
ALCTS President’s Program, June 2010

Dr. Francine Berman

Vice President for Research, Rensselaer Polytechnic Institute
Co-Chair, Blue Ribbon Task Force for Sustainable Digital Preservation and Access
“Science is more essential for our prosperity, our security, our health, our environment, and our quality of life than it has ever been before.”

President Barack Obama

Fran Berman
Research Today

Which has the greatest impact – nature or nurture?
PSID: longitudinal data on 8000 families over 40 years

What is the impact of a large-scale earthquake on the Southern San Andreas Fault?
Digital data from Southern California Earthquake Center simulations used for disaster planning and building requirements

How does disease spread?
PDB: World wide reference collection of protein structure information

Are current stresses on this bridge dangerous?
Terabridge data set: Structure sensor data for real-time data mining, event detection, decision support and alert dissemination

Where are the brown dwarfs?
NVO: Data from 50+ astronomical sky surveys and large-scale telescopes.

Fran Berman
Today’s Presentation

- Digital Research Data -- Evolving the Universe after the Big Bang
- Supporting Digital Research Data
- Preserving Digital Data Over the Long Term
- Economics and Digital Preservation
Digital Research Data
Composing simulation outputs from different timeframes builds up light-cone volume.
After the “Big Bang” – the Universe’s First Billion Years

• **ENZO** simulates the first billion years of cosmic evolution after the “Big Bang”

• Key period which represents

 – A tumultuous period of intense star formation *throughout the universe*

 – Synthesis of the first heavy elements in massive stars

 – Supernovae, gamma-ray bursts, seed black holes, and the corresponding growth of supermassive black holes and the birth of quasars

 – Assembly of first galaxies
ENZO Simulations

What ENZO does:

• Calculates the growth of cosmic structure from seed perturbations to form stars, galaxies, and galaxy clusters, including simulation of
 – Dark matter
 – Ordinary matter (atoms)
 – Self-gravity
 – Cosmic expansion

• Uses adaptive mesh refinement (AMR) to provide high spatial resolution in 3D
 – The Santa Fe light cone simulation generated over 350,000 grids at 7 levels of refinement
 – Effective resolution = $65,536^3$

Slide modified from Mike Norman, SDSC
Greater Simulation Accuracy Requires More Computing and Generates More Data

ENZO at Petascale
(10^15 calculations per second)

- Self-consistent radiation-hydro simulations of structural, chemical, and radiative evolution of the universe simulates from first stars to first galaxies

Computer Science challenges

- Parallelizing the grid hierarchy metadata for millions of subgrids distributed across 10s of thousands of cores
- Efficient dynamic load balancing of the numerical computations, taking memory hierarchy and latencies into account
- Efficient parallel “packed AMR” I/O for 100 TB data dumps
- Inline data analysis/viz. to reduce I/O

Slide modified from Mike Norman, image by Robert Harkness
Verifying Theory with Observation

- **James Webb Space Telescope**, coming in 2013 will probe the first billion years of the universe – providing observations of unprecedented depth and breadth.

- **Simulation data** will enable tight integration of observation and theory, and will enable simulations to approach realistic complexity.

- Analysis of **petascale data sets** will be essential for validating model.
Supporting Digital Research Data
Information from birth to death/immortality:
The Digital Research Data Life Cycle

Create
- Data creation / capture / gathering from
 - laboratory experiments
 - fieldwork
 - surveys
 - devices
 - media
 - simulation output ...

Edit
- Organize
- Annotate
- Clean
- Filter

Use / Reuse
- Analyze
- Mine
- Model
- Derive additional data
- Visualize
- Input to instruments / computers / devices

Publish
- Disseminate
- Create portals / data collections / databases
- Associate with literature

Preserve / Destroy
- Store / preserve
- Store / replicate / preserve
- Store / ignore
- Destroy

Information adapted from Chris Rusbridge and Liz Lyon
Data Cyberinfrastructure: Access and services enable researchers to get the most out of their data

Coordinated systems make innovation the challenge rather than IT

- Data visualization
- Portal creation and collection publication
- Data analysis
- Data mining
- Data hosting
- Preservation services
- Domain-specific tools
 - Biology Workbench
 - Montage (astronomy mosaicking)
 - Kepler (Workflow management)
- Data anonymisation, etc.

Many Data Sources

- File systems, Database systems,
- Collection Management
- Data Integration, etc.

Sensor-nets, computers

modeling, analysis, simulation

Visualization

Services Are Critical for Use

Fran Berman
Data Cyberinfrastructure Must be Reliable and Easy to Use

Key Characteristics:

- Usability
- Scalability
- Interoperability
- Reliability
- Capability
- Predictability
- Accessibility
- Sustainability
- Cost-Effectiveness

Reliability: How to minimize the risk of data loss or damage?

Accessibility: Will the information be there when you need it?

<table>
<thead>
<tr>
<th>Entity at risk</th>
<th>What can go wrong</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>File</td>
<td>Corrupted media, disk failure</td>
<td>1 year</td>
</tr>
<tr>
<td>Tape</td>
<td>Simultaneous failure of 2 copies</td>
<td>5 years</td>
</tr>
<tr>
<td>System</td>
<td>Systemic errors in vendor SW, or Malicious user, or Operator error that deletes multiple copies</td>
<td>15 years</td>
</tr>
<tr>
<td>Archive</td>
<td>Natural disaster, obsolescence of standards</td>
<td>50 - 100 years</td>
</tr>
</tbody>
</table>
Reliable Data Cyberinfrastructure Incurs Real Costs

Costs include:

- Maintenance and upkeep
- Software tools and packages
- Utilities (power, cooling)
- Space
- Networking
- Security and failover systems
- People (expertise, help, infrastructure management, development)
- Training, documentation
- Monitoring, auditing
- Reporting costs, costs of compliance with regulation

Resources and Resource Refresh

- Most valuable data must be replicated
- SDSC research collections doubled every 15 months.
- SDSC storage is 36+ PB

Information courtesy of Richard Moore
Digital Research Data: One Size Does Not Fit All

- **RETENTION TIMEFRAME:**
 - Short-term (few months, years) to long-term (decades, centuries, ...)

- **SIZE / SCALE:**
 - Small-scale (GBs) to large-scale (PBs)

- **PREPARATION:**
 - Well-tended (metadata, cleaned and filtered) to poorly tended (flat files, insufficient metadata)

- **POLICY / REGULATION RESTRICTIONS:**
 - Subject to more restrictive policy and regulation (HIPAA) vs. subject to less restrictive policy and regulation (OMB)

- **LIFE CYCLE PLANNING:**
 - Has a data management and sustainability plan (PDB, PSID, NVO) vs. ad hoc approach

- **STANDARDIZATION:**
 - Organized using community standards vs. ad hoc or home-grown

Fran Berman
Opportunity for Greater Synergy between Modern Researcher Needs and Traditional Library Strengths

• Research community characterized by culture of innovation
 – Periodic new starts
 – Experimentation
 – Customized solutions to ill-defined problems
 – Collaboration and competition

• Researchers need help with things Librarians are good at
 – Developing reliable management, preservation and use environments
 – Proper curation and annotation
 – Navigating policy, regulation, intellectual property
 – Collaboration (partnership to share resources, create economies of scale, etc.)
 – Sustainability
The “Local” Digital Research Data Repository: Emerging Role for University Libraries

• Researchers are increasingly required to retain the digital products of their research. University libraries can play a new role as local stewards of digital research data.

• A “Preservation Stimulus” may be needed to make this realistically viable on a broad scale.
Preserving Digital Research Data Over the Long Term
Life Sciences Data

- **The Protein Data Bank**
 - worldwide repository for the processing and distribution of 3-D structure data of large molecules of proteins and nucleic acids.

- PDB represents $80 billion + investment in research resulting in PDB structures

- PDB supported by funds from NSF, NIGMS, DOE, NLM, NCI, NCRR, NIBIB, NINDS, NIDDK.

June Molecule of the Month: **Epidermal Growth Factor**

“The cells in your body constantly communicate with each other, negotiating the transport and use of resources and deciding when to grow, when to rest, and when to die. Often, these messages are carried by small proteins, such as epidermal growth factor (EGF), shown here in red from PDB entry 1egf. EGF is a message telling cells that they have permission to grow. ... “

Fran Berman
Historical Data

• The 2008 Cyber-election
 – Fundraising via website
 – YouTube videos of the candidates and conventions
 – Blogs as vehicles for discussing issues
 – On-line organizing

• Digital data from historic 2008 cyber-election will be valuable for decades+ to come
Cultural Data

- Historical photographs

Some images courtesy of David Minor and the Library of Congress

Fran Berman
Access to Information Tomorrow Requires Preservation Today

- Digital Access and Preservation is a technical, management, policy, regulatory, social, and economic problem

- Key issues to resolve:
 1. What should we preserve?
 2. Who is responsible for digital information?
 3. Who pays for digital information and its supporting cyberinfrastructure?

Fran Berman
What Should We Save?
Saving Everything Isn’t An Option ...

- 2007 was the “crossover year” where the amount of digital information exceeded the amount of available storage (~264 exabytes)
- By 2023, the amount of digital data will exceed Avogadro’s number. (6.02 X 10^23, the number of atoms in 12 grams of carbon).

<table>
<thead>
<tr>
<th>Kilo</th>
<th>10^3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mega</td>
<td>10^6</td>
</tr>
<tr>
<td>Giga</td>
<td>10^9</td>
</tr>
<tr>
<td>Tera</td>
<td>10^12</td>
</tr>
<tr>
<td>Peta</td>
<td>10^15</td>
</tr>
<tr>
<td>Exa</td>
<td>10^18</td>
</tr>
<tr>
<td>Zetta</td>
<td>10^21</td>
</tr>
</tbody>
</table>

What do We Want to Save?

Data we* want to keep over the long-term:

– We = “Society”
 • Official and historically valuable data (Census information, presidential emails, Shoah Collection, etc.)

– We = Research Community
 • Protein Data Bank, National Virtual Observatory, etc.

– We = Me
 • My medical record, my Quicken data, digital family photos, etc.
What do We Have to Save?

- **HIPAA** applies to health information created or maintained by health care providers.

- **Sarbanes-Oxley** regulations apply to all U.S. public company boards, management, and public accounting firms.

- **OMB** regulations apply to federally funded research data (NIH, NSF, DOE, etc.)

<table>
<thead>
<tr>
<th>Regulations</th>
<th>Retention Requirement</th>
<th>Penalty</th>
</tr>
</thead>
<tbody>
<tr>
<td>HIPAA</td>
<td>Retain patient data for 6 years</td>
<td>$250K fine and up to 10 years in prison</td>
</tr>
<tr>
<td>Sarbanes-Oxley</td>
<td>Auditors must retain relevant data for at least 7 years</td>
<td>Fines to $5M and 20 years in prison</td>
</tr>
<tr>
<td>Gramm-Leach-Baily</td>
<td>Ensure confidentiality of customer financial information</td>
<td>Up to $500K and 10 years in prison</td>
</tr>
<tr>
<td>SEC 17a</td>
<td>Broker data retention for 3-6 years. Some require longer retention</td>
<td>Variable based on violation</td>
</tr>
<tr>
<td>OMB Circular A-110 / CFR Part 215 (applies to federally funded research data)</td>
<td>“a three year period is the minimum amount of time that research data should be kept by the grantee”</td>
<td>Penalty structure unclear, likely fines?</td>
</tr>
</tbody>
</table>

Table information partly based on “Data Retention – More Value, Less Filling”, John Murphy, http://www.tdan.com/view-articles/5222
Who Will Pay?
Economics and Digital Preservation
Responsibility and Economics: Blue Ribbon Task Force on Sustainable Digital Preservation and Access

BRTF Charge:

1. Conduct a comprehensive analysis of sustainable digital preservation
2. Identify and evaluate best practices
3. Make specific recommendations for action
4. Articulate next steps for further work

bbrf.sdsc.edu

Fran Berman
BRTF Participants

Blue Ribbon Task Force:
- Paul Ayris, University College London
- Fran Berman, SDSC/UCSD
- Bob Chadduck, NARA Liaison
- Sayeed Choudhury, Johns Hopkins University
- Elizabeth Cohen, AMPAS/Stanford
- Paul Courant, University of Michigan
- Lee Dirks, Microsoft
- Amy Friedlander, CLIR
- Chris Greer, NITRD Liaison
- Vijay Gurbaxani, UC Irvine
- Anita Jones, University of Virginia
- Ann Kerr, Consultant
- Brian Lavoie, OCLC
- Cliff Lynch, CNI
- Dan Rubinfeld, UC Berkeley
- Chris Rusbridge, DCC
- Roger Schonfeld, Ithaka
- Abby Smith, Consultant
- Anne Van Camp, Smithsonian

Sponsoring Agencies/Institutions:
- National Science Foundation
- Mellon Foundation
- Library of Congress
- National Archives and Records Administration
- CLIR
- NITRD
- JISC
- Member institutions

Specific Responsibilities
- Fran Berman / co-Chair
- Amy Friedlander / First Report Editor
- Ann Kerr / January Panel Rapporteur
- Brian Lavoie / co-Chair
- Susan Rathbun / Task Force Support
- Abby Smith / Second Report Editor
- Jan Zverina / Communications Lead
- Lucy Nowell / NSF Program Officer
- Don Waters / Mellon Program Officer
- Laura Campbell, Martha Anderson / LC representatives

Fran Berman
What is required to support digital information over the long term?

Economic sustainability for digital information* requires

- Recognition of the benefits of long-term access and preservation
- Incentives for decision-makers to act
- Means of selecting “valued” information for long-term preservation
- Mechanisms to support ongoing, efficient allocation of resources
- Appropriate organization and governance of preservation and access activities

* From Blue Ribbon Task Force Interim Report

Fran Berman
Who’s Paying the Bills?

• The “free rider” non-solution: “Let X do it” where X is:
 – The Government
 – The Libraries
 – The Archivists
 – Google, Microsoft, etc.
 – Data users
 – Data owners
 – Data creators, etc.

Fran Berman
How do we currently support access to digital information?

- Federal grants
- Advertisements
- Pay per service
- Subscription
- Donations, etc.
The Stakeholder Problem

- Many Stakeholders in digital preservation...
 - Stakeholders who benefit from use of the preserved asset
 - Stakeholders who select what to preserve
 - Stakeholders who own the asset
 - Stakeholders who preserve the asset
 - Stakeholders who pay

- The greater the alignment between key stakeholder groups, the better the prospects for sustainable preservation

4 Common Stakeholder Scenarios

- Research data
- Scholarly discourse
- Commercially-owned Cultural content
- Collectively-produced web content

Findings from Blue Ribbon Task Force Final Report

Fran Berman
Research Data

- **Stakeholders who benefit:** the greater research community
- **Stakeholders who select:** Often the individuals who generate the data
- **Stakeholders who own:** Often the data generators
- **Stakeholders who preserve:** Often the data generators and their proxies
- **Stakeholders who pay:** Federal agencies, institutions

Needed actions involve

- the development of federal agency policies that mandate the stewardship of important research data
- the identification of viable support options for third-party archives (e.g. university libraries) to host valuable research data
Scholarly Discourse

- **Stakeholders who benefit:** the greater research and learning community
- **Stakeholders who select:** Publishers, based on community review
- **Stakeholders who own:** Publishers generally own rights
- **Stakeholders who preserve:** Publishers and third-party entities
- **Stakeholders who pay:** Publishers, libraries, and third-party entities

Needed actions involve

- Clarification (with respect to licensing, ownership, rights, etc.) of the responsibilities of publishers, third-party archives, and scholars
- Granting of non-exclusive rights to content by scholars to enable decentralization of publishing and preservation.
Commerically Owned Cultural Content

- **Stakeholders who benefit:** the general public, cultural historians
- **Stakeholders who select:** Studios, third-party organizations
- **Stakeholders who own:** Studios, third-party organizations
- **Stakeholders who preserve:** Institutional and individual repositories, third-party organizations, etc.
- **Stakeholders who pay:** Studios, professional organizations, private owners, custodial organizations, etc.

Needed actions involve
- Alignment of requirements for copyright deposit with the requirements of digital preservation and access
- Development and involvement of organizations that can ensure secure handoffs of cultural materials from private owners to economically viable public preservers

Findings from Blue Ribbon Task Force Final Report

Fran Berman
Collectively-produced Web Content

- **Stakeholders who benefit**: the general public, cultural historians, etc.
- **Stakeholders who select**: Often the entities that preserve the data
- **Stakeholders who own**: Often unclear
- **Stakeholders who preserve**: Third parties interested in preservation of cultural assets
- **Stakeholders who pay**: Third parties interested in the preservation of cultural assets

Needed actions involve
- the development of appropriate licensing and regulations that permit third-parties to preserve web content
- the development of incentives for host sites or third parties to preserve

Findings from Blue Ribbon Task Force Final Report

Fran Berman
An Action Agenda for Trusted International, National and Public Institutions

1. Create **mechanisms for public-private partnerships** to align distinct groups: Convene stakeholders, sponsor cooperation and collaboration, etc.

2. **Convene expert communities to address the selection and preservation** needs of valuable materials for which there is no stewardship (Web materials, digital orphans).

3. Act expeditiously to **reform national and international copyright legislation** to address digital preservation needs.

4. **Create financial incentives** to encourage private entities to preserve digital materials on the public behalf.
An Action Agenda for Funders and Sponsors of Data Creation

1. **Create preservation mandates** when possible

2. **Invest in building / seeding stewardship capacity** throughout the system.
 - **Fund the modeling and testing** of domain-specific preservation strategies

3. **Provide leadership in training and education** for 21st century preservation, including domain expertise and core competencies in STEM. Promote digital preservation skills.

Findings from Blue Ribbon Task Force Final Report
An Action Agenda for Organizations and Individuals

Organizations

1. Fund internal preservation and access activities as core infrastructure.

2. Create economies of scope and economies of scale by partnering with related organizations and industry professional associations.

3. Develop preservation strategies that reflect technical, policy, and workforce best practices

Individuals

1. Provide nonexclusive rights to preserve and distribute created content.

2. Partner with preservation experts throughout your data’s lifecycle to ensure that data is ready to hand off in a form that will be useful over the long term.

3. Pro-actively participate in professional societies and relevant organizations to create stewardship best practices and selection priorities.

Findings from Blue Ribbon Task Force Final Report

Fran Berman
Our responsibility: Making the Case

To Decision Makers:

- What are liabilities and the opportunity costs of not acting?
- What specific actions need to be made a priority now?

To the General Public:

- Does your dry cleaner know what digital preservation is?
Thank You

www.rpi.edu

btrfs.sdsc.edu

Fran Berman