach for trading off accuracy and computation, and
then present experimental results using real data from several environments.

4.1 Overview
Figure 1.1 on page 7 compares the data density provided by a single scan from a typical scanning
laser rangefinder with that of a small infrared rangefinder array. As we have noted in the previous
chapters, laser data is sufficient for extracting meaningful features of the environment such as
lines or corners, or for direct “scan matching” against a map. In contrast, it is much more difficult
to extract features from a single sparse scan. Thus, using a sparse array demands an approach
for SLAM that is somewhat different from the traditional sequence of moving, sensing, extracting
features, finding correspondences, and then updating the map and pose estimates.

Our approach is to group consecutive sparse scans into multiscans so the data from multiple
frames can be used to extract good features. The tradeoff is that uncertainty in the robot’s motion
contributes to noise in feature extraction. This approach requires the robot’s trajectory (or “pose
history”) to be kept in order to process the multiscan. While others, e.g., Leonard et al. (2002) have
explicitly stored the pose history in the system state, we instead separate the pose history from
the system state, enabling feature extraction to be performed only once per multiscan in a particle
filtering implementation. Our approach yields an efficient SLAM algorithm for robots with sparse
sensing.

We note that because our algorithm is passive, we cannot make any guarantees about the
quality or completeness of the data produced by a multiscan. For example, a robot that moves
through empty spaces away from landmarks will obtain no useful information for mapping. Fur-
thermore, our approach requires a robot’s trajectory to be (effectively) continuous — collecting

m multiscan size
xr

t−m+1:t multiscan trajectory
zt−m+1:t multiscan
Pt−m+1:t multiscan covariance

C num. stratification chunks
xr

t−m+1:t mean intermediate trajectory

Notation for this chapter

47
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individual scans from spatially close-by vantage points enables us to garner sufficient informa-
tion to extract parameters for individual features. However, despite these limitations, the multi-
scan approach works well in practical scenarios because mobile robots indeed follow continuous
trajectories, which typically produce consecutive scans that give multiple distinct observations of
environment features.

4.2 SLAM with partially observable features
In Chapter 1 we briefly discussed previous research on mapping with limited sensing (Section 1.5).
Others have recognized that the primary issue in building maps with low-resolution sensors is
that the sensors are incapable of instantaneously observing all parameters of environment fea-
tures — i.e., features are only partially observable. Partial observability arises in several contexts.

Bearing-only sensors (Deans and Hebert, 2000a; Bailey, 2003; Solá et al., 2005; Lemaire et al.,
2005) are one such case. Bearing-only SLAM is typically performed with monocular cameras.
Cameras offer dense coverage of the environment over their field of view, which enables accurate
“discovery” and data association of features in images. Thus, it is reasonably straightforward
to fully initialize landmarks given good image registration techniques, e.g., (Lowe, 2004), and
sufficient baseline (e.g., via motion of the robot).

In contrast, sparse range-bearing sensor arrays, such as SONAR and infrared rangefinder
arrays, are very low-resolution over the field of view. A single scan from such a sensor is insuf-
ficient to initialize line or point features, and due to the low data density, data association be-
tween individual scans is essentially impossible. This motivates an approach in which a robot’s
proprioceptive odometry information is incorporated into the feature extraction process, e.g., by
gathering measurements from blocks of poses along the robot’s trajectory and extracting features
from the aggregate data.

Several researchers have examined the problem of using SONAR data from multiple poses
to extract features and perform SLAM (Wijk and Christensen, 2000; Zunino and Christensen, 2001;
Tardós et al., 2002; Leonard et al., 2002). An advantage of SONAR sensors is that, while they
provide only imprecise bearing information, the wide beam width of a SONAR sensor enables full
range-only coverage of a large field of view. Together with Hough transform methods for feature
extraction using data from several poses, SONAR sensors can observe line or point landmarks
with reasonable accuracy.

We instead study the SLAM problem for robots with sparse arrays of narrow beam width
sensors, e.g., infrared rangefinder arrays. While these sensors give precise bearing information,
they only sparsely cover the field of view of the array. Thus, both range and bearing information
about features can only be observed through motion of the robot.

4.3 SLAM with a pose history
When features can only be detected from multiple poses, one approach to SLAM is to incorporate
the pose history into the state vector. This is the method used by Leonard et al. (2002), who
apply an EKF to the resulting system. In this section, we give a brief description of this approach
and how one might apply a particle filter to this system. This sets the context for our simplified
approach to the problem, described in Section 4.4.

Suppose we keep the most recent m robot poses in the system state vector. Then the state
is:

xt = [xr
t−m+1:t xm

t ]T = [xr
t−m+1 xr

t−m+2 . . . xr
t xm

t ]T (4.1)

where xr
t is the robot pose at time t and xm

t is a vector of n landmarks. This fits into the standard
system model:

xt = f (xt−1, ut) + vt (4.2)
zt = h(xt) + wt (4.3)
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where ut is the input, zt the measurement, and vt and wt are system and measurement noise,
respectively.

4.3.1 Using the EKF

Leonard et al. (2002) apply the EKF to this system, so they maintain an estimate of the state vector
as well as its full covariance:

Px =

[
Pr

t−m+1:t Pr,m
t−m+1:t(

Pr,m
t−m+1:t

)T Pm

]
(4.4)

where Pr
t−m+1:t, Pr,m

t−m+1:t, and Pm are covariance matrices for the robot pose history and the land-
mark locations. The key points in applying the EKF to this system are:

• When the state is projected forward, the new robot pose xr
t is inserted into xt and the oldest

pose is discarded.

• Feature extraction is done using the last m pose estimates and the corresponding m mea-
surements.

(For a detailed discussion of the EKF for SLAM, see Appendix B.) Since the full covariance (and
cross covariance) of the past m robot poses are maintained, feature extraction can account for the
uncertainty of (and correlation between) poses from which the sensor measurements were taken.

However, the computation of the full covariance matrix is very expensive (at least O((m +
n)2) complexity), and it must be performed at each time step. Furthermore, EKF-SLAM is unable to
represent multiple data association hypotheses or multimodal distributions over the state space.
Recently, particle filtering techniques have been used to overcome these limitations in traditional
SLAM formulations. Appendix B introduces the basic particle filtering approach for SLAM.

4.3.2 Using a particle filter
A reasonably straightforward adaptation of the above model to a standard Rao-Blackwellized
particle filter is:

Algorithm 4.1 RBPF with a pose history

1: for each particle φi =
{

xi
t−1, ωi

t−1
}

, i=1 . . . N do
2: Project the state forward by drawing a new robot pose xr,i

t from the distribution of vt cen-
tered at f (xr,i

t−1, ut)
3: Insert xr,i

t in xi
t and discard the oldest robot pose

4: Extract features from the measurements using the last m poses and perform data association
5: Update the map and initialize new features
6: Compute a new weight ωi

t equal to the likelihood of the data association
7: end for
8: If necessary, resample the particles with probabilities proportional to ωi

t

Note that a “lag-m” pose history is stored with each particle, so collectively the particles
sample the space of the previous m poses. This approach avoids the expensive computation of
(m + n)-dimensional covariance matrices as required by the EKF, but potentially, many particles
are required to adequately sample the pose history space. Perhaps more importantly, feature ex-
traction is required for every particle at each time step because of their unique pose histories. The
computation for feature extraction is generally fairly expensive, so this straightforward adapta-
tion is infeasible in practice.
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4.4 SLAM using multiscans
Our approach is based on grouping sparse scans from m consecutive robot poses into a multiscan
zt−m+1:t = [zt−m+1 zt−m+2 . . . zt]T . We formulate a system model in which a SLAM update is
performed only after each m steps, reducing the required computation. A further simplification
enables a particle filter implementation where features are extracted only once per multiscan
(instead of once per particle per multiscan).

4.4.1 System model
The state vector is xt = [xr

t xm
t ]T , i.e., xt contains only the single pose xr

t . Our system model is:

xt = F(xt−m+1, ut−m+1:t) (4.5)
Zt = g(zt−m+1:t, xr

t−m+1:t, xm
t−m) (4.6)

where ut−m+1:t is the vector of control inputs [ut−m+1 ut−m+2 . . . ut]T .
The system function F is defined as:

F(xt−m, ut−m+1) =
[

xr
t

xm
t−m

]
(4.7)

where the pose xr
t is modeled recursively as:

xr
t = f (xr

t−1, ut) + vt (4.8)

The pose xr
t−m is taken from the state vector xt−m after the previous SLAM update.

The function g computes a feature vector Zt containing the parameters of features extracted
from the multiscan zt−m+1:t, which is acquired from the intermediate robot poses xr

t−m+1:t =
[xr

t−m+1 . . . xr
t ]

T . Each scan zt in a multiscan is modeled by:

zt = h(xr
t , xm

t−m) + wt (4.9)

where wt is the measurement noise and xm
t−m is the landmark vector (map) from the most recent

SLAM update.

4.4.2 Multiscan particle filter
We apply a Rao-Blackwellized particle filter to this system, assuming the landmarks are indepen-
dent when conditioned on the robot’s trajectory:

4.4.3 Feature extraction
Because our features are extracted from sensor readings taken from different poses, both the mea-
surement noise and the odometry error contribute to uncertainty in the extracted features. In
our particle filter implementation, however, we do not maintain a pose history of the interme-
diate states for each particle. Instead, we use the expected intermediate pose history xr

t−m+1:t =
[xr

t−m+1 . . . xr
t ]

T , calculated from the robot’s odometry as:

xr
t = f (xr

t−1, ut) (4.10)

Without loss of generality, we assume xr
t−m is the origin.

We perform feature extraction using this expected pose history, and then transform the
features for each particle pi so that the pose xr

t coincides with xr,i
t to find correspondences. While

this approach does not precisely account for the correlation between robot movement and feature
parameters and increases feature extraction uncertainty, it avoids performing feature extraction
separately with the intermediate pose history of every particle. Section 4.6 describes an approach
for trading off computation with feature extraction accuracy by performing feature extraction
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Algorithm 4.2 Multiscan RBPF SLAM

1: loop
2: for m time steps do
3: Move and collect sparse scans
4: end for
5: Extract features by considering the data from the previous m scans simultaneously as a

single multiscan.
6: for each particle φi =

{
xi

t−m, ωi
t−m
}

, i=1 . . . N do
7: for k = t−m + 1 to t do
8: Draw xr,i

k ∼ p(xr
k|x

r,i
k−1, uk) to project the pose forward

9: end for
10: Find correspondences between extracted features and the landmark locations xm,i

t−m
11: Update the map and initialize new landmarks
12: Compute a new weight ωi

t equal to the likelihood of the data association
13: end for
14: If necessary, resample the particles with probabilities proportional to ωi

t
15: end loop

with the expected trajectories of “clusters” of particles, instead of for the complete set of particles
at once.

4.4.4 Innovation covariance
We consider Zt to be the measurement for SLAM updates, and thus the innovation for a mea-
surement lies in the feature parameter space. The innovation covariance S is required for both
maximum likelihood data association and to update landmark locations. To simplify our expla-
nation, assume that all features in Zt are associated with landmarks whose parameters are in
x̃m

t = Mxm
t , where M is a matrix that simply selects the appropriate landmarks from xm

t . The
innovation is then ν = Zt − x̃m

t , and its covariance is:

S = HgPt−m+1:tHT
g + MPxt M

T (4.11)

where Hg is the Jacobian of the feature extraction process with respect to the multiscan, Pxt is the
covariance of the system state vector (which is readily available), and Pt−m+1:t is the covariance
of the multiscan and pose history:

Pt−m+1:t =

[
Rt−m+1:t Pr,z

t−m+1:t(
Pr,z

t−m+1:t
)T Pr

t−m+1:t

]
(4.12)

Feature extraction can be performed using the full Pt−m+1:t. A further approximation
that yields acceptable results is to represent Pt−m+1:t using only the block diagonal portions
of Rt−m+1:t and Pr

t−m+1:t, i.e., to assume that measurements are independent and that although
pose uncertainty compounds, multiscan poses are independent.

For complicated feature extraction methods, Hg is difficult to compute analytically. How-
ever, it is well-known that maximum likelihood estimation gives good estimates for the covari-
ance of the parameters being estimated, even for an approximately specified model such the block
diagonal version of Pt−m+1:t (White, 1982). Thus, by using maximum likelihood estimation as a
feature extractor, we can obtain a good approximation to the innovation covariance S without
computing Hg. We use this approach to extract lines from multiscan data with a procedure de-
scribed in Section 4.5.
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Algorithm 4.3 EXTRACT-LINES(xr
t−m+1:t, zt−m+1:t, Pt−m+1:t)

1: Compute points p1 . . . pn, n = |zt−m+1:t|, from raw scan data in zt−m+1:t
2: Sort p1 . . . pn radially with respect to xr

t (alternatively, w.r.t. meank∈t−m+1:t xr
k)

3: rmin = 1, rmax = 2
4: repeat // initial breakpoint detection
5: if ||prmax − prmax−1|| > Dmax or rmax = n then // consecutive points too far apart?
6: if rmax − rmin > Pmin then // enough points to estimate a line?
7: R ← R∪ {[rmin, rmax]} // add this cluster
8: rmin ← rmax
9: end if

10: rmax ← rmax + 1
11: until rmax > n

12: whileR 6= ∅ do // repeat until all clusters converge
13: R′ ← ∅
14: for all [rmin, rmax] ∈ R do
15: Compute least squares line parameters ` = [r θ]T from prmin . . . prmax

16: Let k+ = argmaxk∈[rmin,rmax] ||pk − `||
17: if ||pk+ − `|| < Tmax then // is max-distance point close to line?
18: S ← S ∪ {[rmin, rmax]} // done splitting this cluster
19: else // split the cluster at the farthest point
20: if k+ − rmin > Pmin then // first subcluster — enough points?
21: R′ ← R′ ∪ {[rmin, k+]}
22: if rmax − k+ − 1 > Pmin then // second subcluster — enough points?
23: R′ ← R′ ∪ {[k+ + 1, rmax]}
24: end if
25: end for
26: R ← R′
27: end while

28: for all [rmin, rmax] ∈ S do // compute lines and extents
29: Compute full max. likelihood parameters/covariance `, P` from prmin . . . prmax

30: Let p−, p+ ∈ {prmin . . . prmax} be the two extremal points when projected onto `
31: R ← R∪ {[` p− p+]T} // store line and endpoints
32: end for

33: S ← ∅
34: repeat // merge similar line segments
35: Compute max. likelihood pairings of all segments inR
36: for all ML pairings (L, L′) do
37: if likelihood(L = L′) > Hmin then
38: R ← (R \ {L, L′}) ∪ {merge(L, L′)} // remove, then merge and re-insert the two segments
39: else // keep the segments separate
40: S ← S ∪ {L, L′}
41: end for
42: untilR = ∅

43: for all [` p− p+]T ∈ S do
44: if ||p+ − p−|| < Lmin then
45: S ← S \ [` p− p+]T // discard too-short segments
46: end for
47: return S
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4.4.5 Co-dependence on odometry
Notice that there is an issue of independence in the multiscan formulation. The robot’s odometry
is used twice, first to update the pose estimate, and second to extract features. The multiscan
approach makes an implicit assumption that the co-dependence of the robot’s pose and the mea-
surements can be ignored. For this to be true, m, the number of readings per multiscan, must be
kept small enough that the odometry error experienced over the course of the multiscan is small.
One strategy is to make m a function of the pose uncertainty.

4.5 Feature extraction with multiscan data
We have implemented sparse sensing SLAM with line features. The features are parameterized
by distance r and angle θ to the origin (see Section 2.7). For purposes of data association and
display, basic extent information is kept for the features, but is not formally incorporated into
the SLAM filtering process. Line features have been used for SLAM on a number of occasions,
e.g., (Leonard et al., 2002; Tardós et al., 2002; Rodriguez-Losada and Matia, 2003; Yuen and Mac-
Donald, 2003), and methods for performing line extraction and data association with (r, θ) lines
are readily available (Pfister et al., 2003; Nguyen et al., 2005).

Before line parameters can be estimated, the data from a multiscan must be segmented.
Since our data are sparse and from different poses, most common segmentation methods, such
as the adaptive breakpoint detector of Borges and Aldon (2004), cannot be directly employed
because they assume ordered measurements from a single pose. One solution is to cluster the
points from the multiscan using, e.g., an agglomerative clustering technique or a more involved
principle components analysis based approach like that of Brunskill and Roy (2005).

A simpler approach which we have employed is to select a single reference configuration,
e.g., xr

t (the final pose in the multiscan) or xr
t−m+1:t (the average of the poses in the multiscan).

Then, the multiscan data points are sorted radially with respect to the reference pose. The re-
sulting ordering is used initially with an iterative endpoint filter (IEPF) like algorithm (Duda and
Hart, 1973) to segment the points into clusters. Lines are fit to each cluster using simple least
squares, and recursive splitting and refitting of the lines is performed as necessary. Clusters with
too few points are discarded. Once the clusters have converged, a full maximum likelihood esti-
mation is performed to obtain line parameters and covariances, using the approach of Pfister et al.
(2003), and extent information is computed by projecting extremal points onto the lines. Finally,
extracted lines with similar parameters are merged using well-known techniques for merging
Gaussians.

The entire approach is an instance of the split-merge framework described by Nguyen
et al. (2005). While the computation of a radial ordering of the data points with respect to a
single reference configuration is an approximation, the resulting feature extraction is both efficient
and accurate in practice for reasonably short multiscan trajectories. Pseudocode for our feature
extraction algorithm is shown in Algorithm 4.3.

Maximum likelihood data association and map updates for line features are straightfor-
ward since the parameters of lines can be directly compared and merged.

4.5.1 An alternative: segment features
We have also implemented SLAM with line segment features. An advantage of segment features
is that they explicitly encode extent information in the state. In order to extract segments from
multiscan data, we employ the same procedure as for line features, and then project the clustered
points onto their associated lines. The two extremal projected points pi and pj are used as the
segment parameters, and the parameter covariance is computed based on the covariances of the
line parameters and of the projected endpoints, i.e.:

Ps = H`P`HT
` + Hpi Ppi H

T
pi

+ Hpj Ppj H
T
pj

(4.13)

where H`, Hpi , and Hpj are the derivatives of s with respect to `, pi, and pj, respectively.
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Figure 4.1: Extracting features using the expected trajectory and transforming for each particle.
While this approach works well in many cases, it can yield poor results for trajectories with
noisy odometry. In this case, the ideal and transformed features are significantly different.

A complication of line segment features is that it is impossible to directly compare the pa-
rameters of two segments for data association since they may actually represent different portions
of the same feature. A simple solution is to “extend” the segments so that their endpoints can be
directly compared. We extend two segments so that their projections onto the angular bisector
are the same. Care must be taken to update the endpoint covariances accordingly. Unfortunately
the extension procedure represents a complicated function with convoluted Jacobians, so updat-
ing the covariance is hard. A simple approximation is to assume that the lengths each endpoint
is extended, d0 and d1, are known parameters of a function that transforms a single segment,
i.e., E(s, d0, d1), which has a simpler Jacobian, Hs = ∂E/∂s, that can be used to transform the
segment covariance. In practice, this simplification works reasonably well and is much easier to
compute.

4.6 Per-stratum feature extraction
The approach of extracting features based on the expected intermediate trajectory and then trans-
forming the features using a single reference configuration for each particle is computationally
efficient. However, for longer intermediate trajectories or very noisy odometry, the results can
be significantly different than those obtained by performing extraction conditioned on the sep-
arate trajectories of each particle. Figure 4.1 shows a synthetic example where the ideal feature
extraction is much different than the feature obtained by the extract-transform approach.

Algorithm 4.4 CHUNKED-TRAJECTORY-CLUSTER({xr,1
t−m+1:t, . . . , xr,N

t−m+1:t})
1: for i = 1 . . . N do // iterate over particles
2: for c = 1 . . . C do // initialize chunk means for this particle
3: µi[c]← 0
4: end for
5: c← 1
6: x0 ← [xr,i

t−m+1 yr,i
t−m+1]

T // start pose for the multiscan
7: for k = t−m + 1 . . . t do // iterate over time steps in multiscan
8: if k > c m

C then
9: c← c + 1 // increment to next chunk

10: x̂← [xr,i
k yr,i

k ]T − x0 // point relative to multiscan start
11: µi[c]← µi[c] +

m
C x̂ // update the mean for chunk c

12: end for
13: end for

14: Perform K-means clustering of the 2C-dimensional vectors {µi} and store the cluster indices
for the particles in {κi}

15: return {κi}
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0

50

Chunks used in clustering

(d) Number of particles assigned to the same cluster as for
C = 50, as C varies. For C > 5, the quality of the clustering
is approximately the same. Data generated over 1000 Monte
Carlo trials.

Figure 4.2: Stratification of intermediate trajectories. Features can be extracted separately using
the mean trajectory of each cluster (or “stratum”), and then transformed for each particle in the
stratum. The clustering is indicated by color.

This tradeoff between accuracy — extracting features separately for every particle — and
efficiency — extracting features once for all particles and transforming — can be managed by
clustering (or “stratifying”) the intermediate trajectories into groups with similar pose histories
relative to the starting pose, and using the extract-transform approach within each stratum of
particles. Increasing the number of strata yields better features at the expense of computation
time.

Clustering of similar trajectories is a difficult problem because, even for short trajectories,
clustering must take place in a high-dimensional space (three dimensions per pose). Our ap-
proach exploits properties of the trajectories being clustered to simplify the problem somewhat.

To cluster intermediate trajectories over a short time span, we employ a simple “chunk-
ing” dimensionality reduction technique. We divide the intermediate trajectory into C chunks of
consecutive poses, computing the mean pose for each chunk. A K-means algorithm is applied to
cluster the poses in the resulting 3C-dimensional space. A further simplification, useful because
it is difficult to define the “distance” between poses with orientation, is to cluster only in the 2C-
dimensional space of the mean chunk (x, y) positions. A partial justification for this approach
with differential drive robots is that, under the assumption that the robot drives in a direction re-
lated to its orientation, the robot’s heading is at least partially encoded in the consecutive relative
(x, y) components of the trajectory.

Pseudocode for this intermediate trajectory clustering technique is given in Algorithm 4.4.
We have applied the algorithm to a variety of short trajectory samples with positive results. Sev-
eral examples of the clusters resulting from applying the algorithm to different intermediate tra-
jectories are given in Figure 4.2. In our experiments, we have found that only a few chunks are
generally sufficient to obtain clusters that are nearly identical to those obtained by K-means on
the full trajectory dimensionality, enabling efficient stratification of particles for multiscan feature
extraction. Figure 4.2(d) shows the differences in cluster assignments as the number of chunks
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Table 4.1: Sparse sensing SLAM statistics
USC SAL CMU NSH Stanford

Dimensions 39m × 20m 25m × 25m 64m × 56m
Particles 100 600 1000
Sensing range 5 m 3 m 5 m
Path length 122 m 114 m 517 m
Path rotation 450 rad 133 rad 495 rad
Scans per multiscan 50 40 18
Total multiscans 89 118 1151
Avg. MS translation 1.37 m 0.97 m 0.45 m
Avg. MS rotation 3.80 rad 1.12 rad 0.43 rad
Feature type Lines Segments Segments
Num. landmarks 88 168 750

increases for a particular example.

4.7 Experimental results
We have implemented our sparse sensing SLAM approach and tested it on a variety of data sets.
Our Rao-Blackwellized particle filter is implemented as shown in Algorithm 4.2; we also use the
adaptive sampling approach described by Grisetti et al. (2005).

Most aspects of our implementation have been discussed in previous sections. In our fea-
ture extraction, a simple weighted least squares estimator was used instead of a full maximum
likelihood approach, for simplicity and efficiency. Also, the experiments presented here with line
segment features estimated covariance using only the two segment endpoints rather than the full
data.

Our experiments used data from Radish (Howard and Roy, 2003), an online repository of
SLAM data sets. Most of the available data sets use scanning laser rangefinders with 1◦ spacing.
In order to test SLAM with sparse sensing, we simply discarded most of the data in each scan,
using only the five range measurements at 0◦, 45◦, 90◦, 135◦, and 180◦. Additionally, we restricted
the maximum sensor range to at most 5 m, and in some cases less.

4.7.1 Experiments
Figures 4.3, 4.4, and 4.5 show the results of sparse sensing SLAM on several data sets. (The oc-
cupancy grid images were generated using corrected trajectories from sparse sensing SLAM, but
with the original dense laser data for better clarity.) Detailed statistics for these data sets are
shown in Table 4.1.

USC SAL Building (Figure 4.3) This data set consists of a primary loop and several small ex-
cursions. The robot closed the loop properly in its line-based landmark map despite only a small
overlap between the loop’s start and end. Notice that some slight aliasing exists in the occupancy
grid map: this was a common occurrence since most features have high uncertainty due to the
use of odometry to augment the sparse sensing.

CMU Newell-Simon Hall (Figure 4.4) Because of the maximum sensing range of 3 m for this
experiment, the fairly large initial loop (bottom) could not be closed until after the robot finished
exploring the upper hallway.

Stanford Gates Building (Figure 4.5) This long data set has three large and several small loops.
Figure 4.5(a) shows the uncorrected data, which exhibits significant error, particularly with re-
spect to the robot’s orientation. At several points the robot spins in place, a difficult situation
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(a) Occupancy data for the raw uncorrected trajectory (b) Occupancy data for the corrected trajectory (generated
using the full laser data for clarity)

(c) Estimated line landmark map (black) and trajectory (gray)

Figure 4.3: The USC SAL Building, second floor. Data set courtesy of Andrew Howard via
Radish (Howard and Roy, 2003). The landmark map shows only the original observed extent
of the line features.

for sparse sensing because rotation dramatically increases the pose uncertainty and decreases the
scan density due to high rotational velocities. Note that some landmarks are spurious, a result of
poor data association due to large uncertainty. No detection of spurious landmarks was imple-
mented, so these landmarks remained in the map. Again, although there is some aliasing in the
results, the environment’s structure and the robot’s trajectory were properly recovered.

4.7.2 Discussion
These results show that performing SLAM in large indoor environments is feasible even with
minimal sensing. All of our tests used only five sensors with restricted range, but even large
loops were closed correctly. However, there are tradeoffs to using such limited sensing:

• More particles are required since the parameters of landmarks are more uncertain due to
the use of odometry to augment sensing.

• The success of SLAM is sensitive to the amount of pose uncertainty accumulated during a
multiscan.

• The size of multiscans (m) is a parameter that must be determined, either by selecting a
constant or computing a value based on pose uncertainty. Choosing m is a complex problem
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given all of the factors — error models, environment complexity, robot behaviors, etc. —
that affect SLAM.

• Computationally motivated approximations (such as those made in extracting features and
computing the innovation covariance) can lead to poor data association, as exhibited by the
existence of spurious landmarks.

In Chapter 5 we describe a method for incorporating prior knowledge about the environ-
ment that alleviates many of these concerns. Chapter 6 introduces new sampling techniques for
particle filters that incorporate “future” information to draw better pose samples.

4.8 Summary
In this chapter, we have presented a strategy for implementing particle filtering SLAM for a robot
with very sparse sensing. Rather than performing feature extraction on every frame of scan data,
we group the data into “multiscans” consisting of several consecutive frames of data. Feature
extraction, data association, and state updates are then performed based on multiscan data as if it
were data from a single scan. We formally specified a system model for this approach that main-
tains multiscan information separately from the system state, allowing the efficient application of
particle filtering methods for SLAM. We then discussed properties of the innovation covariance for
features extracted from multiscans, and presented a simplified representation for which the com-
putation costs are significantly reduced. We also described simple approaches for extracting line
features from multiscan data. Finally, we described an extension to enable an accuracy/efficiency
tradeoff in feature extraction from multiscan data by clustering similar trajectories.

In our experiments using measurements from only five one-dimensional range sensors,
the robot was able to close loops and recover the correct map and trajectory in several large real
environments. While the experiments uncovered several tradeoffs to using limited sensing, the
success of our approach with real data shows that it is possible to implement SLAM efficiently
with sparse sensors.
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(a) Occupancy data for the raw uncorrected trajectory (b) Occupancy data for the corrected trajectory (generated
using the full laser data for clarity)

(c) Estimated line landmark map (black) and trajectory (gray)

Figure 4.4: A partial map of Newell-Simon Hall Level A at CMU. Data set courtesy of Nicholas
Roy via Radish (Howard and Roy, 2003).
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(a) Occupancy data for the raw uncorrected trajectory (not
to scale with the corrected data)

(b) Occupancy data for the corrected trajectory (generated
using the full laser data for clarity)

(c) Estimated line landmark map (black) and trajectory (gray)

Figure 4.5: The Gates Building at Stanford, first floor. Data set courtesy of Brian Gerkey via
Radish (Howard and Roy, 2003).



5
INCORPORATING RELATIVE MAP

CONSTRAINTS

Most algorithms for simultaneous localization and mapping (SLAM) do not incorporate prior
knowledge of structural or geometrical characteristics of the environment. In some cases, such
information is readily available and making some assumptions is reasonable. For example, one
can often assume that many walls in an indoor environment are rectilinear. Intuitively, exploiting
prior knowledge should lead to reduced uncertainty about the state of the robot and the world —
a desirable property for robots with limited or even powerful sensing.

In this chapter of the thesis, we develop a SLAM algorithm that incorporates prior knowl-
edge of relative constraints between landmarks. We describe a “Rao-Blackwellized constraint
filter” that infers applicable constraints and efficiently enforces them in a particle filtering frame-
work. We have implemented our approach with rectilinearity constraints. Results from simulated
and real-world experiments show the use of constraints leads to consistency improvements and
a reduction in the number of particles needed to build maps.

5.1 Overview
In many cases structural or geometrical assumptions can be represented as information about
relative constraints between landmarks in a robot’s map, which can be used in inference to deter-
mine which landmarks are constrained and the parameters of the constraints. In the rectilinearity
example, such a formulation can be used to constrain the walls of a room separately from, say,
the boundary of a differently-aligned obstacle in the center of the room.

Given relative constraints between landmarks, they must be enforced. Some previous work
has enforced constraints on maps represented using an extended Kalman filter (EKF) (Durrant-
Whyte, 1988; Wen and Durrant-Whyte, 1992; Rodriguez-Losada et al., 2006). In this chapter, we
develop techniques to instead enforce constraints in maps represented by a Rao-Blackwellized
particle filter (RBPF). The major difficulty is that RBPF SLAM relies on the conditional indepen-
dence of landmark estimates given a robot’s pose history, but relative constraints introduce cor-
relation between landmarks. (See Appendix B or the previous chapter for more background on

ci,j pairwise constraint
parameters for xm

i , xm
j

gi(cj,i ; xm
j,ρ) map xm

j,ρ → xm
i,ρ

hi(cj,i ; xm
i,ρ) map xm

i,ρ → xm
j,ρ

xm
i , Pi ith landmark state/cov.

xm
i,ρ constrained vars. of ith

landmark
xm

i,ρ unconstrained vars. of ith
landmark

Li ∈ L ith superlandmark
βi , Λi “backup” state/cov.
Zi , Qi accumulated

measurements/cov.

Notation for this chapter
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particle filtering SLAM.)
The approach presented in this chapter exploits a property similar to that used in the stan-

dard SLAM Rao-Blackwellization: conditioned on values of constrained state variables, uncon-
strained state variables are independent. We use this fact to incorporate per-particle constraint
enforcement into RBPF SLAM. We have also developed a technique to address complications
which arise when initializing a constraint between groups of landmarks that are already sepa-
rately constrained; the technique efficiently recomputes conditional estimates of unconstrained
variables when modifying the values of constrained variables.

Incorporating constraints can have a profound effect on the computation required to build
maps. A motivating case is the problem of mapping with sparse sensing. The previous chapter
of this thesis showed that particle filtering SLAM is possible with limited sensors such as small ar-
rays of infrared rangefinders, but that many particles are required due to increased measurement
uncertainty. By extending sparse sensing SLAM to incorporate constraints, an order-of-magnitude
reduction in the number of particles can be achieved.

The rest of this chapter proceeds as follows. We first discuss previous work on constrained
SLAM. Then, in Section 5.2, we discuss the assumption of unstructured environments made by
most SLAM algorithms. In Section 5.3 we formalize the idea of SLAM with relative constraints and
describe a simple but infeasible approach. We then introduce the Rao-Blackwellized constraint
filter: Section 5.4 describes an RBPF-based algorithm for enforcing constraints, and Section 5.5
incorporates inference of constraints. Finally, in Section 5.6 we describe the results of simulated
and real-world experiments with a rectilinearity constraint.

5.1.1 Related work
Most work on SLAM focuses on building maps using very little prior information about the envi-
ronment, aside from assumptions made in feature extraction and data association. See Chapter 2
for a reasonably thorough coverage of much of the state-of-the art in unconstrained SLAM.

The problem of inferring when constraints should be applied to a map is largely unex-
plored. Rodriguez-Losada et al. (2006) employ a simple thresholding approach to determine
which of several types of constraints should be applied.

On the other hand, several researchers have studied the problem of enforcing a priori
known constraints in SLAM. In particular, Durrant-Whyte (1988) and Wen and Durrant-Whyte
(1992) have enforced constraints in EKF-based SLAM by treating the constraints as zero-uncertainty
measurements. A similar approach was also described in the seminal SLAM work of Smith et al.
(1990). More recently, Csorba and Durrant-Whyte (1997); Newman (1999); and Deans and Hebert
(2000b) have built maps where the state consists of relationships between landmarks; they apply
constraints on the relationships to enforce map consistency. From a consistent relative map an
absolute map can be estimated.

Finally, others have studied general constrained state estimation using the EKF. Simon
and Chia (2002) derive Kalman updates for linear equality constraints (discussed in detail in Sec-
tion 5.3.1) that are equivalent to projecting the unconstrained state onto the constraint surface.
This approach is extended in (Simon and Simon, 2003) to deal with linear inequality constraints.

5.2 Structured environments
In this chapter, like the last, we consider SLAM with landmark based maps. Figure 5.1 depicts a
Bayesian network encoding the usual SLAM assumptions. (For a detailed discussion of the dif-
ferent variables in SLAM, see Appendix B. Briefly, xr

t is the robot pose at time t, xm is the map,
and ut, zt, and nt are the control input, observations, and correspondences at time t, respectively.)
Most importantly, particle filtering SLAM relies on the assumption that the environment is un-
structured, i.e., that landmarks are randomly and independently distributed in the environment.
Under this assumption (and the additional assumption that the environment is static), landmarks
are conditionally independent given the robot’s trajectory, since correlation between landmark
variables arises only through robot pose uncertainty (Murphy, 2000). In Figure 5.1, the high-
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Figure 5.1: A Bayes network showing common SLAM model assumptions. Input variables
are represented by shaded nodes; the objective of SLAM is to estimate values for the un-
shaded nodes. Arcs indicate causality or correlation between variables. (Correspondence vari-
ables {n1:t} are omitted for clarity — observations are connected directly to the corresponding
landmarks.) Correlations between landmarks due to structure in the environment (dashed
arcs) are typically ignored in SLAM.

lighted variables (the robot’s trajectory) d-separate the landmark variables. This d-separation is
critical to the application of the particle filter in SLAM.

The structured environment assumption, however, is often not met, as in the case of indoor
environments where landmarks are placed methodically. Thus, some correlation exists between
landmarks, due not to the robot’s pose uncertainty, but rather to the structure in the environment.
(This is represented by the dashed arcs in Figure 5.1.)

Correlation between landmarks can arise in many ways, making it difficult to include in
the SLAM model. In this chapter of the thesis, we assume that structure in the environment takes
on one of a few forms — i.e., that the space of possible (structured) landmark relationships is
small and discrete. When this is the case, the model shown in Figure 5.2 can be used. Here,
arcs indicating correlation between landmarks are parameterized. The parameters ci,j indicate
the constraints (or lack thereof) between landmarks xm

i and xm
j . We perform inference on the con-

straint parameter space, and then enforce the constraints. In this paper we focus on the pairwise
case, but more complicated relationships can in principle be exploited.

5.3 SLAM with relative constraints
We begin by addressing the issue of efficiently enforcing known relative constraints. Parallel to
this is the problem of merging constraints when new relationships are found between separate
groups of already constrained landmarks.

Throughout the rest of this chapter we omit time indices for clarity. Variables are vectors
unless otherwise noted. We use Pm

i to represent the covariance of the landmark estimate xm
i . We

assume that measurements of a landmark are in the parameter space of the landmark (i.e., mea-
surements are of the landmark state). Measurements that do not meet this condition can easily be
transformed. Finally, while we present our formulation for a single constraint, the approach can
be applied in parallel to several types of constraints.

5.3.1 The superlandmark filter
Recall the Rao-Blackwellized particle filter for SLAM (derived in Appendix B):

p(xr
1:t, xm|u1:t, z1:t, n1:t) = p(xr

1:t|u1:t, z1:t, n1:t)
n

∏
i=1

p(xm
i |xr

1:t, z1:t, n1:t) (5.1)
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Figure 5.2: Bayes network for a SLAM model that incorporates pairwise constraints between
landmarks, parameterized by the variables ci,j. Inference in the space of relationship parame-
ters can be used to determine correlations between landmark parameters; relative constraints
on the landmarks enforce inferred relationships.

As discussed above, RBPF relies on the independence of landmark estimates when conditioned
on the robot’s trajectory. There is an immediate problem with SLAM when the environment is
structured: landmark correlations lead to interdependencies that break the factorization utilized
in Equation 5.1, which assumes correlation arises only through robot pose uncertainty. We first
describe a simple (but ultimately impractical) approach to deal with the correlation, which leads
to an improved technique in Section 5.4. Note that the RBPF factorization still holds for uncon-
strained landmarks; we rewrite the filter, grouping constrained landmarks. Formally, partition
the map into groups:

L =
{
{xm

a1
, xm

a2
, . . .}, {xm

b1
, xm

b2
, . . .}, {xm

c }, . . .
}

(5.2)

Each group (“superlandmark”) Li ∈ L contains landmarks constrained with respect to each other;
correlation arises only among landmarks in the same group. We immediately have the following
version of the RBPF SLAM filter:

p(xr
1:t, xm|u1:t, z1:t, n1:t) = p(xr

1:t|u1:t, z1:t, n1:t)
|L|

∏
i=1

p(Li|xr
1:t, z1:t, n1:t) (5.3)

We can still apply a particle filter to estimate the robot’s trajectory. Each superlandmark is es-
timated using an EKF, which accounts for correlation due to constraints since it maintains full
covariance information.

There are several ways to enforce constraints on a superlandmark. One approach is to treat
the constraints as zero-uncertainty measurements of the constrained landmarks (Durrant-Whyte,
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1988; Wen and Durrant-Whyte, 1992; Rodriguez-Losada et al., 2006). An alternative is to directly
incorporate constrained estimation into the Kalman filter. Simon and Chia (2002) have derived a
version of the EKF that accounts for equality constraints of the form

DLi = d (5.4)

where Li represents the superlandmark state with k variables, D is an s × k constant matrix of
full rank, and d is a s× 1 vector; together they encode s constraints. In their approach, the un-
constrained EKF estimate is computed and then repaired to account for the constraints. Given
the unconstrained state Li and covariance matrix PLi , the constrained state and covariance are
computed as follows (see (Simon and Chia, 2002) for the derivation):

L̃i ← Li − Pm
Li

DT(DPm
Li

DT)−1(DLi − d) (5.5)

P̃m
Li
← Pm

Li
− Pm

Li
DT(DPm

Li
DT)−1DPm

Li
(5.6)

i.e., the unconstrained estimate is projected onto the constraint surface.
If a constraint arises between two superlandmarks they are easily merged:

Lij ←
[

Li
Lj

]
, Pm

ij ←

 Pm
i Pm

i

(
∂Lj
∂Li

)T(
∂Lj
∂Li

)
Pm

i Pm
j

 (5.7)

Unfortunately, the superlandmark filter is too expensive unless the size of superlandmarks
(i.e., the number of constrained landmarks in a group) can be bounded by a constant. In the
worst case the environment is highly constrained and, in the extreme, the map consists of a single
superlandmark. EKF updates for SLAM take at least O(k2) time and constraint enforcement using
Equations 5.5 and 5.6 requires O(k3) time for a superlandmark of size k. If k → n (the size of the
entire map) and the particle filter has N particles, the superlandmark filter requires O(Nn3) time
for a single update. We thus require a better solution.

5.3.2 Reduced state formulation
A simple improvement can be obtained by noting that maintaining the full state and covariance
for each landmark in a superlandmark is unnecessary. Constrained state variables are redundant:
given the value of the variables from one “representative” landmark, the values for the remaining
landmarks in a superlandmark are determined. In the rectilinearity example, with landmarks
represented as lines parameterized by distance r and angle θ to the origin, a full superlandmark
state vector has the form:

[r1 θ1 r2 θ2 . . . rk θk]T (5.8)

If the {θi} are constrained the state can be rewritten as:

[r1 θ1 r2 g2(c1,2; θ1) . . . rk gk(c1,k; θ1)]T (5.9)

Thus, filtering of the superlandmark need only be done over the reduced state:

[r1 r2 . . . rk θ1]T (5.10)

The function gi(cj,i; xm
j,ρ) with parameters cj,i maps the constrained variables xm

j,ρ of the represen-
tative landmark xm

j to values for xm
i,ρ. In the rectilinearity case, cj,i ∈ {0, 90, 180, 270} and:

gi(cj,i; θj) = θj − cj,i (5.11)
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We assume the constraints are invertible: the function hi(cj,i; xm
i,ρ) represents the reverse mapping,

e.g.:
hi(cj,i; θi) = θi + cj,i (5.12)

We sometimes refer to the unconstrained variables of landmark xm
i as xm

i,ρ.

5.4 Rao-Blackwellized constraint filter
From the reduced state formulation we see it is easy to separate the map state into constrained
variables xm,c = {xm

1,ρ, . . . , xm
n,ρ}, and unconstrained variables xm,f = {xm

1,ρ, . . . , xm
n,ρ}. By the same

reasoning behind Equation 5.1, we factor the SLAM filter as follows:

p(xr
1:t, xm|u1:t, z1:t, n1:t) = p(xr

1:t, xm,c|u1:t, z1:t, n1:t)
|xm,f|

∏
i=1

p(xm
i,ρ|xr

1:t, xm,c, z1:t, n1:t) (5.13)

In other words, conditioned on both the robot’s trajectory and the values of all constrained vari-
ables, free variables of separate landmarks are independent.

Equation 5.13 suggests that we can use a particle filter to estimate both the robot trajectory
and the values of the constrained variables. We can then use separate small filters to estimate
the unconstrained variables conditioned on sampled values of the constrained variables. The
estimation of representative values for the constrained variables is accounted for in the particle
filter resampling process, where particles are weighted by data association likelihood.

There are two issues to resolve:

• We should use all available information in selecting (per-particle) values of constrained vari-
ables on which to condition constrained landmarks.

• When initializing a new constraint between already separately constrained groups of land-
marks, the constraints need to be merged and a single set of representative values for the
constrained variables must be selected.

5.4.1 Particlization of landmark variables
We first discuss initialization of constraints between previously unconstrained landmarks. Given
a set R = {xm

1 , xm
2 , . . . , xm

k } of landmarks to be constrained, along with constraint parameters c1,i
for each xm

i ∈ R, i = 2 . . . k (i.e., with xm
1 as the “representative” landmark — see Section 5.3.2),

we form a superlandmark from R. Then, we perform a particlization procedure, sampling the
constrained variables from the reduced state of the superlandmark. Conditioning of the uncon-
strained variables of every landmark in the superlandmark is performed using the sampled val-
ues. We are left with an EKF for each landmark that estimates only the values of unconstrained
state variables.

In selecting values of the constrained variables on which to condition, we should take
into account all available information, i.e., the estimates of the constrained variables from each
landmark. We compute the maximum likelihood estimate of the constrained variables:

Pm
ρ̂ ←

 ∑
xm

j ∈R
(Pm

j,ρ)
−1

−1

, ρ̂← (Pm
ρ̂ )−1

 ∑
xm

j ∈R
hj(c1,j; xm

j,ρ)(Pm
j,ρ)
−1

 (5.14)

To choose values for ρ, we can either sample, e.g., according to N
(

ρ̂, Pm
ρ̂

)
; or we can simply pick

ρ̂, which is the approach we take in our implementation.
Once values of constrained variables are selected, we condition the unconstrained variables

on the selected values. To condition xm
i with covariance Pm

i on values for xm
i,ρ, we first partition
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(a) (b)

Figure 5.3: Merging groups of constrained landmarks. (a) Two constrained groups of land-
marks. (b) After finding a new landmark constrained with respect to both groups, all land-
marks are constrained together.

the state and covariance:

xm
i = [xm

i,ρ xm
i,ρ]

T , Pm
i =

[
Pm

i,ρ Pm
i,ρρ

Pm
i,ρρ Pm

i,ρ

]
(5.15)

Then given xm
i,ρ = gi(c1,i; ρ̂) and since landmark state is estimated by an EKF, the standard proce-

dure for conditioning the Normal distribution yields:

x̃m
i,ρ ← xm

i,ρ + Pm
i,ρρ(Pm

i,ρ)
−1(gi(c1,i; ρ̂)− xm

i,ρ) (5.16)

P̃m
i,ρ ← Pm

i,ρ − Pm
i,ρρ(Pm

i,ρ)
−1(Pm

i,ρρ)
T (5.17)

For purposes of data association it is convenient to retain the full state and covariance, in which
case x̃m

i,ρ = gi(c1,i; ρ̂) and P̃m
i,ρ = P̃m

i,ρρ = P̃m
i,ρρ = [0].

5.4.2 Reconditioning
Particlization is straightforward if none of the landmarks is already constrained. This is not the
case when a new landmark is added to a superlandmark or when merging several constrained
superlandmarks. Since the values of unconstrained state variables are already conditioned on
values of the constrained variables, we cannot change constrained variables without invalidating
the conditioning. Such a situation is depicted in Figure 5.3.

One solution is to “rewind” the process to the point when the landmarks were first con-
strained and then “replay” all of the measurements of the landmarks, conditioning on the new
values of the constrained variables. This is clearly infeasible. However, we can achieve an equiv-
alent result efficiently because the order in which measurements are applied is irrelevant. Ap-
plying m measurements to the landmark state is equivalent to merging m + 1 Gaussians. Thus,
we can “accumulate” all of the measurements in a single Gaussian and apply this instead, in unit
time.

From this, we obtain the following reconditioning approach:

1. Upon first constraining a landmark xm
i , store its pre-particlization unconstrained state βi =

xm
i , Λi = Pm

i , initialize the “measurement accumulator” Zi = [0], Qi = [∞], and particlize
the landmark.

2. For a measurement z with covariance R of the constrained landmark update both the con-
ditional state and the measurement accumulator:

xm
i ← xm

i + Pm
i (Pm

i + R)−1(z− xm
i ) (5.18)

Pm
i ← Pm

i − Pm
i (Pm

i + R)−1(Pm
i )T (5.19)

Zi ← Zi + Qi(Qi + R)−1(z− Zi) (5.20)

Qi ← Qi −Qi(Qi + R)−1QT
i (5.21)
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3. When instantiating a new constraint on xm
i , recondition xm

i on the new constrained variable
values by rewinding the landmark state (xm

i = βi, Pm
i = Λi), computing the conditional

distribution x̃m
i , P̃m

i of the state (Equations 5.16-5.17), and replaying the measurements since
particlization with:

xm
i ← x̃m

i + P̃m
i (P̃m

i + Qi)−1(Zi − x̃m
i ) (5.22)

Pm
i ← P̃m

i − P̃m
i (P̃m

i + Qi)−1(P̃m
i )T (5.23)

The reconditioning technique can be extended to handle multiple types of constraints si-
multaneously by separately storing the pre-particlization state and accumulated measurements
for each constraint. Only completely unconstrained state variables should be stored at constraint
initialization, and only the measurements of those variables need be accumulated.

5.4.3 Discussion
A potential issue with our approach is that reconditioning neither re-evaluates data associations
nor modifies the trajectory of a particle. In practice we have observed that the effect on map
estimation is negligible.

Computationally, the constrained RBPF approach is a significant improvement over the
superlandmark filter, requiring only O(Nn) time per update.∗ At first it appears that more par-
ticles may be necessary since representative values of constrained variables are now estimated
by the particle filter. However, incorporating constraints often leads to a significant reduction in
required particles by reducing the degrees of freedom in the map. In a highly constrained envi-
ronment, particles only need to filter a few constrained variables using the reduced state, and the
EKFs for unconstrained variables are smaller since they filter only over the unconstrained state.
By applying strong constraint priors where appropriate, the number of particles required to build
maps is often reduced by an order of magnitude, as can be seen in Section 5.6.

5.4.4 Inequality constraints
So far we have only considered equality constraints, whereas many useful constraints are in-
equalities. For example, we might specify a prior on corridor width: two parallel walls should
be at least a certain distance apart. In (Simon and Simon, 2003), the authors apply inequality
constraints to an EKF using an active set approach. At each time step, the applicable constraints
are tested. If a required inequality is violated, an equality constraint is applied, projecting the
unconstrained state onto the boundary of the constraint region.

While this approach appears to have some potential problems (e.g., it ignores the landmark
PDF over the unconstrained half-hyperplane in parameter space), a similar technique can be in-
corporated into the Rao-Blackwellized constraint filter. After updating a landmark, applicable
inequality constraints are tested. Constraints that are violated are enforced using the techniques
described in Section 5.4. The unconstrained state is accessible via the measurement accumulator,
so if the inequality is later satisfied, the parameters can be “de-particlized” by switching back to
the unconstrained estimate.

5.5 Inference of constraints
We now address the problem of deducing the relationships between landmarks, i.e., deciding
when a constraint should be applied. A simple approach is to just examine the unconstrained
landmark estimates. In the rectilinearity case, we can easily compute the estimated angle between
two landmarks. If this angle is “close enough” to one of 0◦, 90◦, 180◦, or 270◦, the constraint
is applied to the landmarks. (A similar approach is used by Rodriguez-Losada et al. (2006).)
However, this technique ignores the confidence in the landmark estimates.

∗We note that while the data structures that enable O(N log n) time updates for FastSLAM (Montemerlo, 2003) can still
be applied, they do not improve the complexity of constrained RBPF since the reconditioning step is worst-case linear in
n.
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We instead compute a PMF over the space C of pairwise constraint parameters; the PMF
incorporates the landmark PDFs. In the rectilinearity example, C = {0, 90, 180, 270, ?}, where ?
is used to indicate that landmarks are unconstrained. Given a PMF over C, we sample constraint
parameters for each particle to do inference of constraints. Particles with incorrectly constrained
landmarks will yield poor data associations and be resampled.

We compute the PMF of the “relationship” of landmarks xm
i and xm

j using:

p(ci,j) =
∫

p(xm
i,ρ)

∫ hj(ci,j ;xm
j,ρ)+δ

hj(ci,j ;xm
j,ρ)−δ

p(xm
j,ρ) dxm

j,ρ dxm
i,ρ (5.24)

for all ci,j ∈ C \ ?. Then:
p(?) = 1− ∑

ci,j∈C\?
p(ci,j) (5.25)

The parameter δ encodes “prior information” about the environment: the larger the value of δ,
the more liberally we apply constraints. A benefit of this approach is that the integrals can be
computed efficiently from standard approximations to the Normal CDF since the landmarks are
estimated by EKFs.

In the rectilinearity case, given orientation estimates described by the PDFs p(θi) and p(θj),
for ci,j ∈ {0, 90, 180, 270}, we have:

p(ci,j) =
∫ ∞

−∞
p(θi)

∫ θi+ci,j+δ

θi+ci,j−δ
p(θj) dθj dθi (5.26)

which gives a valid PMF as long as δ ≤ 45◦.

5.6 Results
We have now described the complete approach for implementing constrained RBPF SLAM. Algo-
rithm 5.1 gives pseudocode for initializing a landmark xm

n+1 given the current set of superland-
marks L. Algorithm 5.2 shows how to update a (possibly constrained) landmark given a mea-
surement of its state. The algorithms simply collect the steps described in detail in Sections 5.4
and 5.5.

We have implemented the Rao-Blackwellized constraint filter for the rectilinearity con-
straint described earlier, on top of our algorithm for RBPF SLAM with sparse sensing as described
in Chapter 4, which extracts features using data from multiple poses. Because of the sparseness
of the sensor data, unconstrained SLAM typically requires many particles to deal with high uncer-
tainty. We performed several experiments, using both simulated and real data, which show that
incorporating prior knowledge and enforcing constraints leads to a significant improvement in
the resulting maps and a reduction in estimation error.

5.6.1 Simulated data
We first used a simple kinematic simulator based on an RWI MagellanPro robot to collect data
from a small simulated environment with two groups of rectilinear features. The goal was to test
the algorithm’s capability to infer the existence of constraints between landmarks. Only the five
range sensors at 0◦, 45◦, 90◦, 135◦, and 180◦ were used (i.e., ). Noise was introduced by per-
turbing measurements and motions in proportion to their magnitude. For a laser measurement of
range r, σr = 0.01r; for a motion consisting of a translation d and rotation φ, the robot’s orientation
was perturbed with σθ = 0.03d + 0.08φ, and its position with σx = σy = 0.05d.

Figure 5.4 shows the results of RBPF SLAM with a rectilinearity prior (as described in Sec-
tion 5.5, with δ = π

10 ). The filter contained 20 particles and recovered the correct relative con-
straints. The edges of the the inner “box” were constrained, and the edges of the boundary were
separately constrained.
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Algorithm 5.1 INITIALIZE-LANDMARK(xm
n+1, Pm

n+1,L)

1: βn+1 ← xm
n+1; Λn+1 = Pm

n+1 // initialize backup state
2: Zn+1 ← [0]; Qn+1 ← [∞] // initialize measurement accumulator
3: R ← {} // initialize constraint set
4: for all Li ∈ L do // previously constrained groups
5: cn+1,j ∼ p(cn+1,j), ∀xm

j ∈ Li // draw constraint parameters
6: if ∃xm

j ∈ Li such that cn+1,j 6= ? then // constrained?
7: for all xm

j ∈ Li do
8: R ← R∪ {xm

j } // add xm
j to constraint set

9: end for
10: L ← L \ Li // remove old superlandmark
11: end if
12: end for
13: ifR = ∅ then
14: return // no constraints on xm

n+1
15: end if
16: R ← R∪ {xm

n+1} // add new landmark to constraint set
17: L ← L∪ {R} // add new superlandmark
18: for all xm

j ∈ R do // for all constrained landmarks

19: x̂m
j ← βj + ΛjQ−1

j (Zj − βj) // compute unconstrained state estimate

20: P̂m
j ← Λj −ΛjQ−1

j (Λj)T // compute unconstrained covariance
21: end for
22: Pm

ρ̂ ←
(

∑xm
j ∈R(P̂m

j,ρ)
−1
)−1

// covariance of ML estimate of ρ

23: ρ̂← (Pm
ρ̂ )−1

(
∑xm

j ∈R hj(cn+1,j; x̂m
j,ρ)(P̂m

j,ρ)
−1
)

// ML estimate of ρ

24: for all xm
j ∈ R do // for all constrained landmarks

25: xm
j ← βj; Pm

j ← Λj // “rewind” state to pre-particlized version

26: xm
j,ρ ← xm

j,ρ + Pm
j,ρρ(Pm

j,ρ)
−1
(

gj(cn+1,j; ρ̂)− xm
j,ρ

)
// conditional mean given ρ

27: Pm
j,ρ ← Pm

j,ρ − Pm
j,ρρ(Pm

j,ρ)
−1(Pm

j,ρρ)
T // conditional covariance

28: xm
j,ρ ← gj(cn+1,j; ρ̂); Pm

j,ρ ← [0]; Pm
j,ρρ ← [0] // fix constrained variables

29: xm
j ← xm

j + Pm
j (Pm

j + Qj)−1(Zj − xm
j ) // “replay” meas. since particlization

30: Pm
j ← Pm

j − Pm
j (Pm

j + Qj)−1(Pm
j )T

31: end for

Algorithm 5.2 UPDATE-LANDMARK(xm
j , Pm

j , z, R)

1: xm
j ← xm

j + Pm
j (Pm

j + R)−1(z− xm
j ) // update state

2: Pm
j ← Pm

j − Pm
j (Pm

j + R)−1(Pm
j )T // update covariance

3: if ∃L ∈ L, xm
k ∈ L such that xm

j ∈ L and xm
j 6= xm

k then // is xm
j constrained?

4: Zj ← Zj + Qj(Qj + R)−1(z− Zj) // update measurement accumulator
5: Qj ← Qj −Qj(Qj + R)−1QT

j // update accumulator covariance
6: else // not constrained
7: βj ← xm

j ; Λj ← Pm
j // update backup state/covariance

8: end if
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(a) (b)

Figure 5.4: (a) Simulated environment (ground truth). (b) Results of applying constrained
SLAM. The dark curved line is the trajectory estimate, the light curved line is the ground
truth trajectory, and the dot is the starting pose. The landmarks on the boundary form one
constrained group; those in the interior form the other.
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Figure 5.5: (a) Normalized estimation error squared (NEES) of the robot’s estimated pose with
respect to the ground truth, computed over 50 Monte Carlo trials for the environment in (b).
The gray plot is the error for standard (unconstrained) RBPF SLAM. The black plot is the er-
ror for our algorithm with rectilinearity constraints. Error significantly above the dashed line
indicates an optimistic (inconsistent) filter. Our approach is less optimistic. (Sharp spikes cor-
respond to degeneracies due to resampling upon loop closure.) (c) A typical map produced by
unconstrained sparse sensing SLAM. (d) A typical rectilinearity-constrained map.
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USC SAL CMU NSH
Dimensions 39 × 20 m2 25 × 25 m2

Particles (constrained) 20 40
Particles (unconstrained) 100 600
Avg. Runtime (constrained, 30 runs) 11.24 s 34.77 s
Avg. Runtime (unconstrained, 30 runs) 32.02 s 268.44 s
Sensing range 5 m 3 m
Path length 122 m 114 m
Num. landmarks 162 219
Constrained groups 3 3

Table 5.1: Constrained SLAM experiment statistics

A separate experiment compared the consistency of the rectilinearity-constrained filter and
the unconstrained filter. (All other filter parameters were kept identical, including number of
particles.) A filter is inconsistent if it significantly underestimates its own error. It has been
shown that RBPF SLAM is generally inconsistent (Bailey et al., 2006); our experiments indicate that
using prior knowledge and enforcing constraints improves (but does not guarantee) consistency.
(Chapter 6 also addresses the consistency issue.)

Figure 5.5 depicts the consistency analysis. The ground truth trajectory from the simulation
was used to compute the normalized estimation error squared (NEES) (Bar-Shalom et al., 2001;
Bailey et al., 2006) of the robot’s trajectory estimate. For ground truth pose xr

t and estimate x̂r
t with

covariance P̂r
t (estimated from the weighted particles assuming they are approximately normally

distributed), the NEES is:
(xr

t − x̂r
t)(P̂r

t)
−1(xr

t − x̂r
t)

T (5.27)

For more details of how NEES can be used to examine SLAM filter consistency, see (Bailey et al.,
2006). The experiment used 200 particles for each of 50 Monte Carlo trials, with a robot model
similar to the previous simulation.

5.6.2 Real-world data
Our real-world experiments used data from Radish (Howard and Roy, 2003), an online repository
of SLAM data sets. Most of the data sets use scanning laser rangefinders. Since our goal is to enable
SLAM with limited sensing, we simply discarded most of the data in each scan, keeping only the
five range measurements at 0◦, 45◦, 90◦, 135◦, and 180◦. We also restricted the sensor range (see
Table 5.1). We used the same rectilinearity prior as for the simulated examples (δ = π

10 ).
Figure 5.6 shows the results of our algorithm for two data sets. The USC SAL data set

consists of a primary loop and several small excursions. Most landmarks are constrained, in three
separate groups. For the CMU NSH experiment, the maximum sensing range was restricted to
3 m, so the large initial loop (bottom) could not be closed until the robot finished exploring the
upper hallway. Aside from several landmarks in the curved portion of the upper hallway, most
landmarks are constrained.

Table 5.1 gives mapping statistics. Also included is the number of particles required to
successfully build an unconstrained map, along with running times for comparison. (The com-
plete results for unconstrained sparse sensing SLAM can be found in the preceding chapter.) All
tests were performed on a P4-1.7 GHz computer with 1 GB RAM. Incorporating constraints en-
ables mapping with many fewer particles — about the same number as needed by many uncon-
strained SLAM algorithms that use full laser rangefinder information. This leads to significant
computational performance increases when constraints are applicable.

One caveat is that the conditioning process is sensitive to the landmark cross-covariance
estimates. (The cross-covariances are used in Equations 5.16-5.17 to compute a “gain” indicating
how to change unconstrained variables when conditioning on constrained variables.) Because we
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(a) (b)

(c) (d)

Figure 5.6: (a) and (b) show the USC SAL Building, second floor (data set courtesy of Andrew
Howard). (c) and (d) show Newell-Simon Hall Level A at CMU (data set courtesy of Nicholas
Roy). (a) and (c) Occupancy data for the corrected trajectories (generated using the full laser
data for clarity). (b) and (d) The estimated landmark maps (black) and trajectories (gray).

use sensors that give very little data for feature extraction, the cross-covariance of [r θ]T features
is only approximately estimated. This leads to landmark drift in highly constrained environments
since landmarks are frequently reconditioned, as can be seen in, e.g., the upper right corner of the
NSH map in Figure 5.6(d). Future research will examine alternative feature estimators and map
representations (e.g., relative maps (Newman, 1999; Deans and Hebert, 2000b)) that may alleviate
this issue.

5.7 Summary
This chapter has described a Rao-Blackwellized particle filter for SLAM that exploits prior knowl-
edge of structural or geometrical relationships between landmarks. Relative constraints between
landmarks in the map of each particle are automatically inferred based on the estimated landmark
state. By partitioning the state into constrained and unconstrained variables, the constrained vari-
ables can be sampled by a particle filter. Conditioned on these samples, unconstrained variables
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are independent and can be estimated by EKFs on a per-particle basis.
We have implemented our approach with rectilinearity constraints and performed experi-

ments on simulated and real-world data. For SLAM with sparse (low spatial resolution) sensing,
incorporating constraints significantly reduced the number of particles required for map estima-
tion.

Most of this work has focused on linear equality constraints. While we have described a
way to extend the approach to inequality constraints, this remains an area for future work. Also,
while constraints clearly help in mapping with limited sensing, they do not significantly improve
data association inaccuracies related to sparse sensing, another potential avenue for improve-
ment.



6
SAMPLING STRATEGIES

This chapter of the thesis addresses the issue of filter consistency in Rao-Blackwellized particle
filtering SLAM with the development of several new sampling strategies for use in the filtering
process. A SLAM filter is inconsistent if it significantly underestimates the uncertainty in the robot
and map state. Because this uncertainty is frequently quite large in robot systems with limited
sensing, its accurate estimation is paramount to the ability of such robots to build accurate maps.

Two of the sampling strategies developed in this chapter, fixed-lag roughening and the block
proposal distribution, exploit “future” information, when it becomes available, to improve the fil-
ter’s pose and map estimation for previous time steps. Fixed-lag roughening perturbs trajectory
samples over a fixed lag time according to a Markov Chain Monte Carlo kernel. The block pro-
posal distribution directly samples poses over a fixed lag time from their fully joint distribution
conditioned on all the available data. Our experimental results indicate that these strategies, espe-
cially the block proposal, yield significant improvements in filter consistency and a reduction in
particle degeneracies compared to standard sampling techniques such as the improved proposal
distribution of FastSLAM 2.

We also examine the effectiveness of two alternative resampling techniques, residual resam-
pling and generalized resampling, as applied to RBPF SLAM. These drop-in-place techniques are
simple to use and (in the case of residual resampling) computationally cheaper than the standard
random resampling approach. However, our results show that they offer no real improvement in
performance over random resampling in SLAM.

6.1 Overview
Simultaneous localization and mapping (SLAM) algorithms based on particle filters, like the al-
gorithms described in the preceding two chapters, have gained exceptional popularity in the last
few years due to their relative simplicity, computational properties, and experimental successes.
However, recent work such as that by Bailey et al. (2006) and others has shown that current par-
ticle filtering SLAM algorithms are susceptible to substantial estimation inconsistencies because
they generally significantly underestimate their own error. In large part this is due to degenera-
cies in the particle filter sampling process caused by frequent resampling such that most samples

N̂eff effective sample size
L lag time
xr

t−L+1:t last L poses
ai

t generalized weight
α generalized resampling

parameter

h() measurement model
g() forward motion model
s() backward motion model
N(µ, P) Normal distribution
µ̃, P̃r,i forward-filtered dist.
Rk measurement covariance

FS2 FastSLAM 2
FLR(L) fixed-lag roughening, lag L
BP(L) block proposal, lag L
RES FS2, residual resampling
GEN(α) FS2, generalized resampling

(param. α)

Notation for this chapter

75
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become identical for much of the robot’s trajectory.
For a complete introduction to particle filtering SLAM, see Appendix B. Briefly, a particle

filter for SLAM represents the posterior distribution of the robot’s trajectory using a set of samples,
or “particles.” Conditioned on each particle is a map, estimated using a series of small extended
Kalman filters for each landmark. At each time step, particles are extended according to a motion
model and maps are updated based on sensor observations. The particles are weighted according
to the likelihood of the observations given the sampled poses and previous observations. Finally,
particles are resampled (with replacement) according to to their weights in order to give more
presence to highly-weighted trajectories.

Particle degeneracies and filter inconsistencies occur when the weights of particles in the
filter are highly skewed. In this case, the resampling step selects many copies of a few highly
weighted particles. Since resampling is repeated often (in the basic particle filter, at every time
step), the sampled poses representing past portions of the robot’s trajectory tend to become de-
generate (i.e., all or mostly all identical) so that they insufficiently encode uncertainty in the es-
timation. These degeneracies can have significant consequences if the robot revisits the poorly
estimated region, such as when closing a loop, because the map estimate may be incorrect and
overcertain, preventing good data association.

Some previous work has addressed the issue of particle diversity. The improved proposal
distribution of FastSLAM 2 (Montemerlo, 2003) seeks to sample “better” poses so that particle
weights remain relatively uniform. The adaptive resampling technique employed by Grisetti
et al. (2005), and used in all of the particle filtering algorithms described in this thesis, performs
resampling only when the weights become skewed, rather than at every time step. (We further
discuss these and other approaches in Section 6.2.)

In this chapter we describe two new sampling strategies for particle filtering SLAM, in-
spired in part by the tracking literature (Gilks and Berzuini, 2001; Doucet et al., 2006), which
improve the consistency of the filter’s estimation and the diversity of the trajectory samples. The
first approach, termed fixed-lag roughening, incorporates a Markov Chain Monte Carlo (MCMC)
move step, perturbing pose samples over a fixed lag time according to an MCMC kernel to com-
bat particle degeneracy. The second technique employs a block proposal distribution which directly
samples poses over a fixed lag time from their fully joint distribution conditioned on all of the
available data. The main idea behind both methods is to exploit “future” information to improve
the estimates of past portions of the trajectory, in the sense that the information becomes available
only after initial estimation of the poses.

The new sampling techniques lead to significant reductions in estimation error over pre-
vious approaches. For example, in our experiments, estimation error using fixed-lag roughening
was as little as 30% that of FastSLAM 2 on average, and error using the block proposal was as
little as 12%, in both cases at the expense of a constant factor increase in computation time. Fur-
thermore, trajectory samples from the block proposal exhibit better diversity than those from
FastSLAM 2, with the filter maintaining multiple samples over most of the pose history for rea-
sonably long trajectories.

The primary complication of both approaches is in designing and drawing from the sam-
pling distributions — i.e., the MCMC kernel for fixed-lag roughening, and the fully joint pose
distribution for the block proposal. We derive conditional distributions for a Gibbs sampler for
the roughening case, and employ a well-known algorithm to simulate from joint distributions in
state-space models for the block proposal. In addition, we show how to apply the techniques in
practice using the standard Gaussian approximations to the motion and measurement models of
the robot.

Other work in the statistics literature has pinpointed several alternatives to the usual ran-
dom resampling strategy employed in particle filtering techniques (Liu, 2001). For purposes of
comparison, we have implemented two of the approaches, residual resampling and generalized
resampling, in the context of RBPF SLAM. Residual resampling deterministically selects a num-
ber of copies of each particle proportional to the weights. A benefit of this approach is that it
requires access to many fewer random numbers than the standard approach. Generalized re-
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sampling draws particles with probability proportional to a function of the weights. The function
can be tailored to balance the need for particle diversity with the need for sample effectiveness.
Unfortunately our results show that neither technique yields much improvement over random
resampling in terms of filter performance.

In the next section describe previous work on improving consistency and particle diver-
sity. We introduce fixed-lag roughening in Section 6.3 and the block proposal distribution in Sec-
tion 6.4. The two resampling strategies are discussed in Section 6.5. Finally, Section 6.6 presents
the results of experiments comparing our techniques to previous approaches.

6.2 Related work
Several researchers have addressed consistency in the context of RBPF SLAM; we describe two
well-known approaches and a third recent development.

6.2.1 Improved proposal distribution
For robots with very accurate sensors such as scanning laser rangefinders, the measurement like-
lihood p(zt|x1:t, z1:t−1, n1:t) is highly peaked, whereas the motion model based proposal distri-
bution p(xr

t |x
r,i
t−1, ut) is not. Thus, the proposal distribution samples many robot poses that are

assigned low weights, so only a few samples survive the resampling step. This can quickly lead
to particle degeneracies.

An alternative is to incorporate the current sensor measurement zt into the proposal distri-
bution, i.e., to sample robot poses according to:

p(xr
t |xr,i

1:t−1, u1:t, zt, nt) (6.1)

Using this approach, many more samples are drawn for robot poses that match well with the
current sensor measurement and particles are more evenly weighted, so more particles are likely
to survive resampling. This “improved proposal distribution” has been used in both landmark-
based SLAM (Montemerlo, 2003), where it is often called “FastSLAM 2,” and in occupancy grid
scan-matching SLAM (Grisetti et al., 2005).

6.2.2 Effective sample size
The basic particle filtering algorithm resamples particles according to their weights at every it-
eration, i.e., for every SLAM update step. It can be shown that if the weights of particles are ap-
proximately the same, resampling only decreases the efficiency of the sampled representation (Liu,
2001). The effective sample size is a useful metric to determine whether resampling is necessary (Liu
and Chen, 1995). It can be approximated as:

N̂eff =
1

∑N
i=1
(
ωi

t
)2 (6.2)

If the effective sample size is large, say, N̂eff > N/2, resampling is undesirable since the PDF
over robot trajectories is well represented. This technique, originally developed by Liu and Chen
(1995), was first applied to SLAM by Grisetti et al. (2005).

6.2.3 Recovering diversity through stored state
The preceding methods focus on preventing loss of particle diversity. Another approach is to
attempt to “recover” diversity. Stachniss et al. (2005b) store the “state” of the particle filter (i.e.,
the current set of pose samples) upon detecting the robot’s entry into a loop. The robot repeatedly
traverses the loop to improve the map, a process normally resulting in loss of particle diversity.
Finally, the diverse pose samples are restored by splicing the loop trajectory estimate onto each
saved particle, effectively eliminating any degeneracies that arose during mapping of the loop.
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6.3 Fixed-lag roughening
Resampling leads to degeneracies because multiple copies of the same highly-weighted particles
survive. In this section we describe a modification of the particle filter sampling process that
incorporates “roughening” of the sampled trajectories over a fixed lag so that the posterior over
trajectories is better estimated. A similar approach termed “resample-move” has been described
in the statistical literature in the context of target tracking (Gilks and Berzuini, 2001; Doucet et al.,
2006), and has been mentioned (but not pursued) in the context of SLAM by Bailey (2002).

The basic idea is to incorporate a post-SISR Markov Chain Monte Carlo (MCMC) step to
“move” the trajectory of each particle over a fixed lag time L after the usual RBPF update is com-
plete. Specifically, for each particle φi

t, i = 1 . . . N, we sample:

xr,i
t−L+1:t ∼ q(xr

t−L+1:t) (6.3)

where q is an MCMC kernel with invariant distribution

p(xr
t−L+1:t|u1:t, z1:t, n1:t) (6.4)

After the move, the particles are still approximately distributed according to the desired posterior
but degeneracies over the lag time L have been averted. Furthermore, some “future” information
is used in drawing new values for previously sampled poses. The samples are already approxi-
mately distributed according to the desired posterior before the move, so the usual burn-in time
of MCMC samplers can be avoided. The MCMC move can be repeated to obtain better samples,
although in our implementation we only perform a single move at each time step.

There are two main difficulties in implementing the approach. First, an appropriate ker-
nel q and method for sampling from it must be devised. Second, care must be taken to avoid bias
from counting the same measurement twice, leading to a need for a simple mechanism to manage
incremental versions of the map.

6.3.1 Fixed-lag Gibbs sampler for SLAM

An effective approach for sampling from the joint MCMC kernel q(xr
t−L+1:t) is to employ Gibbs

sampling, which samples each component of xr
t−L+1:t in turn from its conditional distribution

given the values of other components. Specifically, we sample each component in turn according
to the following scheme, for every particle φi

t:

xr,i
t−L+1 ∼ p(xr

t−L+1|x
r,i
1:t−L,t−L+2:t, u1:t, z1:t, n1:t)

. . .
xr,i

k ∼ p(xr
k|x

r,i
1:k−1,k+1:t, u1:t, z1:t, n1:t)

. . .
xr,i

t ∼ p(xr
t |xr,i

1:t−1, u1:t, z1:t, n1:t) (6.5)

The last distribution (6.5) is equivalent to the usual (improved) proposal distribution. The
other intermediate distributions are of the form:

xr,i
k ∼ p(xr

k|x
r,i
1:k−1,k+1:t, u1:t, z1:t, n1:t) (6.6)

at a particular lag time k. We will concentrate on manipulating (6.6) into a form from which we
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can easily sample. We can first rewrite this distribution using Bayes’ rule as follows:

p(xr
k|x

r,i
1:k−1,k+1:t, u1:t, z1:t, n1:t)

=
p(zk|xr,i

1:t, u1:t, z1:k−1,k+1:t, n1:t)p(xr
k|x

r,i
1:k−1,k+1:t, u1:t, z1:k−1,k+1:t, n1:t)

p(zk|xr,i
1:k−1,k+1:t, u1:t, z1:k−1,k+1:t, n1:t)

(6.7)

The denominator can be subsumed into a normalization constant η:

= ηp(zk|xr,i
1:t, u1:t, z1:k−1,k+1:t, n1:t)p(xr

k|x
r,i
1:k−1,k+1:t, u1:t, z1:k−1,k+1:t, n1:t) (6.8)

Applying the Markov assumption and factoring, we obtain:

= ηp(zk|xr,i
1:t, u1:t, z1:k−1,k+1:t, n1:t) p(xr

k|x
r,i
k−1, uk)︸ ︷︷ ︸

forward model

p(xr
k|x

r,i
k+1, uk+1)︸ ︷︷ ︸

backward model

(6.9)

We now have three terms. The forward model is the distribution of robot poses given the previous
pose and the current control input; the backward model is the distribution of poses given the next
pose and control input. Finally, marginalizing the first term yields:

p(zk|xr,i
1:t, u1:t, z1:k−1,k+1:t, n1:t) =∫

p(zk|xr,i
k , nk, xm,i

nk
)︸ ︷︷ ︸

measurement likelihood

p(xm,i
nk
|xr,i

1:k−1,k+1:t, z1:k−1,k+1:t, n1:t)︸ ︷︷ ︸
landmark distribution

dxm,i
nk

(6.10)

Substituting this back into (6.9) we obtain:

p(xr
k|x

r,i
1:k−1,k+1:t, u1:t, z1:t, n1:t) =

η
∫

p(zk|xr,i
k , nk, xm

nk
)p(xm

nk
|xr,i

1:k−1,k+1:t, z1:k−1,k+1:t, n1:t) dxm
nk

p(xr
k|x

r,i
k−1, uk)p(xr

k|x
r,i
k+1, uk+1) (6.11)

6.3.2 Practical implementation
In practice we approximate the measurement likelihood, the landmark distributions, and the
forward and backward models by Gaussians. Replacing the terms of (6.11) accordingly, we obtain
the convolution of two Gaussians multiplied by two more Gaussians, i.e.:

∫
N
(

h(xm,i
nk

, xr,i
k ), Rk

)
N
(

xm,i
nk

, Pm,i
nk

)
dxm,i

nk

× N
(

g(xr,i
k−1, uk), Vk

)
N
(

s(xr,i
k+1, uk+1), Vk+1

)
(6.12)

where the functions h, g, and s represent the measurement model, forward motion model, and
backward motion model, respectively.

Typically, the measurement model must be linearized in order to compute the integral, e.g.,
by taking the first-order Taylor expansion:

h(xm
nk

, xr
k) ≈ h(xm,i

nk
, g(xr,i

k−1, uk)) + Hm(xm
nk
− xm,i

nk
) + Hr(xr

k − xr,i
k ) (6.13)

where Hm and Hr are the derivatives of h with respect to the observed landmark and the robot’s
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pose, respectively, evaluated at the expected values.
Note that aside from the backward motion model term, the distribution (6.12) is exactly the

approximation of the improved proposal described by Montemerlo (2003), who has shown that
the resulting distribution is Gaussian with mean µ̃r,i

k and covariance P̃r,i
k as follows:

µ̃r,i
k = P̃r,i

k HT
r S−1

k (zk − h(xm,i
nk

, g(xr,i
k−1, uk))) + g(xr,i

k−1, uk) (6.14)

P̃r,i
k =

(
HT

r S−1
k Hr + HT

u V−1
k Hu

)−1
(6.15)

where:
Sk = Rk + HmPm,i

nk
HT

m (6.16)

It remains to incorporate the backward motion model, which is straightforward since we
can just merge the backward model distribution with the distribution (6.14-6.15), i.e.:

µr,i
k = µ̃r,i

k + P̃r,i
k (P̃r,i

k + HuVk+1HT
u )−1(s(xr,i

k+1, uk+1)− µ̃r,i
k ) (6.17)

Pr,i
k =

(
(P̃r,i

k )−1 + HT
u V−1

k+1Hu

)−1
(6.18)

The fixed-lag roughening algorithm computes the distribution N
(

µr,i
k , Pr,i

k

)
for each time

step k = t− L + 1 . . . t for every particle φi
t to draw the new poses xr,i

t−L+1:t, and then updates the
maps conditioned on the new trajectories.

6.3.3 Incremental map management
To avoid bias the intermediate map estimate p(xm

nk
|xr,i

1:k−1,k+1:t, z1:k−1,k+1:t, n1:t) used in (6.11) should
incorporate all available information except the measurement zk from the time step being moved.
Thus, it is necessary to store “incremental” versions of the map over the lag time so that the inter-
mediate map distributions can be computed. A simple strategy which we use in our implemen-
tation is to store the map from time t− L and the measurements zt−L+1:t. The intermediate map
distributions are computed on the fly by applying EKF updates to the map using the observations
from all but the kth time step.

To avoid storing multiple complete copies of the map of each particle, the binary tree data
structure of log N FastSLAM (Montemerlo, 2003) can be used to store only the differences between
maps from each time step.∗

6.3.4 Discussion
Note that (6.11) is nearly identical to the result of similar manipulations of the improved proposal
distribution (6.1) as described by Montemerlo (2003). The primary difference is the inclusion of
the “backward model” p(xr

k|x
r,i
k+1, uk+1) since we are sampling a pose in the midst of the trajectory

rather than simply the most recent pose.
Note also that we do not reweight the particles after performing the MCMC roughening

step. This is because the particles before the move are asymptotically drawn from the same dis-
tribution as those after the move.

6.4 Block proposal distribution
An alternative approach for exploiting “future” information in drawing trajectory samples over
a fixed lag time L is to draw new samples for the last L poses directly from the joint “L-optimal

∗We note that while the tree described in (Montemerlo, 2003) stores landmarks only at the leaf nodes and thus requires
O(n log n) memory for n landmarks, it is possible to store landmarks at every node in the tree, which requires O(n)
memory.
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block proposal distribution,” i.e.:

p(xr
t−L+1:t|u1:t, z1:t, n1:t, xr,i

t−L) (6.19)

The basic idea is to sample from (6.19) at each time step, replacing the most recent L poses of each
particle with the newly sampled ones. The result is a particle filter that is “current” in that its
samples are always distributed according to the desired posterior:

p(xr
1:t, xm|u1:t, z1:t, n1:t) (6.20)

The filter’s results can therefore be used in, e.g., planning, but the samples are much better than
those from the usual particle filter since future information is directly exploited by the joint pro-
posal. Thus, degeneracies in the weights of particles are much less likely to occur. A related
technique was recently described by Doucet et al. (2006) in the general particle filtering context.
One can think of the standard improved proposal distribution (6.1) as a “1-optimal” version of
the block proposal.

The main difficulty in employing the block proposal is in drawing samples from the joint
distribution (6.19). Our approach relies on the factorization due to Chib (1996):

p(xr
t−L+1:t|u1:t, z1:t, n1:t, xr,i

t−L) = p(xr
t |u1:t, z1:t, n1:t, xr,i

t−L)×

p(xr
t−1|u1:t, z1:t, n1:t, xr,i

t−L, xr,i
t ) × · · · × p(xr

k|u1:t, z1:t, n1:t, xr,i
t−L, xr,i

k+1:t)× · · · ×

p(xr
t−L+1|u1:t, z1:t, n1:t, xr,i

t−L, xr,i
t−L+2:t) (6.21)

Here, the typical term is:
p(xr

k|u1:t, z1:t, n1:t, xr,i
t−L, xr,i

k+1:t) (6.22)

and application of Bayes’ rule and the Markov assumption leads to (Chib, 1996):

p(xr
k|u1:t, z1:t, n1:t, xr,i

t−L, xr,i
k+1:t)

∝ p(xr
k|u1:k, z1:k, n1:k, xr,i

t−L) p(xr
k+1:t, zk+1:t|xr,i

k , xr,i
t−L, u1:t, z1:k, n1:t) (6.23)

= p(xr
k|u1:k, z1:k, n1:k, xr,i

t−L) p(xr
k+1|x

r,i
k , uk+1)

× p(xr
k+2:t, zk+1:t|xr,i

k , xr,i
k+1, u1:t, z1:k, n1:t, xr,i

t−L) (6.24)

∝ p(xr
k|u1:k, z1:k, n1:k, xr,i

t−L) p(xr
k+1|x

r,i
k , uk+1) (6.25)

where the final step follows because p(xr
k+2:t, zk+1:t|xr,i

k , xr,i
k+1, u1:t, z1:k, n1:t, xr,i

t−L) is independent
of xr

k.
The idea is to first filter forward over the robot’s trajectory by computing the distributions

{p(xr
k|u1:k, z1:k, n1:k, xr,i

t−L)} using alternating prediction and update steps (e.g., with an EKF), and
then sample backward, first drawing:

xr,i
t ∼ p(xr

t |u1:t, z1:t, n1:t, xr,i
t−L) (6.26)

and then sampling the poses from the preceding time steps in reverse order using the distribu-
tions that arise from substituting the sampled values into (6.25). This process is repeated for every
particle, and the corresponding maps are updated conditioned on the sampled trajectories.

Once new samples have been drawn for {xr,i
t−L+1:t}, the particles are reweighted according

to the usual technique, i.e.:

ωi
t = ωi

t−1
target distribution

proposal distribution
(6.27)
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The optimal weight update is given by:

ωi
t = ωi

t−1
p(xr

1:t−L|u1:t, z1:t, n1:t)
p(xr

1:t−L|u1:t−1, z1:t−1, n1:t−1)
(6.28)

= ωi
t−1

p(zt|xr,i
1:t−L, u1:t, z1:t−1, n1:t) p(xr

1:t−L|u1:t−1, z1:t−1, n1:t−1)
p(xr

1:t−L|u1:t−1, z1:t−1, n1:t−1) p(zt|u1:t, z1:t−1, n1:t)
(6.29)

∝ ωi
t−1 p(zt|xr,i

1:t−L, u1:t, z1:t−1, n1:t) (6.30)

Thus, the weight update is proportional to the likelihood of the current measurement using the
forward-filtered pose and map distribution.

6.4.1 Practical implementation
As with fixed-lag roughening, we implement the necessary models as Gaussians in practice. The
algorithm for sampling from (6.19) proceeds in two steps: forward filtering and backward sam-
pling.

6.4.1.1 Forward filtering
The forward filtering step estimates the intermediate pose distributions conditioned upon past
and present data, but not on future data. Note that the distributions must be computed separately
for each particle since they are also conditioned on the “starting pose” xr,i

t−L. We implement the
step using an extended Kalman filter (EKF) with the usual alternation between predictions and
updates, for k = t− L + 1 . . . t. We first compute the prediction:

µ̃r,i
k = g(µ̃k−1, uk) (6.31)

P̃r,i
k = P̃r,i

k−1 + HuVkHT
u (6.32)

and then apply the measurement(s) to improve the model using (6.14-6.15). The resulting dis-
tribution is used recursively to compute the distribution for the next time step. The process is
initialized with P̃r,i

t−L = 0 since the pose xr,i
t−L is already sampled.

Note that during the forward filtering step, a temporary version of the map must be updated
with the measurements from each time step to obtain the correct forward-filtered distributions.
The ideal approach is to apply the EKF to the full state vector [xr xm]T over the lag time. If the
number of observed landmarks in a time step is less than a constant m (rather than a function
of the size of the map), then the total cost of forward filtering is O(NLm3), i.e., asymptotically
constant time to draw N samples at each time step.

An alternative approach is to assume the landmarks are independent and apply the usual
RBPF updates to the landmarks during forward filtering, inflated by the uncertainty of the inter-
mediate pose distributions computed by the EKF, i.e.:

xm,i
nk

= xm,i
nk

+ (Pm,i
nk

HT
mS−1)(zk − h(xm,i

nk
, µ̃k)) (6.33)

Pm,i
nk

=
(
(Pm,i

nk
)−1 + HT

mR−1
k Hm + HT

r (P̃r,i
k )−1Hr

)−1
(6.34)

6.4.1.2 Backward sampling
Once the forward filtering step is complete, we draw samples for each intermediate pose xr

k,
starting with k = t and decrementing until k = t− L + 1. The first sample is drawn directly from
the (approximately) optimal forward-filtered distribution:

xr,i
t ∼ N

(
µ̃r,i

t , P̃r,i
t

)
(6.35)

The remaining samples are conditioned on the poses drawn for the succeeding time steps
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by applying the same backward model used in fixed-lag roughening, i.e., we apply the steps (6.17-
6.18) with µ̃r,i

k and P̃r,i
k as computed by during forward filtering, and draw samples from the

resulting Gaussians.

6.4.1.3 Reweighting
After drawing the samples {xr,i

t−L+1:t}, the particles must be reweighted to approximate the de-
sired posterior. From (6.30), it can easily be seen that the appropriate weight update is:

ωi
t = ωi

t−1 × |2πLi
t|−1/2 exp

(
−1

2
(zt − h(xm,i

nt , µ̃r,i
t ))T(Li

t)
−1(zt − h(xm,i

nt , µ̃r,i
t ))

)
(6.36)

with:
Li

t = HrP̃r,i
t HT

r + HmPm,i
nt HT

m + Rt (6.37)

where xm,i
nt and Pm,i

nt are as computed during the forward filtering step.

6.4.2 Discussion
At first it may appear that the samples drawn using the block proposal distribution are no differ-
ent from those obtained with fixed-lag roughening. In fact, while the samples are asymptotically
from the same distribution (the desired posterior), those obtained from the block proposal will
generally be better. This is because poses over the lag time are drawn directly from the joint dis-
tribution that incorporates future information. On the other hand, in fixed-lag roughening, poses
are originally drawn using past and present information only, and then are gradually moved as
future information becomes available. Only through the application of many MCMC moves at
each time step will the samples obtained by fixed-lag roughening be as good as those from the
block proposal.

6.5 Resampling strategies
In addition to fixed-lag roughening and the block proposal distribution described above, we have
examined the use of alternative resampling methods in RBPF SLAM. To our knowledge, all pub-
lished RBPF SLAM algorithms employ the random resampling approach, which resamples parti-
cles with probability proportional to their importance weights. We briefly describe two alterna-
tive techniques from the statistical literature (Liu, 2001), termed residual resampling and generalized
resampling, and apply them to particle filtering SLAM. Our results indicate that the performance of
these strategies in the context of SLAM is not appreciably better than random resampling. How-
ever, they offer flexibility and, in the case of residual resampling, may be computationally benefi-
cial.

6.5.1 Residual resampling
Residual sampling is a mostly-deterministic approach that enforces the number of copies of a
particle retained during resampling to be (approximately) proportional to the weight of the sam-
ple. (Note that this is the expected result of random resampling.) The technique is shown in
Algorithm 6.1.

Algorithm 6.1 Residual resampling

1: Let ω̃
j
t = ω

j
t/ ∑N

i=1 ωi
t

2: Retain k j = bNω̃
j
tc copies of φ

j
t

3: Let Nr = N − k1 − . . .− kN

4: Obtain Nr i.i.d. draws (with replacement) from {φ1
t , . . . , φN

t } w.p. proportional to Nω̃
j
t − k j

5: ∀j, ω
j
t = 1/N
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Since the number of deterministically selected copies of all particles, ∑N
j=1 k j, may be less

than N, random resampling is performed according to the residuals Nω̃
j
t − k j in Step 4 to prevent

bias.
According to Liu (2001), residual resampling can be shown to “dominate” random resam-

pling in that it yields more accurate PDF approximations and is comparable or better in terms
of computation. Perhaps the primary benefit is that residual resampling gives comparable per-
formance to random resampling while consuming many fewer random numbers, which may be
costly to generate, particularly in embedded scenarios.

6.5.2 Generalized resampling
The idea of generalized resampling is to resample according to alternative probabilities {ai

t} in-
stead of the usual importance weights {ωi

t}. The intuition behind this approach, which is de-
picted in Algorithm 6.2, is that {ai

t} can be used to “modify” the weights of particles, balancing
focus (giving more presence to particles with high weights) with particle diversity.

Algorithm 6.2 Generalized resampling
1: for j = 1 . . . N do
2: Draw k from {1, . . . , N} according to ai

t, i = 1 . . . N
3: Let φ̃

j
t = φk

t

4: Let ω̃
j
t = ωk

t /ak
t

5: end for
6: return the φ̃i

ts and ω̃i
ts

Liu (2001) suggests assigning generalized weights according to:

ai
t =

(
ωi

t

)α
(6.38)

with 0 < α ≤ 1. By picking α < 1, the weight of seemingly poor particles is slightly amplified,
giving them a “second chance.” (Note that the ai

ts should be monotone in ωi
t since we generally

want to discard bad samples and duplicate good ones.) The weights are reset nonuniformly after
resampling to prevent bias.

6.6 Results
Our experiments compared the standard FastSLAM 2 algorithm, the fixed-lag roughening (FLR)
algorithm from Section 6.3, the block proposal (BP) distribution from Section 6.4, and FastSLAM 2
with residual (RES) and generalized (GEN) resampling as described in Section 6.5. For the rough-
ening and block proposal approaches we tested the algorithms with several values for the lag
time L, and generalized resampling was tested with several values of the parameter α. All exper-
iments used N = 500 particles and resampling was performed only when N̂eff < N/2.

Our experiments were in simulation since comparing the estimation error of the filters
requires ground truth. We assumed known data associations to prevent poor correspondence-
finding from influencing the comparison between filtering algorithms. Noise was introduced by
perturbing odometry and range-bearing measurements. The observation model used σr = 5 cm
and σb = 0.3◦ with a sensing radius of 10 m, and the motion model used σx = 0.12d cos θ, σy =
0.12d sin θ and σθ = 0.12d + 0.24φ for translation d and rotation φ.

Experiments were performed in a variety of simulated environments consisting of point
features. We present results from two representative cases with randomly placed landmarks:
a “sparse” map with a simple 27 sec. trajectory (no loops) and a “dense” map with a 63 sec.
loop trajectory. The environments, ground truth trajectories, and typical raw odometry estimates
are shown in Figure 6.1. All results were obtained by averaging 50 Monte Carlo trials of each
simulation.
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Figure 6.1: Simulated environments used to compare RBPF SLAM algorithms. The environ-
ments consist of point landmarks placed uniformly at random. The solid dark lines represent
the ground truth trajectories of the robot, which were kept the same for all simulations. The
lighter gray lines depict several typical uncorrected odometry estimates of the robot’s trajec-
tory.

6.6.1 NEES comparison
We begin by comparing the normalized estimation error squared (NEES) (Bar-Shalom et al., 2001;
Bailey et al., 2006) of the trajectory estimates produced by each algorithm. The NEES is a useful
measure of filter consistency since it estimates the statistical distance of the filter estimate from
the ground truth, i.e., it takes into account the filter’s estimate of its own error. Recall from Chap-
ter 5 that for a ground truth pose xr

t and an estimate x̂r
t with covariance P̂r

t (estimated from the
weighted particles assuming they are approximately Gaussian), the NEES is:

(xr
t − x̂r

t)(P̂r
t)
−1(xr

t − x̂r
t)

T (6.39)

The recent paper by Bailey et al. (2006) gives more details about using NEES to measure RBPF
SLAM consistency.

We computed the NEES at each time step using the current particle set. Figures 6.2-6.3
and 6.4-6.5 show the resulting errors from each of the algorithms in the sparse and dense exam-
ples, respectively. In the sparse environment, NEES grows steadily for FS2, FLR, RES, GEN, and
for BP with small lag times. Increasing the lag time for FLR has relatively little effect on NEES
because “future” information is exploited slowly (see Section 6.4.2). FLR’s NEES is approximately
33% that of FS2 on average for L = 5 and L = 10. On the other hand, increasing the lag time for
BP dramatically reduces NEES. The NEES of BP(1) is roughly 73% that of FS2 on average; for BP(5),
22%; and for BP(10), 12%. RES and GEN fail to improve on random resampling and in fact — aside
from GEN(0.5) — do noticeably worse than FS2 in the sparse environment.

For the dense case the results are mostly similar. Note that FLR avoids degeneracies (mani-
fested as spikes in the NEES plots) by moving particles after resampling. Interestingly, increasing L
in a dense environment appears to slightly increase the NEES of FLR, a subject warranting further
investigation. RES and GEN do better in the dense case, with performance comparable to that of
FS2. In the dense environment, increasing α (placing more emphasis on representation accuracy
than on particle diversity) leads to improved performance, a clue that generalized resampling is
offering little benefit in this case aside from the expected slight reduction in degeneracies.

Note that the range of the NEES plots is quite large — none of the filters is truly consistent.
(A consistent filter over 50 Monte Carlo trials should have NEES less than 3.72 with 95% proba-



86 SAMPLING STRATEGIES

bility (Bailey et al., 2006).) While the estimation error using fixed-lag roughening and the block
proposal is significantly reduced, these strategies alone do not guarantee a consistent filter, at least
with reasonably small lag times. In fact it is likely that guaranteeing consistent SLAM estimation
(with high probability) while representing the trajectory posterior by samples requires drawing
the full dimensionality of the samples from a distribution conditioned on all the measurements,
e.g., with MCMC, since particle filtering is always susceptible to resampling degeneracies depend-
ing on the environment and trajectory.

6.6.2 N̂eff comparison
The effective sample size N̂eff is also a useful statistic in examining filter consistency. If N̂eff is
high, the weights of particles are relatively unskewed, i.e., all particles are contributing to the
estimate of the trajectory posterior. Furthermore, since N̂eff dictates when resampling occurs,
high values of N̂eff indicate less chance for degeneracies in past portions of the trajectory estimate
because resampling occurs infrequently.

Figures 6.6-6.7 show N̂eff as computed at each time step in the simulations. In the sparse
case, FLR exhibits no significant improvement over FS2, but in the dense environment FLR(5) and
FLR(10) have about 72% higher N̂eff than FS2 on average. Again, BP exhibits stronger results, with
BP(10) more than 1000% better than FS2 in the dense case, and 340% better in the sparse case.
This can be attributed to the direct use of future information by the block proposal, which leads
to better samples for essentially the same reason FastSLAM 2’s samples are better than those of
FastSLAM 1. Residual resampling gives slightly better performance than FS2 (a result of its de-
terministic approach). GEN yields worse N̂eff than FS2 in all cases, with the ratios approximately
proportional to the parameter α. Again, this is the expected result since generalized resampling
trades off representation accuracy (which is measured by N̂eff) for particle diversity.

6.6.3 Particle diversity
Finally, we examine particle diversity for each of the different filters. Figures 6.8 and 6.10 show
the variance of the pose histories of all the particles, computed at the end of SLAM. Figures 6.9
and 6.11 show the number of unique particles representing each pose. For all of the algorithms,
the end of the trajectory is better represented than earlier portions. FLR extends the representa-
tion over the lag time but the typical quick dropoff remains. BP avoids the loss of diversity in
the sparse case, maintaining non-zero variance over most of the trajectory, as one would expect
since little resampling occurs due to the high effective sample size. In a denser environment a
significant amount of resampling still occurs, reducing the benefit somewhat. RES gives slightly
worse performance than FS2. GEN very slightly improves on FS2, with about 1% more unique
samples of each pose on average for α = 0.2 and α = 0.5.

6.7 Summary
We have described two new sampling strategies for particle filtering SLAM. The first method,
fixed-lag roughening, applies an MCMC move to the trajectory samples over a fixed lag at each
time step. The second approach, the block proposal distribution, draws new samples for all poses
in a fixed-lag portion of the trajectory from their joint distribution. Both techniques exploit “fu-
ture” information to improve the estimation of past poses.

Our results show that the new algorithms lead to substantial improvements in SLAM es-
timation. Fixed-lag roughening and the block proposal yield samples which exhibit less statis-
tical estimation error than those of FastSLAM 2. Furthermore, the samples drawn by the block
proposal distribution tend to have much more uniform importance weights (and thus higher “ef-
fective sample sizes”), leading to less need for resampling and consequently, improved particle
diversity.

We have also examined the utility of two alternative resampling algorithms. Residual re-
sampling deterministically selects a number of copies of each particle proportional to the weights,
consuming many fewer random numbers than the usual random resampling. Generalized resam-
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pling selects samples according to some function of their importance weights, giving flexibility
in balancing particle diversity with representation accuracy. While our results have shown that
neither technique significantly improves upon the estimation performance of basic random re-
sampling, the approaches expand the resampling toolkit; in particular, residual resampling may
be useful in computationally restricted scenarios.
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Figure 6.2: NEES for the sparse environment, versus the simulation time on the x-axis. We use
the following abbreviations: FS2 for FastSLAM 2 with random resampling, FLR(L) for fixed-lag
roughening with lag time L, BP(L) for the block proposal with lag time L, RES for FastSLAM 2
with residual resampling, and GEN(α) for generalized resampling with parameter α.
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6.7. Summary 93

FS2
1

500

FLR(1)

1

500

FLR(5)

1

500

FLR(10)

1

500

BP(1)

1

500

BP(5)

1

500

BP(10)

1

500

RES

1

500

GEN(0.2)

1

500

GEN(0.5)

1

500

GEN(0.8)

1

500

Figure 6.7: N̂eff for the dense environment.
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Figure 6.9: Number of unique samples representing each pose in the trajectory at the end of
SLAM, for the sparse environment. Here, the x-axis is the time step for each pose in the final
trajectory estimate.
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Figure 6.11: Number of unique samples representing each pose in the trajectory at the end of
SLAM, for the dense environment. Here, the x-axis is the time step for each pose in the final
trajectory estimate.
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7
PRACTICAL SLAM FOR LOW-COST

ROBOTS

In practice, restrictions on the sensing capabilities of a robot are likely to come hand-in-hand with
limitations on the available computation. For example, just as a reasonably inexpensive consumer
robot cannot be equipped with a costly scanning laser rangefinder, neither can it be outfitted with
an expensive and power-draining full-blown, modern computer and large amounts of storage.
This chapter of the thesis shows that an implementation of SLAM on a very minimal real robot
is feasible despite computational restrictions. We describe a fixed-point implementation of the
multiscan SLAM algorithm from Chapter 3 on an 8-bit, 16 MHz Atmel ATMEGA64 microcontroller
with 128 KB storage. To our knowledge this is the first complete and working SLAM implementa-
tion on a microcontroller. The implementation is tested with simulated and real data and runs in
on the ATMEGA64 with relatively fast execution times. Our results show that SLAM can be done
on the current generation of basic embedded microprocessors, opening the way for inexpensive,
mass-produced robots capable of mapping their environments.

7.1 Overview
For SLAM to be deployed on real inexpensive robots, algorithms that are robust enough to deal
with minimal sensing but that are simple enough to be deployed with minimal computing and
storage must be developed. In the previous chapters, we have focused mainly on sensing limita-
tions and developed algorithms that we have implemented on modern PC hardware. For appli-
cations where sensing capabilities are restricted, e.g., because of cost, it is likely that the robot in
question will also be handicapped in its processing and storage capabilities. For example, a robot
meant to be sold inexpensively on the mass market may be equipped with only a microcontroller
and a few kilobytes of memory.

In this chapter we describe a fleet of five robots, dubbed “Ratbots” (collectiveley, the “Rat
Pack”), named Rat, Pig, Goat, Zebra, and Angry Bob, after characters in the “Pearls Before Swine”
comic strip (Pastis, 2003). The Ratbots, designed and built at Rensselaer Polytechnic Institute from
2004–2006, are equipped with extremely limited sensing and computing, but can be built for only
a few hundred US$ (and likely much less in large quantities). We have implemented a version of
particle filtering SLAM that runs on board the Ratbots. The source code for our implementation is
available (see Appendix C).

NL left encoder count
NR right encoder count

c encoder conversion factor
b wheel base

r− IR minimum range
r+ IR maximum range

Notation for this chapter

99
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Figure 7.1: The Ratbot platform.

In the next section, we introduce the Ratbots, detail their hardware capabilities, and de-
scribe a simple kinematic model. Next, in Section 7.3, we describe some of the interesting details
of our particle filtering SLAM implementation that enable the filter to run at reasonably fast speeds
on a simple microcontroller. Finally, in Section 7.4, we describe the results of experiments with
the implementation that indicate the feasibility of SLAM on the Ratbots.

7.2 The Ratbot platform
The Ratbots are small differential drive mobile robots. They were designed and built in the Al-
gorithmic Robotics Laboratory at RPI, as a simple and inexpensive mobile platform for use in
mobile robotics and sensor network applications. A complete Ratbot consists of several hundred
US$ in parts, including:

• An Atmel ATMEGA64 8-bit, 16 MHz microcontroller (Atmel Corp., 2006) as the main com-
puter. The ATMEGA64 uses a Harvard architecture, i.e., separate program and data memory,
and has 64 KB of nonvolatile flash program memory and 4 KB of on-chip SRAM, and 60 KB
of external SRAM.

• A PIC 16F873 20 MHz microcontroller (Microchip Technology, Inc., 2001) dedicated to motor
control and encoder counting

• A Honeywell HRF-ROC09325XM 19.2 Kb/sec. radio module (Honeywell, 2003) with ap-
proximate range of 30 m (indoors)

• Five Sharp GPD12 infrared rangefinders (Sharp Corp., 2005) with minimum 10 cm and max-
imum 80 cm range

• Two US Digital E4 256 CPR / 1024 PPR encoders (US Digital, 2006)

Figure 7.1 shows a photograph of a Ratbot, with an additional “robot detector” module
mounted on top of the main board. The overhead schematic in Figure 7.2 depicts the layout of the
components relevant to mapping. There are two side-facing infrared rangefinders on each side
of the robot, and an additional forward-facing rangefinder. The wheel axle and robot reference
frame are slightly forward of the center of the actual platform, and the back of the robot is addi-
tionally supported by a roller wheel caster. Table 7.1 gives the measured values for the physical
parameters shown in the schematic, along with some other parameters relevant to mapping.
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Figure 7.2: Physical Ratbot parameters.

Parameter Explanation Measured value
L chassis length 15.7 cm
W wheel diameter 6.8 cm
a chassis back x-offset 9.45 cm
b wheel base 11.9 cm
oy side IR y-offset from centroid 4.8 cm
oback

x back IR x-offset 5.675 cm
ocorner

x corner IR x-offset 3.675 cm
ofront

x front IR x-offset 5.85 cm
C encoder pulses per revolution 1024
c encoder conversion factor πW/C
r− IR minimum range 10 cm
r+ IR maximum range 80 cm

Table 7.1: Physical Ratbot parameter values.

7.2.1 Kinematic model
The values from Table 7.1 and sampled encoder counts can be used to write the kinematic model
for the Ratbots using a reasonably standard odometry based differential drive model (see, e.g.,
Borenstein et al. (1996)). For an input configuration xr

t−1 = [xt−1 yt−1 θt−1]T and encoder data
ut = [NL NR]T (with NL and NR being the left and right encoder counts, respectively), the new
configuration xr

t is computed as:

xr
t

g← xr
t−1 +


(

cNR+cNL
2

)
cos

(
θt−1 + cNR−cNL

2b

)(
cNR+cNL

2

)
sin
(

θt−1 + cNR−cNL
2b

)
cNR−cNL

2b

 (7.1)

To perform SLAM prediction steps we need the derivatives of (7.1) with respect to xr
t−1 and
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ut, which are, respectively:

Hx =
∂g

∂xr
t−1

=


1 0 −

(
cNL+cNR

2

)
sin θt

0 1
(

cNL+cNR
2

)
cos θt

0 0 1

 (7.2)

and:

Hu =
∂g
∂ut

=

 c
2 cos θt − c2 NL+c2 NR

4b sin θt
c
2 cos θt − c2 NL+c2 NR

4b sin θt
c
2 sin θt + c2 NL+c2 NR

4b cos θt
c
2 sin θt + c2 NL+c2 NR

4b cos θt
− c

2b
c

2b

 (7.3)

(Note the use of the new orientation θt as computed in (7.1).)
In our implementation the left and right encoder counts were assumed to be independent

with variance proportional to the magnitude of the count. We used the experimentally deter-
mined value of σN = 0.03N, i.e., 3% of the reported encoder count.

7.3 Implementation details
We implemented the basic Rao-Blackwellized particle filter for SLAM onboard the Ratbot plat-
form, using the multiscan approach described in Chapter 4. (For background on RBPF SLAM see
Appendix B.) While improvements such as those described in Chapters 5-6 would lead to better
maps, implementing them in an extremely resource-constrained environment such as the Ratbot
platform is difficult because of book-keeping overhead. Furthermore, our focus was on a simple
proof-of-concept to show that SLAM on a microcontroller is indeed feasible.

7.3.1 Fixed point SLAM

The ATMEGA64, like most microcontrollers, has no hardware floating point capabilities. This is a
severe disability for implementing SLAM, which requires en masse processing of large amounts of
real-valued data. Floating point operations can be emulated in software but the resulting code is
prohibitively slow for real-time SLAM implementation.

An alternative is to trade off some accuracy, in exchange for efficient storage and fast op-
erations with real-valued numbers, by using a fixed point number representation. In our im-
plementation we employed a “16.16” representation, with 16 bits representing the whole part,
and also 16 bits representing the fractional part. The range of the resulting numbers is thus
[−32767.999985, 32767.999985] with a resolution of 1.52588× 10−5. The ATMEGA64 operates na-
tively on 16-bit integers so there is some overhead in using the 32-bit fixed point representation.
Unfortunately, the magnitudes of the numbers that appear in SLAM vary widely, from particle
weights (which can be very small), to statistical distances (which can be very large), to landmark
parameters (which depend on the dimensions of the environment and the units of measure).
Thus, a representation using only 16 bits, e.g., 6.10 or 8.8, is insufficient. In some cases it may be
desirable to use customized fixed point representations for different purposes in SLAM, but for
simplicity our implementation used 16.16 numbers throughout. Another potential enhancement
is to re-work the units in SLAM computations like the motion model or feature extraction to obtain
numbers that fit well into a particular number representation. However, our implementation is
mostly a direct translation of particle filtering into the 16.16 representation.

The limited resolution of fixed point number representations introduces error into the
SLAM computations beyond that of normal SLAM implementations based, typically, on double-
precision floating point numbers. While we do not perform a complete analysis of the effects of
this error, our experiments have shown that the error due to limited precision is mostly absorbed
by the SLAM filtering process (e.g., it can be treated as odometry error). For example, Figure 7.3
shows a trajectory computed from raw odometry data using both double precision and 16.16
fixed point numbers. Clearly, the fixed point computations introduce some error, but for this par-
ticularly lengthy trajectory the fixed point pose does not significantly diverge from the double
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Figure 7.3: Comparison of predicted trajectories obtained using double precision floating
point computations and 16.16 fixed point computations.

precision computed pose. Without analyzing the filter implementation to determine the precise
effects of this error, we can still accommodate it in practice by slightly inflating the odometry
model uncertainty.

7.3.2 Computational shortcuts
In addition to the considerations described above, our RBPF implementation on the ATMEGA64
employed a number of simple shortcuts and other techniques to reduce computation and memory
demands without requiring significant sacrifices in filtering accuracy. Some of the shortcuts are
relatively standard for implementing intensive algorithms on limited hardware:

• Lookup tables were used for trigonometric functions such as sine, cosine, and tangent, and
computation of arctangents was done via a binary search on the tangent table. In our imple-
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Start End Bytes Usage
0x0000 0x1100 4096 Internal register and SRAM (stack, dynamic memory)
0x1100 0x11A4 165 Pose history mean (m poses)
0x11A5 0x12EE 330 Pose history covariance (m poses)
0x12EF 0x1514 550 Multiscan ranges (5×m ranges)
0x1515 0x43FF 12011 Working buffers (feature extraction, etc.)
0x4400 0xF000 44032 Particle data

Table 7.2: Fixed-point SLAM memory allocation.

mentation the trigonometry tables had an angular resolution of 0.45 degrees. Lookup tables
were also used in an implementation of the Box-Muller transformation (Box and Muller,
1958) for generating Gaussian random numbers. All of the lookup tables are stored in pro-
gram memory (on the ATMEGA64’s flash) to conserve space in RAM.

• Rather than employing generic implementations of linear algebraic operations like matrix
multiplication and inversion, the operations were written out from scratch. Doing so en-
abled substantial savings in memory (e.g., covariance matrices are symmetric) and compu-
tation (by reordering operations where appropriate, sharing terms, exploiting multiplica-
tions by zero, etc.). This approach is especially feasible in the context of particle filtering
SLAM since nearly all matrix operations are with low-dimensional (2× 2 or 3× 3) matrices.

Other shortcuts we employed are more specific to the context of particle filtering SLAM:

• Correspondence tests were performed only after thresholding to obtain landmarks within
the sensing range of the robot.

• While our other implementations performed full maximum likelihood estimation of line
feature parameters and covariances (see, e.g., Algorithm 4.3 on page 52), we used simple
unweighted least squares for parameter estimation in the ATMEGA64 implementation. Co-
variances were estimated using the closed-form formulae described by Pfister et al. (2003).

• An important computational advantage of the multiscan approach described in Chapter 4 is
that, since SLAM updates are performed only every m time steps, the update calculations can
consume more than one SLAM time step of CPU time. On slower processors, this allows for
simultaneous accumulation of multiscan data and processing of the data from the preceding
multiscan.

• We did not implement an efficient (but complex) tree-based map management scheme (Mon-
temerlo, 2003) on the ATMEGA64. It was thus necessary to minimize the cost of resampling,
which requires significant copying of particle data. Algorithm 7.1 shows a simple in-place
random resampling technique. When a particle index j is “selected” during resampling, a
counter cj for that index is incremented. Particles with cj = 1 are left as they are. Particles
with cj > 1 are copied cj − 1 times into the storage of particles with cj = 0. An important
advantage of this technique is that no temporary copies of particles need be made, so the
entire memory can be allocated to active particles.

7.3.3 Memory usage
In our implementation, the 4 KB on-chip SRAM was used for the stack and for dynamic memory
allocation. Lookup tables were stored in the 64 KB program memory. The remaining 60 KB of
(slower) external SRAM was used for working buffers and particle data. The memory allocation
was divided as shown in Table 7.2 (assuming the multiscan size parameter m = 55).

The particles were pre-allocated with sufficient storage for up to 125 landmarks, with each
landmark requiring 22 bytes (11 16-bit fixed point numbers: two for line parameters, three for
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Algorithm 7.1 In-place random resampling
1: cj ← 0 for all j ∈ 1 . . . N // initialize copy-counts to zero
2: for i = 1 . . . N do // select N particles
3: Select j ∈ [1, N] w.p. proportional to ωj
4: cj ← cj + 1 // increment copy-count for selected particle
5: end for
6: z← 1
7: for i = 1 . . . N do
8: while ci > 1 do // repeat until copy-count is at most one
9: while cz 6= 0 do // find next unselected particle

10: z← z + 1
11: end while
12: φz ← φi // replace unselected particle with a copy of a multiply-selected one
13: ci ← ci − 1 // decrement copy-count of multiply-selected particle
14: z← z + 1
15: end while
16: end for

covariance information, and six for line segment extent parameters). With some extra overhead,
each particle required 3088 bytes of storage, leaving enough space for around 13-14 particles. The
maximum number of landmarks can be traded off with the number of particles.

7.4 Experiments
This section describes the results of some simple proof-of-concept experiments with our fixed
point RBPF SLAM implementation. We tested the implementation by building maps with both
simulated data, for which ground truth information was available, and with real data collected
from the Ratbots.

7.4.1 Simulated data
Figure 7.4 shows the results of fixed point RBPF SLAM on a simulated dataset. The primary pur-
pose of this experiment was to test the fixed point SLAM implementation using data for which
ground truth information was available. The SLAM code was run on a PC (not on a Ratbot) for
this experiment.

The simulator was a version of the mpro software (see Appendix C), modified to simulate
the Ratbot platform. The simulated trajectory was 15.5 m long with a total rotation of 21 rad. The
fixed point particle filter used N = 100 particles. As the simulator generated scan data at a fairly
high frequency relative to the robot’s velocity (about 708 frames of data per meter of travel), a
large multiscan size of m = 180 was used.

The fixed point SLAM implementation successfully closed a fairly large loop in the course
of the experiment. However, as with the results in earlier chapters, the use of simple nearest-
neighbor data association resulted in a map containing several spurious landmarks. Figure 7.4(d)
shows the normalized estimation error squared (NEES) for the fixed point particle filter trajectory
estimator with respect to the ground truth trajectory. (For an explanation of NEES and several
other NEES plots for comparison, see, e.g., Chapters 5 and 6.) Because only a basic particle filter
was implemented — without enhancements like the improved proposal distribution or the tech-
niques of Chapters 5–6 — estimation degeneracies occurred somewhat frequently. Despite this,
the filter was able to consistently build a reasonably correct map, closing the loop properly in 91
out of 100 trials.
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(a) Simulated environment
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Figure 7.4: Simulated experiment for sim-world1.
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Figure 7.5: (a) Ratbot dataset and; (b) the resulting map and trajectory produced by the fixed
point SLAM implementation.

7.4.2 Ratbot data
We performed a small experiment using a Ratbot that followed a pre-planned trajectory. A dataset
was collected using the Ratbot, and then fed (offline) to the SLAM code running on the ATMEGA64.
The Ratbot traced a figure eight in a 2 m × 2.5 m area with a partial perimeter wall and a small
rectangular obstacle. The experiment lasted approximately 35 seconds, with a trajectory length
of about 6.25 m and a total rotational change of about 11.75 rad. In this experiment, only the data
from a single infrared sensor (the back right sensor) was used to build a map. Figure 7.5(a) shows
the raw odometry estimate and infrared data points for the experiment, and Figure 7.5(b) shows
the trajectory and line segment map obtained using the fixed point SLAM implementation.

The experiment used N = 13 particles, with multiscans consisting of m = 55 individ-
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Task Total time Iterations Time per iteration
Motion model 285.19 sec 861 0.33 sec
SLAM update 3.62 sec 15 0.24 sec

Table 7.3: Fixed-point SLAM execution time breakdown for an experiment running on the
ATMEGA64.

ual scans. (The sensing frequency was much lower than in the simulated experiment — about
138 frames of data per meter of travel.) While the odometry data was fairly accurate, the infrared
data was very sparse. The SLAM implementation successfully closed a loop during the experi-
ment, properly associating features corresponding to the wall at the bottom of the map.

The fixed point SLAM implementation was executed on the Ratbot’s ATMEGA64 processor
to obtain timing information, which is summarized in Table 7.3. The entire SLAM process for the
experimental data from Figure 7.5 required 289 seconds to produce the resulting trajectory and
map. The data consisted of 861 frames of infrared measurements and encoder counts. Using
the multiscan approach with m = 55, 15 SLAM updates were performed, but the filter prediction
step was applied for every frame of encoder data. Thus, the prediction step consumed about
285 seconds of the total running time, or 0.33 seconds per time step. The RBPF updates consumed
3.62 seconds in total, or 0.24 seconds per update, for the small map shown in Figure 7.5(b). The
intensiveness of the prediction computations, due mainly to the many multiplications required to
obtain the covariance matrix for the motion model for every particle, are the main obstacle to de-
ploying the SLAM implementation in real time. (There were about 500 fixed point multiplications
per particle per prediction step.) Simplifying the motion model (e.g., using a uniform distribution
rather than a Gaussian) would likely reduce the prediction cost to the point of enabling real time
implementation, at the cost of some reduction in filtering accuracy.

7.5 Summary
In this chapter we have described an implementation of particle filtering SLAM with multiscans
on a simple robotic platform. The robot’s sensing consists of a small array of infrared rangefind-
ers, and SLAM is implemented on an Atmel ATMEGA64 8-bit microcontroller with 128 KB total
memory. The particle filter is implemented using fixed point numbers since the processor lacks
floating point capability. We have also described a number of simple implementation shortcuts
that make SLAM on a microcontroller computationally feasible without significantly sacrificing
estimation quality. The resulting particle filter executes on board the robot. While the execution is
not in real time, it is fast enough to prove that with computers in the same class, or with slightly
more optimization, SLAM can be implemented in real time on commodity hardware. Our exper-
iments with simulated and real data show that the fixed point particle filtering implementation
can successfully build maps with range data from a small infrared array.

Our implementation shows that SLAM is feasible for inexpensive robots built from off-the-
shelf parts, such as the Ratbots described in this chapter. Despite restrictions on sensing, com-
putation, and storage, the multiscan particle filter is simple and efficient enough to yield positive
results. Future work will focus on applying some of the other SLAM improvements described in
this thesis, such as the constraints of Chapter 5 and the sampling improvements of Chapter 6,
to the Ratbot and similar platforms. As with the implementation described in this chapter, the
primary challenge is in simplifying the techniques so they can be feasibly applied despite limited
computation, without sacrificing too much estimation accuracy.
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8
CONCLUSIONS

This thesis has examined the robot mapping problem in several contexts. Primarily, the thesis has
proposed mapping algorithms for robots with limited sensing capabilities. It has also examined
theoretically the sensing requirements for mapping; described algorithms that improve mapping
not just with limited sensing, but also for the well-equipped robots more common in robotics re-
search; and discussed an implementation of a simultaneous localization and mapping algorithm
on inexpensive robots with limited computing and storage.

In this chapter, we will review the specific contributions of the thesis, and then address
future challenges in mapping, particularly with respect to sensing and computational limitations.
Lastly, we offer some final thoughts on the state of mapping research and its practical applica-
tions.

8.1 Contributions
As described in Section 1.6, this thesis has made contributions to robot mapping research in sev-
eral contexts.

8.1.1 Theoretical contributions
Chapter 3 employed a novel approach to examine the theoretical sensing requirements for map-
ping and the relative mapping abilities of different sensors. The chapter developed a general-
ized model of mapping sensors that incorporates aspects such as range, spatial resolution, beam
width, noise, and more. The model is detailed enough to encapsulate most of the range-bearing
sensors used to build maps. Coupled with a generic occupancy grid mapping technique, and
several assumptions on the trajectory of the robot, the correlation between sensor observations,
and structure in the environment, the model was used to obtain bounds on the number of obser-
vations of each cell in the grid, and on the maximum likelihood map error, in terms of the sensor
characteristics. This is in contrast to other investigations of the sensing requirements for tasks
like localization, which have instead focused on designing custom mapping algorithms for every
sensor configuration.

We used the bounds to examine the influence of different sensor parameters on the qual-
ity of the maps produced with the sensor. In addition, we employed the bounds in compar-
ing the theoretical mapping capabilities of several realistic sensors, including a scanning laser
rangefinder and different configurations of SONAR and IR sensor arrays.

8.1.2 Algorithms for mapping with limited sensing
The main contribution of the thesis is a set of particle filtering algorithms for simultaneous local-
ization and mapping with sparse arrays of range sensors, such as infrared rangefinders. While
particle filtering SLAM algorithms have gained wide acceptance in the SLAM community in recent
years, the standard techniques are poorly suited to robots with sparse sensing, which can only
partially observe features of the environment at any given time. Furthermore, current particle
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filtering SLAM algorithms, while easy to implement, do not take advantage of prior knowledge
or exploit other techniques for managing uncertainty and improving estimation accuracy.

In Chapter 4, we developed a simple particle filtering algorithm for mapping with sparse
sensing. The algorithm groups multiple consecutive sensor scans into “multiscans,” and then
performs feature extraction as if the multiscan data came from a single sensor scan. This approach
exploits the motion of the robot to improve the observability of features, with the tradeoff that
uncertainty in the motion contributes to feature extraction error. A major difficulty of using a
particle filtering algorithm with multiscans is that a full implementation must perform feature
extraction separately for every particle. We instead described an approximation that extracts
features only once, and transforms them for each particle. Furthermore, using a simple clustering
technique, the accuracy of the approximation can be traded off with its efficiency.

If prior knowledge about the environment is available, it can be exploited to reduce uncer-
tainty and improve the map estimation process. In Chapter 5, we described a new particle filter
based algorithm that incorporates prior knowledge in the form of constraints on landmarks in the
map. For example, if it is known that two walls in the environment are rectilinear with respect to
each other (e.g., indoors), the algorithm enforces the rectilinearity as a constraint on the landmark
parameters. The filter does inference in the space of constraints to determine if landmarks should
be constrained. One of the main challenges we addressed was to develop an efficient method for
enforcing constraints on sampled maps in a particle filtering scheme, using a novel technique for
modifying the maps upon inferring that landmarks should be constrained.

Particle filtering algorithms for SLAM are inherently sequential Monte Carlo techniques,
and a number of advances in SMC have appeared in the statistics literature in recent years. In-
spired by some of these advances, Chapter 6 developed two new particle filtering SLAM algo-
rithms: fixed-lag roughening and the block proposal distribution. The main idea behind both
techniques is to take advantage of “future” information to improve the estimation of the robot’s
trajectory (and the map) over a fixed lag time, as opposed to using the current sensor measure-
ments only in estimating the current pose. Fixed-lag roughening incorporates a Markov Chain
Monte Carlo move step to update particles based on future information, and the block proposal
directly samples poses over the fixed lag from their joint distribution conditioned on all the avail-
able measurements. In addition to developing these two techniques, Chapter 6 also examined the
effectiveness of two alternative particle resampling algorithms.

Importantly, the ideas described in Chapters 5 and 6 are applicable not only in the limited
sensing case, but also in more typical SLAM scenarios, where the robots are equipped with high-
fidelity sensors such as scanning laser rangefinders.

8.1.3 Practical mapping for inexpensive robots
For SLAM to be useful outside of the research community on a large scale, we must develop prac-
tical algorithms that can be implemented on reasonably inexpensive hardware, with sensing and
computational limitations. Chapter 7 described an implementation of a basic particle filtering
SLAM algorithm with multiscans, on board a very restricted platform called the Ratbot. The Rat-
bot is equipped with a five-sensor infrared rangefinder array, an 8-bit, 16 MHz main computer,
and a total of 128 KB of storage. Implementing SLAM in this environment required a number of
tradeoffs. Our implementation exploited a fixed point number representation and a variety of
simplifications to improve computational efficiency without significantly sacrificing accuracy. To
our knowledge, ours is the first working SLAM implementation on a microcontroller.

8.2 Future directions
A principle aim of this thesis has been to bridge the gap between modern techniques for mapping,
which typically rely on high-fidelity sensing and computing, and practical deployment using
hardware suitable for use in inexpensive robots. Toward this end we have addressed theoretical
issues, and also developed algorithms which work with practical inexpensive sensors such as
small infrared rangefinder arrays. While this thesis has shown that mapping with limited sensing
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(and to some extent, limited computing) is possible, a number of questions remain to be answered
before mapping can be realistically deployed both inexpensively and reliably.

8.2.1 Sensing requirements for mapping
Chapter 3 addressed the problem of determining the sensing requirements for mapping. How-
ever, in doing so, the chapter made several assumptions that must be addressed in future work.
Modifying the analysis to incorporate realistic trajectories and pose uncertainty is perhaps the
most pressing issue, since until this is done, the bounds derived in our work are only somewhat
applicable in realistic mapping scenarios. (We note, however, that the simulations in Chapter 3
show the difference between continuous and random trajectories to be relatively small in terms
of the effect on map quality.)

Most environments in which mapping robots are deployed also exhibit some structure.
Chapter 5 exploits structure in the environment to improve map and trajectory estimation, but
our analysis in Chapter 3 does not account for structure. The results of our simulations using
structured environments, generated using simple Markov random fields, indicate that the ex-
istence of structure has a significant effect on the observability of the environment for different
sensors. Incorporating structure, perhaps in the form of MRFs, into our analysis may give us much
more realistic estimates of the relative capabilities of mapping sensors.

8.2.2 Exploration
The focus of this thesis has been on passive mapping algorithms, rather than on active algorithms
which direct the exploration of the robot. A completely autonomous mapping robot must, of
course, implement an exploration algorithm, particularly if it is equipped with range-limited sen-
sors. Most recent work on active mapping algorithms has focused on the information gain metric
for determining exploration goals (Stachniss et al., 2005a), or on the development of other more
ad-hoc cost functions for exploration (Tovar et al., 2006). While these techniques may be useful
in the context of limited sensing, we believe that exploration algorithms for robots like the Ratbot
must more explicitly take into account the observability of the environment by the robot’s map-
ping sensors, rather than simply seeking to build accurate maps as quickly as possible. Future
research should ask the question: what is the best exploration strategy for a given sensor? One
promising approach may be to incorporate reinforcement learning techniques in the exploration
strategy. Recent work by Kollar and Roy (2006) has employed reinforcement learning to learn
exploration strategies for robots with different odometer characteristics.

8.2.3 Filtering algorithms
The core of most SLAM algorithms is the statistical filtering algorithm that estimates the robot’s
trajectory and the map. In this thesis, we have employed particle filters for SLAM, and have devel-
oped enhancements to the standard particle filtering techniques in Chapters 4-6 that improve the
estimation process. Other mapping algorithms make heavy use of the extended Kalman filter (see
Appendix B). Many recent approaches are hybrid in nature, using statistical filtering techniques
to build local maps, and global optimization strategies for recovering the wider topology of the
environment.

Chapter 6 of this thesis draws on new particle filtering techniques developed in the general
statistical literature. The relationship between SLAM and the general parameter estimation prob-
lem is obvious, but the connection has been under-exploited. Future research on SLAM should
continue to utilize new results in general filtering. For example, the “marginal particle filter”
described by Klaas et al. (2005) may be promising in the SLAM context.

In the context of minimalist robots with limited sensing and computing, the ability to trade
off efficiency and accuracy in a SLAM algorithm is paramount. Of the SLAM techniques currently
in wide use, particle filters are clearly the most flexible in this sense, because the number of
particles can be adjusted as necessary. Hybrid algorithms based on local maps are also reasonably
flexible, since the maximum size of a local map can be tailored to the available computation.
Future research should investigate ways to improve the flexibility of SLAM algorithms in this
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sense, so the algorithms can be deployed on a wide variety of robotic platforms.

8.2.4 Practical implementations
Chapter 7 of this thesis described a simple implementation of particle filtering SLAM on a micro-
controller. Simplifying SLAM algorithms so they can be deployed on such minimal computing
is important, since more capable computers are prohibitively expensive and consume too much
power for use in mass-produced, reasonably simple robots such as those meant for the consumer
market. This issue is likely to persist at least over the coming few years, whereas the market for
consumer robots is already growing rapidly. No consumer robot, however, is currently capable
of SLAM.

Unfortunately, SLAM is an inherently computationally intensive process and simplifying
it so it can be done with limited computing and limited sensing requires tradeoffs in accuracy.
An important challenge is thus finding ways to make such tradeoffs without handicapping the
SLAM algorithm to the point of failure. As algorithms for SLAM become more complicated, like
those of Chapters 5 and 6 in this thesis, the computational requirements for implementations will
unavoidably increase, but by carefully examining the requirements of these implementations and
making simplifications as we have done in Chapter 7, the goal of robust but economical SLAM on
real robots can be reached.

8.3 Final thoughts
Robot mapping is a very well-studied problem. At any large robotics conference, one could ask a
room full of researchers, “Is the robot mapping problem solved?” and they would likely answer
“Yes,” with some conditions. In a mid-sized, uncluttered indoor environment, with a scanning
laser rangefinder and sufficient computing, modern EKF-based and particle filtering SLAM algo-
rithms can consistently produce very accurate maps.

Nevertheless, there are still important questions that must be addressed. The fundamental
sensing and computational requirements for mapping remain poorly understood. In cluttered,
unstructured environments like those encountered outdoors, mapping is much more difficult.
And for robots equipped with only limited sensing and computing like those described in this
thesis, new approaches like the multiscan technique described in Chapter 4 must be employed.

As robots move out of the laboratory and into real environments — the home, the office,
hospitals, and so on — cost considerations become important to address. Practical mapping algo-
rithms that can deal with limitations in sensing, computing, memory, and power usage will need
to be employed if inexpensive, useful robots are to find their way into wider use and acceptance
in the next several years.



A
SAMPLING TECHNIQUES

Many of the techniques in the proposed thesis are based on ideas from the statistics literature.
Specifically, nonparametric sample-based representations of complicated PDFs are used heavily
in particle filtering SLAM. This appendix briefly introduces techniques for drawing samples ac-
cording to a complicated distribution. Particular applications of these techniques for mapping
are described in Appendix B and in Chapters 4-6.

For a detailed introduction to the methods described below, see the book by Liu (2001).

A.1 Importance sampling
Suppose we wish to use samples to approximate some complicated distribution p(x). There are
many techniques to draw samples from p(x), as long as the PDF can be evaluated. Importance
sampling is perhaps the most widely employed.

The basic idea of importance sampling is to draw samples xi from an easy-to-sample PDF,
and then weight the samples according to their likelihood p(xi). The weighted samples are ap-
proximately distributed according to p(x).

More formally, given a proposal distribution g(x), we draw samples according to:

xi ∼ g(x) (A.1)

Then, the importance weight of each sample is computed as:

ωi =
target distribution

proposal distribution
=

p(xi)
g(xi)

(A.2)

The weighted samples approximately represent p(x) and can be used, for example, to compute
an estimate of an expected value of some function f with respect to the target PDF. For N samples:

Ep [ f (x)] ≈ 1
N

N

∑
i=1

ωi f (xi) (A.3)

Importance sampling is most efficient if the proposal distribution approximates the target distri-

xi ith sample from p(x)
p(x) target distribution
g(x) proposal distribution

ωi weight of ith sample
xt tth component of x

x1:t first t components of x
N number of samples

Notation for this chapter
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Algorithm A.1 Sequential importance sampling-resampling (SISR)
1: for t = 1 . . . T do
2: for all particles φi

t−1 =
{

xi
1:t−1, ωi

t−1
}

, i = 1 . . . N do
3: xi

t ∼ gt(xt|xi
1:t−1)

4: xi
1:t =

[
xi

1:t−1 xi
t
]T

5: ωi
t ∝

pt(xi
t |xi

1:t−1)
gt(xt |xi

1:t−1)
6: end for
7: Resample with replacement from

{
φ1

t , . . . , φN
t
}

according to ωi
t

8: end for

bution closely.

A.2 Sequential importance sampling and particle filtering
For high-dimensional problems it is often difficult to design a proposal distribution that closely
approximates p(x). One approach is to build up the proposal sequentially, i.e.:

1. Decompose x into x = [x1 . . . xT ]T ; then

2. Construct the proposal density g(x) from the product of its marginals:

g(x) = g1(x1)g2(x2|x1) . . . gT(xT |x1, . . . , xT−1) (A.4)

The importance weight ω can be similarly decomposed but the target density p(x) cannot. How-
ever, the marginal target densities pt(xt) can often be approximated by “auxiliary distributions”
up to a normalizing constant. In nonlinear filtering scenarios, pt(xt) is usually chosen to be the
“current” posterior distribution. (Appendix B describes this approach for particle filtering SLAM.)

The weight can be written recursively as:

ωt = ωt−1
pt(xt|x1:t−1)
gt(xt|x1:t−1)

(A.5)

This sequential approach has an important advantage: if the weight of a sample ever becomes
“too small” we can stop generating the sample to save computation. To replace the sample, we
could either regenerate it from the beginning (which is potentially expensive), or resample from
among the current sample set. The latter approach tends to work very well in practice.

This technique for generating samples from high-dimensional distributions is variously
known as “sequential importance sampling” (SIS), “bootstrap filtering,” or “particle filtering.”
Algorithm A.1 gives the algorithm for generating N samples sequentially, with resampling. This
approach is the basis for particle filtering SLAM, described in detail in Appendix B. For an in-
depth introduction to sequential sampling techniques and applications, see the books by Liu
(2001) and Doucet et al. (2001).

A.3 Markov chain Monte Carlo
An alternative to sequential sampling techniques is to instead generate samples from p(x) it-
eratively based on Markov chains. A variety of methods exist for doing this “Markov chain
Monte Carlo” (MCMC) sampling, but most of them are variations of the Metropolis-Hastings al-
gorithm (Metropolis et al., 1953; Hastings, 1970), shown in Algorithm A.2.

In Metropolis-Hastings, the proposal distribution q(xi, x̂) need not be related to p(x) (al-
though it can be and often is), unlike the proposal in importance sampling. The basic idea is that
the proposal, coupled with the acceptance probability a, form a transition kernel in a Markov
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Algorithm A.2 Metropolis-Hastings (MCMC)

1: Draw a state x0 from some initial distribution
2: loop
3: Draw a new sample from the proposal distribution: x̂i+1 ∼ q(xi, x̂)
4: Compute the acceptance probability:

a(xi, x̂i+1) =
p(x̂i+1)

p(xi)
q(x̂i+1, xi)
q(xi, x̂i+1)

5: xi+1 =
{

x̂i+1 w.p. min{1, a(xi, x̂i+1)}
xi otherwise

6: end loop

chain. It can be shown that the invariant (or steady-state) distribution of the chain is p(x). For a
detailed discussion of the properties of the algorithm, see, e.g., the thesis by Neal (1993).

By running the Markov chain over N iterations, the samples xi, i = 1 . . . N, can be used
to represent p(x). Frequently, Metropolis-Hastings is performed “component-wise,” i.e., only
a single variable or block of variables xt ∈ x is modified at a time. An important variant is
Gibbs sampling, which replaces each component, usually in turn, by sampling from its conditional
distribution given the values of other components, i.e.:

xi+1
1 ∼ p(x1|xi

2, xi
3, . . . , xi

T)

xi+1
2 ∼ p(x2|xi+1

1 , xi
3, . . . , xi

T)
. . . (A.6)

xi+1
t ∼ p(xt|xi+1

1 , . . . , xi+1
t−1, xi

t+1, . . . , xi
T)

. . .
xi+1

T ∼ p(xT |xi+1
1 , xi+1

2 , . . . , xi+1
T−1)

Note that the new value xi+1
t−1 is used immediately in sampling xi+1

t .
There are several important caveats when generating samples using MCMC:

• Samples are only asymptotically from p(x), since a Markov chain only asymptotically ap-
proaches its invariant distribution. Thus, some samples should be discarded from the be-
ginning of the MCMC process, which is often called the “burn-in period.” The length of the
burn-in period depends on the time required to explore the state space (the mixing time),
which is generally shortest if the proposal approximates p(x) well.

• Samples are correlated through the proposal distribution, unlike samples drawn by impor-
tance sampling, which are i.i.d.

• Entire samples are generated at a time, so MCMC approaches are not suitable for use in
recursive estimation scenarios.

Nevertheless, MCMC can be useful in the context of mapping. For example, Ranganathan et al.
(2005) use MCMC to do offline topological mapping. Chapter 6 describes another application:
“roughening” of trajectories sampled using particle filtering techniques in order to increase par-
ticle diversity.
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B
SLAM

A majority of recent robot mapping research, beginning with the seminal work of Smith et al.
(1990), falls into the framework of simultaneous localization and mapping (SLAM). The SLAM problem
is to concurrently estimate both a map of the environment and the robot’s pose with respect to
the map. The problem can be posed probabilistically, with the goal of estimating the posterior
distribution:

p(xr
t , xm|u1:t, z1:t, n1:t) (B.1)

where xr
t is the robot’s pose at time t, xm is the map, u1:t is the history of control inputs given to

the robot, z1:t is the history of sensor measurements, and n1:t is the history of correspondences
between measured features and landmarks in the map, i.e., the history of data associations.

In SLAM, it is desirable to estimate (B.1) recursively as new information arrives, so that the
robot’s pose and map can be updated online. Given a recursive estimation technique, it must also
be computationally efficient so that it can be executed in realtime.

B.1 Bayesian formulation
We first formulate SLAM as a Bayesian filtering problem. Much of this formulation is based on
that of Thrun et al. (2005), who offer a very thorough discussion of SLAM.

Let the system state vector be:

xt =
[

xr
t

xm

]
(B.2)

The SLAM posterior distribution is then:

p(xt|u1:t, z1:t, n1:t) (B.3)

Applying Bayes’ rule, we obtain:

p(xt|u1:t, z1:t, n1:t) =
p(zt|xt, u1:t, z1:t−1, n1:t)p(xt|u1:t, z1:t−1, n1:t)

p(zt|u1:t, z1:t−1, n1:t)
(B.4)

η normalization constant
xr

t robot pose at time t
xm map
Pxr

t
robot pose covariance

Pxm map covariance

Pxr
t xm pose/map cross-covariance

Vt control input covariance
Rt measurement covariance
φi

t ith particle at time t

xr,i
1:t robot trajectory for the ith

particle
xm,i map for the ith particle
ωi

t weight of the ith particle
N number of particles

Notation for this chapter
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The denominator can be subsumed into a normalization constant:

ηp(zt|xt, u1:t, z1:t−1, n1:t)p(xt|u1:t, z1:t−1, n1:t) (B.5)

To proceed, we make a simplifying assumption known as the Markov or complete state as-
sumption, i.e., we assume that the state xt completely represents all relevant components of the
robot and environment such that given xt, future measurements are independent of past states
and measurements. For the purposes of SLAM, this assumption typically equates to an assump-
tion that the environment is static. Section 2.9.4 discusses the Markov assumption in more detail.

Assuming the system is Markovian, we can employ conditional independence to simplify
the first term of Equation B.5:

p(zt|xt, u1:t, z1:t−1, n1:t) = p(zt|xt, nt) (B.6)

This term represents a probabilistic model of the robot’s sensor, i.e., the measurement model.
We now marginalize the second term of Equation B.5:

p(xt|u1:t, z1:t−1, n1:t) =
∫

p(xt|xt−1, u1:t, z1:t−1, n1:t)p(xt−1|u1:t, z1:t−1, n1:t) dxt−1 (B.7)

Again applying the Markov assumption, the first term inside the integrand can be simplified:

p(xt|xt−1, u1:t, z1:t−1, n1:t) = p(xt|xt−1, ut) (B.8)

This term represents a probabilistic model of the robot’s motion, i.e., the motion model.
Combining the above terms and dropping noninformative variables, we obtain the basic

SLAM Bayes filter:

p(xt|u1:t, z1:t, n1:t)︸ ︷︷ ︸
posterior

= ηp(zt|xt, nt)
∫

p(xt|xt−1, ut) p(xt−1|u1:t−1, z1:t−1, n1:t−1)︸ ︷︷ ︸
previous posterior

dxt−1 (B.9)

As can be seen in Equation B.9, the Bayes filter for SLAM recursively estimates the desired pos-
terior based on the previous posterior, the motion model, and the measurement model. Given a
robot motion command and a sensor measurement, the Bayes filter can be implemented in two
steps: a prediction step, which projects the state forward based on the previous posterior and
the motion model, and an update step, which modifies the predicted posterior according to the
measurement model.

B.2 EKF SLAM
One way to implement Bayes filtering SLAM is with an extended Kalman filter (EKF). A thorough
introduction to the EKF and its application to SLAM is available in (Choset et al., 2005) or (Thrun
et al., 2005). The EKF approximates the posterior (B.3) as a Gaussian, i.e.:

p(xr, xm) = N (xt, Pxt) = N
([

xr
t

xm

]
,
[

Pr
t Pr,m

t
(Pr,m

t )T Pm
t

])
(B.10)

Algorithm B.1 shows the high-level EKF SLAM algorithm.
In the algorithm, Steps 3–4 implement the prediction step, i.e., they compute:

p(xt|u1:t, z1:t−1, n1:t−1) (B.11)

In the linear Gaussian model of the EKF, this is done by linearizing the process model f to update
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Algorithm B.1 EKF SLAM

1: loop
2: Move according to the control ut
3: x̂t = f (xt−1, ut) // apply process model
4: P̂xt = HxPxt−1 HT

x + HuVtHT
u // dilate uncertainty

5: Obtain a measurement zt and compute correspondences nt
6: ν = zt − h(x̂t) // compute innovation
7: S = HhP̂xt H

T
h + Rt // compute innovation covariance

8: K = P̂xt H
T
h S−1 // compute Kalman gain

9: xt = x̂t + Kν // update state
10: Pxt = P̂xt −KHhP̂xt // update covariance

11: If necessary, add new landmarks to the state
12: end loop

the covariance Pxt of the robot pose and map, i.e., using the Jacobian:

Hx =
∂ f (xt−1)

∂x
(B.12)

and the Jacobian:

Hu =
∂ f (xt−1)

∂u
(B.13)

The noisy control input is represented by the distribution:

N (ut, Vt) (B.14)

Upon taking a sensor measurement, the measurement model is used to update the robot
pose and map, i.e., to compute:

p(xt|u1:t, z1:t, n1:t) (B.15)

The innovation ν is the difference between the measurement zt and the predicted measurement
according to the model, h. The measurement model is linearized with the Jacobian Hh, which, for
a measurement of a single landmark xm

i , is:

Hh =
∂h(x̂t)

∂x
=
[

∂h(x̂t)
∂xr 0 . . . 0

∂h(x̂t)
∂xm

i
0 . . . 0

]T
(B.16)

The sensor noise is represented by the distribution:

N (zt, Rt) (B.17)

The innovation and its covariance S are used to compute the Kalman gain K. If the state estimate
is very uncertain and the measurement is very certain, the Kalman gain will be large; if the state
estimate is certain and the measurement is not, the gain will be small.

Extracted features for which data association finds no match in the map do not contribute
to the Kalman update, but are added to the state after the update.

There are several problems with EKF SLAM:

• Computation of the Kalman gain requires a matrix inverse and matrix multiplications for
matrices that are bounded only by the size of the map. For maps with n landmarks, every
EKF update step costs O(n3) with a naı̈ve implementation; by exploiting structural proper-
ties of the SLAM problem, O(n2) updates can be obtained (Newman, 1999). This is still often
too expensive for realtime implementation in complicated environments.
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• The linear Gaussian approximation is often a bad one. Neither the motions nor measure-
ments are truly Gaussian. Furthermore, the true posterior distribution is often highly mul-
timodal.

• The EKF update requires that a single data association hypothesis be chosen. While multiple
hypothesis approaches have been investigated (Cox and Leonard, 1994), they are even more
expensive.

B.3 RBPF SLAM
A recent approach that improves significantly on many aspects of EKF SLAM is based on a slightly
different problem formulation. The goal is to estimate the “full” SLAM posterior (Thrun et al.,
2004, 2005):

p(xr
1:t, xm|u1:t, z1:t, n1:t) (B.18)

i.e., to estimate the entire pose history of the robot in addition to the map. At first this appears
only to make SLAM more complicated, but Murphy (2000) observed that, under the Markov as-
sumption and conditioned on the entire trajectory of the robot, landmarks in the map are inde-
pendent. This is because correlation between landmark estimates arises only through robot pose
uncertainty.∗ Thus, the posterior can be factored. Applying conditional probability and dropping
noninformative variables:

p(xr
1:t, xm|u1:t, z1:t, n1:t)

cond. prob.= p(xr
1:t|u1:t, z1:t, n1:t)p(xm|xr

1:t, z1:t, n1:t) (B.19)
= p(xr

1:t|u1:t, z1:t, n1:t)p(xm
1 , . . . , xm

n |xr
1:t, z1:t, n1:t) (B.20)

cond. indep.= p(xr
1:t|u1:t, z1:t, n1:t)︸ ︷︷ ︸

posterior over trajectories

n

∏
i=1

p(xm
i |xr

1:t, z1:t, n1:t)︸ ︷︷ ︸
posterior over landmark i

(B.21)

The posterior over robot trajectories can be represented using samples, or “particles.” Condi-
tioned on each sample, a map with n landmarks can be represented by n separate small filters.
Typically these are EKFs. This type of factorization is known in the statistics literature as Rao-
Blackwellization (Liu, 2001).

Offline and given full control and measurement data, it may be reasonable to draw samples
from the trajectory posterior using iterative techniques like MCMC. To implement SLAM online,
we can instead employ sequential techniques like those described in Appendix A, i.e., we can do
Rao-Blackwellized particle filtering (RBPF). The motion model is employed as a proposal distribution
for sequential importance sampling. Given a control input, a particle φi

1:t−1 =
{

xr,i
1:t−1, xm,i

}
is

projected forward by sampling:
xr,i

t ∼ p(xr
t |xr,i

t−1, ut) (B.22)

After projecting every particle forward, the “prediction” step is complete and the posterior:

p(xi
1:t|u1:t, z1:t−1, n1:t−1) (B.23)

is represented by the particles.
Following the approach described in Appendix A, the importance weight of a sample is

∗This independence assumption is in fact a major weakness of the approach and can lead to inconsistent estimation.
An argument against the assumption is given in Chapter 5 of this thesis.
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Algorithm B.2 RBPF SLAM

1: loop
2: Move according to the control ut and obtain a measurement zt
3: for all particles φi

t−1, i = 1 . . . N do
4: xr,i

t ∼ p(xr
t |x

r,i
t−1, ut) // sample new pose

5: Compute correspondences ni
t

6: for each observed landmark xm,i
j do

7: νj = zt,j − hj(xr,i
t ) // compute innovation

8: Sj = Hh,jPi
jH

T
h,j + Rt,j // compute innovation covariance

9: Kj = Pi
jH

T
h,jS
−1
j // compute Kalman gain

10: xm,i
j = xm,i

j + Kjνj // update landmark

11: Pi
j = Pi

j −KjHh,jPi
j // update landmark covariance

12: ωi
t = ωi

t × p(zt,j|xr,i
t , xm,i, ni

t,j) // update importance weight
13: end for

14: If necessary, add new landmarks to xm,i

15: end for

16: Draw with replacement N times from {φ1
t , . . . , φN

t } according to ωi
t // resample

17: for j = 1 . . . N do
18: ω

j
t = 1

N ∑N
i=1 ωi

t // reset weights
19: end for
20: end loop

computed as:

ωi
t =

target distribution
proposal distribution

(B.24)

=
p(xi

1:t|u1:t, z1:t, n1:t)
p(xi

1:t|u1:t, z1:t−1, n1:t−1)
(B.25)

marginalization= η
p(zt|x1:t, z1:t−1, n1:t)p(x1:t|u1:t, z1:t−1, n1:t−1)

p(x1:t|u1:t, z1:t−1, n1:t−1)
(B.26)

cancellation= ηp(zt|x1:t, z1:t−1, n1:t) (B.27)

In other words, the importance weight is proportional to the measurement likelihood. Frequently,
a Gaussian measurement model is assumed and the importance weight is computed as:

ωi
t = |2πS|−

1
2 exp

(
−1

2
νS−1νT

)
(B.28)

The importance weight is used to perform a resampling step to improve the estimate of the pos-
terior given the current measurement.

For per-particle maps represented by a series of EKFs, the standard EKF update can be
applied to a landmark upon observing it. The cost is proportional to the size of the landmark
state, which is a (typically small) constant.

The basic RBPF SLAM algorithm is given in Algorithm B.2. The RBPF approach improves
upon EKF SLAM in several respects:

• A straightforward implementation requires only O(Nn) time per update, where N is the
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number of particles and n is the number of landmarks in the map of each particle. Under
reasonable assumptions and by using a tree-based map representation, O(N log n) updates
are possible (Thrun et al., 2004).

• The nonparametric representation of the trajectory posterior enables RBPF to capture the
multimodal nature of the distribution.

• Data association is done separately for each particle, since every particle has its own map.
Thus, each particle represents a data association hypothesis.

There are also weaknesses in the technique, most importantly the landmark independence as-
sumption (see Chapter 5) and the inconsistency and degeneracy issues discussed in Chapter 6.



C
SOFTWARE

Most of the software used to generate the results in this thesis is available online at the following
website:

http://www.cs.rpi.edu/∼beevek/thesis/

Most of the algorithms presented in the thesis were implemented in C++ on a Linux 2.6.x
system. All of the software was implemented by the author of this thesis unless otherwise noted
(e.g., in source code comments). Each of the packages contains a README file with additional
notes, including necessary libraries and configuration details. The following packages are avail-
able:

gridsim2 A simulation of the sensor, environment, and mapping models described in Chapter 3,
used to verify the theoretical results detailed in the chapter and examine alternative cases
such as MRF-based structured environments that were not investigated in the analysis.

slam3 A complete implementation of particle filtering SLAM, used to obtain the results in Chap-
ters 4–6. Implemented SLAM algorithms include: FastSLAM 1, FastSLAM 2, FastSLAM 1
with rectilinearity constraints (see Chapter 5), fixed-lag roughening, and the block pro-
posal distribution (see Chapter 6), all with support for multiscans as described in Chapter 4.
Supports point features (pre-extracted from the raw data) and line segment features (pre-
extracted, or extracted using the split-merge algorithm described in Chapter 4). Supports
known correspondences or nearest neighbor data association. Implements a fast binary tree
based landmark map representation (a.k.a. “log N” RBPF) and simple spurious landmark
detection and removal. Uses a simple odometry-based motion model. Implements random,
residual, and generalized resampling as described in Chapter 6, and adaptive resampling
based on N̂eff. Also includes a basic implementation of scan-matching RBPF SLAM and a
tool for simulating a robot among point features. Various Matlab utilities and Perl scripts
for parsing and visualizing input and output files are provided. Supports data sets in RPI,
RPI binary, Player/Stage, and CARMEN file formats.

ratbot-slam A fixed point implementation of FastSLAM 1 with multiscans as described in Chap-
ter 7, meant to run on the Ratbot platform with an ATMEGA64 microcontroller as the main
CPU.

fixedpoint A simple fixed point math library for numbers in 16.16 or 6.10 format, with support
for basic conversions, random number generation, trigonometric functions, and exponential
functions. (Used by ratbot-slam.)

ktracker A simple OpenCV (Intel Corp., 2006) based vision tracker. Tracks a single mobile robot’s
position and heading, using two colored markers mounted on the robot and a single cali-
brated monocular camera. Supports Firewire and video4linux cameras, and the FreeBSD
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meteor video capture driver. Also implements Bayer decoding for use with the Point Grey
Research Dragonfly camera.

mpro A set of programs and libraries implementing remote control, visualization, simulation,
and data retrieval/logging for the iRobot MagellanPro research robot. Used to obtain sim-
ulated results in Chapters 5 and 7 (with modifications to simulate the Ratbot platform).
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