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Abstract dataset PS in Section 5), a typical enumerative graph min-
ing method (we used gSpan [14]) did not finish running in
In this paper, we introduce the concept@brthogonal even 2 days. These six graphs contain common motifs of
patterns to mine a representative set of graph patterns. In-size over 50-60 residues, thus any method that tries to enu-
tuitively, two graph patterns are-orthogonal if their sim- ~ merate all subgraphs is simply unable to mine this dataset.
ilarity is bounded above by. Eacha-orthogonal pattern In fact, mining only the closed or even the maximal patterns
is also a representative for those patterns that are at Igast  in such domains can be untenable.

similar to it. Given user defined, 5 € [0, 1], the goal is to Aborting the mining process prematurely does not help
mine ana-orthogonal, 5-representative set that minimizes either, as there is no guarantee that the resulting set of pat
the set of unrepresented patterns. terns is representative in any sense. Typically, one can ex-

We presenbRIGAMI, an effective algorithm for mining  pect that the patterns cover only a small region of the out-
the set of representative orthogonal patterogIGAMI first put search space (e.g., a breadth-first search approach will
uses a randomized algorithm to randomly traverse the pat- have seen patterns only up to some level, and a depth-first
tern space, seeking previously unexplored regions, tametu method may have seen patterns covering branches up to
a set of maximal patternsorIGAMI then extracts am- some point). For example, we ran a depth-first graph min-
orthogonal, 5-representative set from the mined maximal ing algorithm [5] on a protein-interaction dataset comsgst
patterns. We show the effectiveness of our algorithm on aof three graphs (see dataset Pl in Section 5), each graph
number of real and synthetic datasets. In particular, we having 2154 nodes, and on average 81607 edges, with total
show that our method is able to extract high quality pat- database size 3MB. The mining process was aborted after
terns even in cases where existing enumerative graph min-a day of running, at which point it had generated a 7GB
ing methods fail to do so. output file containing over 8 million subgraphs. The largest

mined graph had only 22 edges; there were 57 such sub-
graphs, but these had a similarity of over 95% (differing in
. only a few edges), indicating that only a small fraction of
1 Introduction the possible output space had been seen.
Note also that in many real-world cases, enumerating all

Increasingly, today’s massive data is in the form of com- frequent patterns is not necessarily the primary objective
plex graphs or networks. Examples include the physi- Rather, mined patterns are likely to be used as inputs for
cal Internet, the world wide web, social networks (includ- a subsequent analysis/modeling step, and as such, a rela-
ing blogs, chat rooms, phone networks, and networking tively small representative set of patterns may suffice. For
web-sites), biological networks (including protein irger example, mining frequent motifs in protein structures sets
tions networks and bio-chemical compounds). Mining such the stage to solve problems like structural alignment, ho-
databases for graph patterns has attracted a lot of intarest mology detection, etc. Recurring patterns in a social net-

recent years. work can be used for link prediction, de-duplication, hidde
Typical graph mining methods follow the combinatorial group identification, etc. Frequent patterns obtained from
pattern enumeration paradigm, and aim to extedcfre- network log data can be used to build classification model

guent subgraphs, perhaps subject to some constraints. lthat can predict network intrusion and other anomalous be-
many real-world applications arising in bioinformaticddan havior. None of these applications requires the entirefset o
social network analysis, the complete enumeration of all frequent patterns. Note also, that the lack of interprétgbi
patterns is practically infeasible, due to the combinatori and the curse of dimensionality due to a large set of redun-
explosion in the number of mined subgraph patterns. Fordant patterns can cause problems for subsequent steps like
example, on a set of six proteins taken from the HOM- clustering and classification. Many successful applicegtio
STRAD database of homologous protein structures (seeof pattern mining for solving real-life problems thus regui



the result-set to be summaryrather than @omplete sedf There are several works guided towards finding a subset
the frequent pattern space. of frequent patterns that are most informative, compressed
In this paper, our goal is to address all of the above limi- discriminative and non-redundant [1, 13, 12, 3]. However,
tations that prevent graph mining to be applied in real-diorl  all these previous works handle itemset patterns only.dn th
problems. Instead of enumerating all graph patterns, wegraph domain, we did not find any work on compressed fre-
aim to mine a relatively small set of representative pagtern quent patterns, except, works on closed frequent graphs [15
that share little similarity with each other. More specifi- and maximal frequent graphs [11, 7]. Even though these
cally, given user-defined parameterss € [0, 1], our goal two approaches generate a smaller set of patterns, the num-
is to find an optimak-orthogonal-representative set of  ber of patterns in both cases can still be very large. More-
patterns. Two patterns are said to d@rthogonal if their over, many patterns in the resulting sets can be very similar
similarity is at mosta, and a pattern is said to be & hence, they may not be appropriate as a summary or repre-
representative for another pattern if their similarity is a sentative pattern set.
leasts. Instead of enumerating the entire set of subgraph  We present a set of frequent graphs that are representa-
patterns, we employ a randomized (but principled) searchtive of the entire frequent graph partial order. Each eldmen
over the partial order of subgraph patterns, to obtain a rep-in representative set is more thandistant from the oth-
resentative sample of the possible output space (of maxi-ers. Moreover, since graphs represent the most general type
mal patterns). The aim is to cover, or traverse, different of patterns, a solution to this problem in the graph setting
unexplored parts of the partial order yielding potentially automatically covers the other pattern types like itemsets
representative patterns. In a second step, a locally optimasequences and trees.
orthogonal representative pattern set is extracted fram th

output sample. The main contributions of our paper are as .
fo||gws; P pap 3 Problem Formulation

e We propose a new paradigm for mining a summary
representation of the set of frequent graphs. Unlike Graphs and Subgraphs:A graphG = (V, E), consists of
previous techniques, that focus on the distance in thea set of verticed” = {v,vs,...,v,}, and a set of edges
transaction space to obtain representatives, our ap-E = {(v;,v;) : v;,v; € V}. Let Ly andLg be the set of
proach captures representatives by considering the disvertex and edge labels, respectively, andlet V' — Ly
tances in the pattern space. and¢ : E — L be the labeling functions that assign labels

] ) . to each vertex and edge. Thizeof a graphGz, denotedG|

e We introduce a randomized approach for mining max- s the cardinality of the edge set (i.6G| = |E|). A graph
imal subgraph patterns. The method is designed t0of sjze k is also called a-graph. A graph isonnected
cover the partial order of subgraphs, so that orthogo- it each vertex in the graph can be reached from any other
nal maximal patterns are obtained quickly. vertex. All graphs we consider are undirected, connected

e We formulate thea-orthogonal 5-representative set and labeled. _
finding as an optimization problem. We show that the __ A graphGi = (V1, E1) is asubgraphof another graph
optimization problem is NP-Hard and we thus propose G2 = (V2, E2), denotedGy C Gy, if there exists a 1-

a local optimization solution that is efficient and prac- L Mappingf : Vi — V3, such that(v;, v;) € Ey im-
tically feasible. plies (f(vi), f(v;)) € Es. Further,f preserves vertex la-

bels, i.e..V(v) = V(f(v))), and preserves edge labels, i.e.,

Our algorithm that finds the «-orthogonal (- E(vi,v2) = E(f(v1), f(v2)). f is also called asubgraph
representative set is calle®rRIGAMI (which stands  isomorphisnfrom G, to Gs. If G C Go, we also say that
for Orthogonal Representave GrAph MIning). We G-, is a super-graph af; . Note also that two grapl; and
demonstrate the effectiveness@kiGAmMI on a variety of G, areisomorphic iff G, C G, andGy C G;. LetD be a
synthetic and real dataset, and show that it is able to mineset of graphs, then we writé¢ C Dif VD; € D,G C D;. G
good quality orthogonal representative sets, especiallyis said to be anaximal common subgrapli D iff G C D,
for datasets where traditional enumerative methods failand AH O G, such thatd C D.

completely. Graph Support: LetD be a database (a set) of graphs, and

let each graplD; € D have a unique graph identifier. De-
2 Related Work note byt(G) = {i : G C D; € D}, thegraph identifier

set (gidset)which consists of all graphs iR that contain a

Many recent methods have been proposed for graph min-subgraph isomorphic t&. Thesupportof a graphG in D is

ing; these include [4, 8, 9, 14, 6, 10]. The focus of these then given as (G, D) = |t(G)|, andG is calledfrequentf
methods is to mine all frequent subgraph patterns, ratherr(G, D) > 7™, wherer™" is a user-specified minimum
than finding orthogonal or representative patterns. There i support (ninsup) threshold. A frequent graph ®@osedif it
also an increasing interest in using the mined graph pattern has no frequent super-graph with the same support. A fre-
for indexing [16]. quent graph isnaximalif it has no frequent super-graph.



Denote byF,C, M the set of all frequent, all closed fre- the problem of miningy-orthogonals-representative graph
guent, and all maximal frequent subgraphs, respectively. B patterns can now be formulated as follows:

definition, 7 O C © M. The set of all maximal frequent ] ] ]

subgraphsM is also known as theositive border Note 1. Mine a (diverse) sample of maximal frequent patterns
that the set of all (frequent) subgraphs forms a partial or- MC M.

der with respect to the subgraph relationship, and assatiat . .
with each graph in the partial order is its gidset. 2. Mine an a-orthogonal j-representative seR, that

Orthogonal and Representative Graphs: Define sim : minimizes the residugh (R, M)|.

F x F — [0,1] to be a symmetric binary function that Note that an alternative objective can be to maximize

returns thesimilarity between two graphs. For example, the ars(R, ﬂ/l\). In this paper we focus on minimizing the
similarity based on the maximum common subgraph [2] is residue [A(R, ﬂ)l)-

: o _ |Gl ; . .

given as:sim(Ga, Gb) = g, e WhereGe is the A solution to the above problem provides a small set of

maximum common subgraph 6f, andG,. o maximal frequent graph patterns that are non-redundant or
Given any collection of graphg, and given a similarity  orthogonal (for thex constraint) and also representative (for

thresholda € [0, 1], we say that a subset of grapRsC G the 3 constraint). Depending on the value/gfthe follow-

is a-orthogonal * with respect td iff for any G, G, € R, ing two cases make interesting variants of the problem:

sim(Gq,Gpy) < aand for anyG; € G \ R there exists a

Gj € R, sim(G;,G;) > a. case | B < «): By definition of a-orthogonal set, for any
Given a collection of graphg, ana-orthogonal seR C G, € M \ R, there existsG; € R, such that

G, and given a similﬁrity thresholﬂded[o,hl], we say that sim(G;,G;) > « > 3. This implies that each

R representsa graphG € G, provided there exists some i - , )

G, € R, such thasim(Ga, G) > . LetT(R,G) — {G € Gi € M\ R is represented by son@; € R. Im

G : 3G, € R, sim(G,G,) > [}, then we say thaR is a rned_|ately haveT(&M) = M\ R, which in turn

[-representativeset forY' (R, G). implies thatA(R, M) = . Thus, when3 < a the
Finally, givenG, and itsa-orthogonal,3-representative residue of anyr-orthogonal seR is 0, implying that

setR, define theresidue setof R to be the set of un- everya-orthogonal set is optimal w.r.t the residue.

represented patterns i, given asA(R,G) = G\

(R UTY(R,G)). The residueof R is defined to be case Il (B > «): This is the general case, for Whic_h the
the cardinality of its residue sef{A(R,G)|. Define orthogonal seR, may not be aB;r\epresentatlve for

the average residue similaritas follows: ars(R,G) = some maximal frequent graphs.vt. In other words
Y6, ea(r,g) MaXG, er {sim(Ga,Gy)} when 3 > «, the residud A(R, M)| > 0; thus an

[A(R,9)I ' optimal solution is a set of orthogonal patterns that
Lemmal a < ars(R,G) < 5. minimizes the residue. A special case®t> « oc-
PROOR For anyG, € A(R,G), we havesim(Gq, Gp) < curs wheng = 1. In this case each element in the_
3 for all Gy, € R. Furthermore, by definition, for any;, € a—orthogonal represents only itself, and the residue is
G\ R,3G, € R, such thatsim(Gq4,G;) > a. Thus the AR, M)| = |M\R].

numerator is always in the rande, 3). ® . S
y ga. 5) As an example, assume that we are given the pair-wise

Problem Definition: In this paper we are interested in find-  Similarities between a set of grapig, as shown in Fig-
ing the a-orthogonal,3-representative set for the set of all ure 1. Ifa = 0.2, then there are two possibieorthogonal
maximal frequent subgraphs, i.e., whgn= M. In gen-  sets, namelyR, = {M;, M3} andRy = {Ma, My, M5}
eral, one can find orthogonal representative sets for any col as illustrated in Figure 1(b). I8 < «, both of these will
lection of patterngj. Since the maximal patterns provide a be optimal in terms of the residue. Howeverpif= 0.6,
synopsis of the frequent patterns, and since they are generthenY (R, M) = {M>, M5}, which givesA(R1, M)| =
ally a lot fewer than the sets of all frequent and closed fre- [{M,}| = 1. This is illustrated in Figure 1(b), which
quent patterns, it seems reasonable to try to find a orthog-shows thatM, remains unrepresented b%;. For R,
onal representative set among those. However, since everr(RQ,ﬂ) = {M, Ms}, yielding \A(RQ,M\H = 0] =

mining all the maximal graphs can be infeasible in many o, Thus in this casek, is the optimala-orthogonal 5-
real-world domains, we try to find orthogonal representa- representative set.

tive sets for a subset of the maximal pattemisC M. The intuition behind our definition ofi-orthogonal3-
Given a graph databagg user-defined similarity thresh-  representative set should now be clear. The orthogonality
oldsa, 3 € [0, 1], and a minimum support threshotd™'”, constraint ensures that the resulting set of frequentoatte

1This is inspired by linear algebra, where two vectors ard taibe has controlled redundancy. For a givanseveral sets of
orthogonal if their similarity (dot product) is 0. We exterfdst notion to (ma?(lmal) patterns qua“fy as feayb&eorthogonal sets.
say that two graphs are-orthogonal if their similarity is at most. When BeSIdQS redunqancy control, we 3:|50 want to achieve repre-
a = 0, it gives the usual sense of orthogonality. sentativeness, i.e., for every maximal frequent patteats n



[ [ M, | M | My | Ms |

M, [ 1.0] 03]0.18] 0.4 0.7
My || - |[10[ 07 0 | 01
My || - | - | 10|04 05
My || - | - - [10]015
M || - | - - - 1.0

(a) Similarity Matrix

@‘“

(b) Similarity Graph

Figure 1. Similarity Matrix & Graph: In the
graph, sim < « = 0.2 is denoted by bold
edges, and sim > 3 = 0.6 by dotted edges.

reported, we want it to have a representative similar to it
(based on theg threshold). Some patterns may still remain

unrepresented, which make up the residue set. For a give
«a and g3, the size of the residue set becomes an objective

function to minimize when choosing the orthogonal repre-
sentative sets.

4 The ORIGAMI Approach

ORIGAMI(D, 7™ v, 3):

1. EM =Edge-MapD)

2. F = Find-Frequent-EdgedX, miny

3. M=10

4. while stoppingcondition()# true

5. M =Random-Maximal-Grapt{, 7, EM, m™i")
6. M=MUM N

7. R = Orthogonal-Representative-Sefs! (o, )

Figure 2. orIGAMI Algorithm
ORIGAMI has two distinct steps to mine the orthogonal

computes an approximation or sample of the set of maxi-
mal patternsﬁ, by generating random maximal graphs un-
til the stopping condition is met (lines 4-6). The stopping
condition mainly ensures that the partial order of frequent
graph patterns has been sufficiently explored. Qhcés
obtained,0RIGAMI computes one or severatorthogonal
B-representative sets (line 7). Details of the various steps
appear below.

4.1 Mining Random Maximal Graphs

The first step iroRIGAMI finds a sampIeT/l\ of the set of
allmaximal frequent graph#1. Our goal is to find a sample
that itself has as diverse a collection of maximal pattems a
possible. In other words we want to avoid generating maxi-
mal patterns that are very similar to other maximal patterns
already found. This necessitates a deviation from traatfio
enumerative pattern mining approaches.

Enumerative graph mining methods either explore the
pattern space in a breadth-first (level-wise) or depth-first
manner. The approaches work by extending an existing
graph S of size k by adding one more edge to obtain a
(k + 1)-graphS’. The drawback of the breadth-first ex-
ploration of the pattern space is that longer patterns may
never be reached, due to the combinatorial explosion in the

'Number of subgraphs. On the other hand, depth-first explo-

ration can produce some large maximal patterns, however
it is likely to explore only a limited portion of the positive
border, and most of the maximal pattern it enumerates will
be very similar.

orthogonal
representative set

positive border

a-orthogonal
B-representative

multiple chains
for same pattern

®
(empty pattern)

Figure 3. Frequent graph partial order

representative patterns. The first step finds a subset of freRandom Walks over Chains: oRrRIGAMI adopts a ran-

guent maximal patterng/l\. The second step refinge( to dom walk approach to enumerate a diverse set of maximal
obtain an orthogonal representative set. The pseudo-cod@atterns from the positive border. Each run of Random-
for orRIGAMI is shown in Figure 2. The algorithm accepts Maximal-Graph (Figure 2, line 5) outputs one random max-
a graph databasP, a minimum support valug™?", and imal pattern)M by starting at the empty pattern and succes-
values for the parametessand 3. ORIGAMI first computes  sively adding a random edge during each extension, until no
two global data structure that are used to generate maximakxtensions are possible. Each run of the method walks
frequent patterns (lines 1-2). The edge-map (EM) stores fora random chainin the partial order (recall that ehainin

each vertex label,, a pair(l,,,l.), if (vs,v) is an edge  a partial order is a path composed of subgraph to immedi-
with edge label. in some graph ifD. F; stores the set ate supergraph edges). Figure 3 gives an illustration sf thi
of all frequentl-graphs (i.e., single edgesprRIGAMI then process. Each intermediate pattern is denoted by a star, and



there exists an edge between two graphsC G, in the estimate of thecollision or hit rate of the patterns. Intu-
partial order if|G,| = |Gs| — 1. The set of all maximal itively the collision rate keeps track of the number of dupli
patterns or the positive border is denoted by the bold curve.cate patterns seen within the same or across different ran-
Each random walk starts at the empty patt&rand follows dom walks. As each chain is traverseIGAMI maintains
a random chain until it hits the positive border. Different in a bounded-size hash-table, the signature of the interme-
runs of Random-Maximal-Graph produce an approximate diate patterns. As each intermediate or maximal pattern is
set of maximal pattern,;a. seen, its signature is added to the hash-table and the colli-
Ideally the random chain walks would cover different Sion rate is updated. If the collision rate exceeds a thidsho

regions of the partial order, and would produce dissimilar ¢ this information can be used in two different ways: i)
maximal patterns. However, in practice, this may not be the Within a given random walk, we can abort further exten-
case, since duplicate patterns can be encountered in the folSions along the current path and force the method to back-
lowing ways: (i) multiple iterations following overlapmn  {rack and choose another path (randomly). ii) Across dif-
chains, or (i) multiple iterations following different ams, ~ ferent walks it can trigger the terminating condition, sinc
both leading to the same maximal pattern. a collision rate exceedingimplies that same parts of the
Let's consider a maximal frequent graphf of size n. partial order are being re-visited. An advantage of this dy-
Leteres - - - e, be a sequence of random edge extensions,Namic approach is that the user need not explicitly specify
corresponding to a random chain walk, leading from the ¥ (thoughe is now the new parameter).
empty graph to the maximal graph. Corresponding 10 pandom Maximal Graph Generation: As mentioned
the edge sequence is a series of intermediate graphs on thgy, e the Random-Maximal-Graph method performs a ran-
walk: § = Sy — S — Sp--- — S, = M, whereS; is  4om \walk along a chain in the subgraph partial order. Start-
the intermediate obtained by extendifig-, with ;. The 14 from the empty pattern it adds random edges to obtain
probability of a particular edge-sequence leading ffboto 5 5 ;ccession of intermediate graphs leading to some max-
M is given as: imal pattern) € M. To extend an intermediate pattern,

n say S, C M, we first choose a random vertex, say with id
Pl(etes---en)] = P(ey) HP(eilﬁ ceeiq) (1) v, from where the extension will be attempted. Then, we
bl choose a random edgéi, j) € EM from the edge-map,

wherei andj are the vertex labels of edge,the edge can,
In general, any permutatiom;,, of an edge sequence, i.e., optionally, have an edge label. Note thanust be equal
(m(e1) m(e2) ---m(en)) can also generate the same graph, to the label of vertex for a proper extension. The edge
M however, alln! permutations may not be valid, since map data structure can provide all such edges efficiently. If
we require all intermediate graphs to be connected. For ex-no suche is found, no extension is possible from the vertex
ample, for ak-edge star graph, the number of valid edge- » andw is inserted in a list okexpiredvertices. When all
sequences ig!, but for a lineark-edge graph (a sequence), vertices in an intermediate gragh are expired, the loop
the number of valid edge-sequenceg'is?. breaks and the patte§), = M is a maximal pattern. But,
Denote byES(M) the set of all valid edge-sequences if an edgee is found, we randomly choose the other end of
for a graph)M . The probability that a graph/ is generated  this edge. If that is already in the graph, this is called

in a random walk is proportional to: a back-extension, otherwise, it is a forward extension. An
edge is added between this node, and the candidate pattern,
Z Pl(erea---ep)] (2) Sk+1 is built. Its support is then computed, and if the pattern
(cre2---en)EES(M) is infrequent, we insert the following map entry, -G ¢) in

another data structure called tfaled-map to ensure that
The probability of obtaining a specific pattern depends the edge: shall not be attempted at vertexor extension of
on the number of chains or edge sequences leading to thaf;, any more in a later iteration. Details of the actual support
pattern and the size of the pattern. As we can see fromcounting via a vertical data representation are essentiwl
Equation 1, if a graph grows larger, the probability of an same as the graph mining method in DMTL [5].
edge sequence gets smaller, though a larger graph typically Figure 4 shows an example of the Random-Maximal-

has more chains leading to it. So, our approach, in generaIGraph algorithm, while finding a random maximal graph
favors a maximal pattern of smaller size over a maximal pat- from a graph dat;ibase of size 3 (Fig. 4 a-c) with™ = 2.

tern of larger size. We circumvent this problem by aborting The edge map (Fig. 4 d) records all the possible extensions
a walk that is likely to generate duplicates or very similar ¢ 5 given vertex label, recording the labels of the vegtice
patterns. on the other end of that edge. If the edges have labels, they
Termination Condition: The iterative loop (Figure 2, line  also become part of the possible other labels. For simplic-
4) that generates the maximal graphs terminates when arity, we ignore edge labels in this example. The edge map
appropriate stopping condition is satisfied. The simplest also remembers the highest frequency of an edten any

case is to stop after a given number of walkks We also graph in the database, so that some candidates which are
implemented a dynamic termination condition, based on annot frequent shall never be attempted. For instance, con-



PROOE If R is ana-orthogonal set, then for an\f,, M, €
R, sim(M,, M) < «, and for anyM,, € M\ R, there ex-
istsM;, € R, with sim(M,, M) > a. Thisimplies that the
a-orthogonal set must be maximal. SifceM) has edges
only for a-orthogonal graphs, it follows that every maximal

RORO

° ° Q ° clique inT'(M) is a-orthogonal set, and vice-veram.
(@) G1 (b) G2 (c) Gs . . .
As mentioned earlier, thev-orthogonality controls the
EDGE MAP with Max. Frequency amount of redundancy allowed among the output patterns.
Vertex Possible Other Label For a giveny, several maximal cliques can exist in the graph
label F(ﬂ/l\), each a feasible solution to the orthogonal set prob-
A A(1), B(1), C(3), D(1) lem. Thegs-representative condition allows each element of
B A(1), C(1), D(2) the orthogonal to represent similar graphs, and also allows
C A@3), B(1) us to rank the maximal cliques in terms of their residue (or
D AQ), BQ2) average residue similarity).
(d) There are several challenges in finding the optimsal
orthogonals-representative set. At the outset it should be
> [ Vid | Vabel | Failedlist | noted that the orthogonal set is a representative set only fo
O 1 A A 'B,C,D the sampleM. If sufficient number of maximal patterns
2 A B, C were not sampled (for example, if the stopping condition
© 3 C B were too restrictive), thedl may not approximate the set
(e) 6] of all maximal patternsM very well, and the quality of

M would suffer. Another challenge is that, depending on

the size of the maximal sel, it may not be reasonable
to compute the full pair-wise similarity matrix between all

Figure 4. (a-c) A graph database with 3 graphs. (d)
The edge map data structure that shows possible ex-
tensions, with the maximal edge count. (e-f) A snap-

shot of the random extension process while mining with elements ofM, since it hasD(M?2) time and space com-
7™ = 2. The failed-list table shows which edge exten- plexity. That is, it may not be reasonable to compute the full
sions have been attempted and which failed; * denotes graphI’(M). Even if'(M) were available, the challenge
an expired vertex id. is that finding the optimal maximal clique that minimizes

. _ o the residue is an NP-hard problem.
sider the candidate frequent graph A—A—C, which is not

maximal (Fig. 4 e€). But, the graph already has one A—A
edge, with vertex ids (vid) 1 and 2, respectively. Since the
maximum frequency of the A—A edge is 1, the edge exten
sion A—A shall never be attempted from vid 1 or 2. The
failed list that we maintain along with every iteration oéth

maximal graph generation process is also shown (Fig. 4 f).
Note that for vid 1, all possible labels for the other end are
in the failed list, i.e., they had been attempted and found to
produce infrequent graphs. So, vid 1 is marked as expired

(denoted by *). When all the vertices are expired the pro- Gi he hard It i dof ina th
cess terminates and we obtain a maximal graph. For this iven the hardness result, instead of enumerating the op-

particular example, adding an edge A—D at vid 2, yields timal maximal clique, we resort to approximate algorithms

: ; g to solve the problem efficiently. Since, the optimal solu-
the maximal graph with support 2 (in grapfis andc). tion is a maximal clique of the similarity graph, we adopt

. maximal clique finding as a heuristic. Using this approach,
4.2 Orthogonal Representative Sets ORIGAMI finds a maximal clique without computing the full
. similarity matrix. Given the seM it randomly selects one
Given a set of maximal patternst, ORIGAMI extracts element)M € M, and adds it taR. The idea is to itera-

Theorem 4.2 Finding the optimala-orthogonal 5-repre-
sentative that minimizes the residue is NP-hard.

" PROOFE This is easy to show, since the general problem con-
tains an NP-hard sub-case. Fbe 1, each element in the
a-orthogonal set represents only itself, giving the residue
for any R as |A(R,M\)| = M\ R. Thus minimizing
the residue fog = 1 corresponds to solving the maximum
cligue problem, which is known to be NP-hami.

ana-orthogonalj-representative set from it. tively add one element from\{ \ R to the currentR set
. . until no more elements can be added, which would yield a
Theorem 4.1 Given M, letT'(M) be the graph with” = maximal clique. At any intermediate step, we compute the

MandE = {(M,, My)|sim(M,, M) < a}. Thenany  similarities for allM; € /\//\I\Rto elementsV, € R. If

a-orthogonal seRR is a maximal clique if’(M), and vice- there existsM, € M \ R, such thatsim(M,, M) < «
versa. for all M, € R, we addM, to R. This process is repeated



until a maximal clique is obtained. The complexity of find- having 2 common nodes (2 and 3), that has a better residue
ing a single clique i©)(|M||R|), but in general we expect Vvalue (residue = 1; since only element 1 is not covered).
IR| < | M|, so that the time is closer @(|M]). Finally, to _Thu_s, the local optlm_al algo_nthm will accept the new cllqu_e
obtain multiple cliquesorIGAMI simply starts with differ- in Figure 5(c) and will continue. For this toy example, this

ent initial maximal graphs. Finally the best clique is chose  Clique is also optimal. In the experimental section we show
based on the residue size. the performance superiority of the local optimal method

We also designed an approximate solution, which is bet- °Ver the random clique approach.
ter than the above heuristic approach and also guarantees Idifferent Similarity Measures: Computing similarity be-
cal optimality. The neighborhood structure of the local-opt tween graphs is one of the significant tasks in finding the
mal formulation uses maximal clique in a meta-heuristic ap- c-orthogonal graph set. Similarity can be measured by us-
proach. The algorithm starts with a random maximal clique. ing features in the pattern space or in the transaction space
At each state transition, another maximal clique which is a (the gidset) or a combination of both of the above. In the
local neighbor of the current maximal clique, is chosen. If case of pattern space, the most common way to compute
the new state has a better solution, the new state is acceptesimilarity is using the edit distance between two patterns.
as the current state and the process continues. The proPepending on the pattern complexity, the cost of edit dis-
cess terminates when all neighbors of the current state havéance computation varies. For complex patterns like graphs
equal or higher residue size. Two maximal cliques of size the computation is usually costly. On the other hand, the
m andn (where,m > n) are considered neighbors, if they similarity in the gidset space is very easy to compute. A
share exactly, — 1 vertices. The state transition procedure ratio of intersection-set and union-set can represent & sim
selectively removes one vertex from the maximal clique of larity. For two patterngy, andG,, it can be computed as:
current state and then expands it to obtain another maximakim (G, Gy) = % This is a very crude measure
cligue, which satisfies the neighborhood constraints. for similarity since, two very different patterns can have a
very similar set of transactions. We did not use this measure
in our work. But, for simpler patterns, like itemsets, itysa
an important role in finding distances between patterns.

We used the graph similarity measure proposed by
Bunke et al. [2] that computes the similarity between two
patterns by finding the relative size of their common sub-
patterns. For the case of graphs, this is equivalent to
finding the relative size of the maximal common sub-
graph of two graphs. I, G2 are two graphs andr,,,.
is the maximum common sub-graph between these two

(a) A similarity graph, solid lines graphs, then the following equation computes the similar-
represent elements with similarity itv: sim (G G ) _ |Gmel

< «, broken lines represent simi- y: meiT1, 2 max([G1[,[G2]) * o .
larity > 3 For our purpose, we computed the similarity by using a

maximal graph mining algorithm [7], that takes two graphs

i @ as input and mines for maximal graph patterns with 100%

@/" \ ) support. The frequent maximal graph of maximum size is
used to compute the size of the maximal common subgraph

| 3 - o ¢ in the similarity equation.
) \/d | \\ However, computing the exact similarity by solving the
| 3 ”@ maximal common subgraph can be costly, and fordhe
- : orthogonal graph problem, most often, we can compute a
®\ - lower bound on the graph-distance by considering a graph
@ as a labeled edge-multiset. We define the edge-multiset
(b) Initial clique (1,2,3) with(c) A local neighbor clique (2,3.4)  Similarity as follows: LetGy, G be graphs, and be the
residue=2 with better residue=1 similarity between them as computed usisgn,,,.. Let
Eq, andEg, be the edge-multiset where each edge is de-
fined by an ordered triple of its vertex labels and edge label:
Figure 5 shows an example state transition for the local- (v, ¢;, vj2). The edge multiset similarity is then given as:
optimal algorithm. In Figure 5(a) we show a toy similarity s, (G, G,) = % Now, the following
graph, where the solid lines represent low similarity ¢) lemma always holdgaxu SR
and broken lines represent high similarity (5) between '
corresponding elements. Figure 5(b) shows an initial eligu Lemma 2 sime,, > simpe.
(1,2, 3) which has residue = 2 (since element 4 and 6 are NOtPROOF sim,, > simpe, UNless|G,,.| > |Eq,| N |Eq,|.
covered). Figure 5(c) shows a neighboring cligRe3(4), But this is impossible, since all the edge<ip,. are present

Figure 5. Local optimization example



in both the set&, andE¢,. B from a Poisson distribution with medfi. Seeds are se-
) o ) lected to be added to the current graph € D uniformly
In computing similarity between two patterns, we first at random; as each seed is added we ensure that the graph
compute thesimen,. If simen, is smaller than, according  p, remains connected (by adding random edges). If the ad-
to Lemma 2,sim is also smaller thar, and the corre-  gjtion of a new seed td; would exceed sizd", instead
sponding patterns satisfy theorthogonal constraints. Oth- ¢ adding the seed, we make up the differential by adding

erwise, we Computeiny.. edges/vertices randomly to existing node®in The vertex
and edge labels are chosen randomly frbin (the vertex
5 Experiments labels) andL i (the edge labels), respectively.

5.1 Dataset Description 5.2 Empirical Results

Chemical Compound Datasets (DTP and CM: The All experiments were run on a 2.75Ghz PowerPC G5
chemical dataset is obtained from the DTP AIDS Antiviral Machine with 4GB Memory and 400GB disk. = Since
Screen test. The dataset can be retrieved from DTP web-ORIGAMI is randomized, we perform several runs (typically
site 2. The dataset is classified into three subsets of com-beétween 3 to 5). Each run generates an approximate maxi-
pounds: confirmed active (CA), confirmed moderately ac- mal setM. We next extract several orthogonal representa-
tive (CM) and confirmed inactive (Cl). Each chemical com- tive sets (typically 10) using our primary algorithm that re
pound is modeled as a graph where atoms represent the laports the best clique found. All numbers reported in the ex-
beled vertices and bonds represent the labeled edges of thperiments below are the averages over the best results over
graph. There arg bond types and1 vertex types. The full  all the runs. Wherever possible we tried to run state-of-the-
DTP database hai$942 graphs, with average graph size art graph mining methods like gSpan [14], and DMTL [5]
edges and3 vertices. The CM subset has 1084 graphs with (which mine all frequent subgraphs) and SPIN [7] (which
average 31 vertices and 34 edges. mines maximal graph patterns). The local optimization al-
Protein Structure Dataset (PS): Given a protein struc- gorithm was used only in the result that compares against

ture, we create a protein graph as follows. Each amino "€ fandom maximal clique algorithm.
acid residue is treated as a vertex (labeled by one of the 20

amino acids), and there exists an edge between two vertice$.2.1  Protein Interaction Mining

v; andv; if d(v;,v;) < t, i.e., if the Euclidean distance
betweoen the”', atom of the residues is at masfwe use

t = 7A). We created a database I6f0 proteins (10 struc-
tural families, with 10 proteins from each family), from the
HOMSTRAD (ttp://ww cryst. bi oc. cam ac.

First we evaluate our random walks approach to mining
maximal patterns. As mentioned in the introduction, we
ran a depth-first graph mining algorithm from DMTL [5]
to mine the protein interaction dataset (Pl), looking fer-fr

N ; quent graphs at™" = 100% (3 out of 3). The method
uk/ ~honstrad/) database of structurally-aligned ho- as running for over a day before we terminated it. Dur-

mologous proteins. The protein graphs have on average 16 ing this time it had generate a 7GB output (from an initial

nodes and 734 edges. The goal is to discover the orthogonaélvIB database), containing 8 million subgraphs. SPIN was
representative structural motifs for each protein family. not able to run c;n this dataset; it terminated WitH a segment
Protein Interaction Dataset (Pl): Data on pairs of inter-  fault. Utilizing the fact that each protein appears only@nc
acting proteins was collected from three different sources in a given graph, we converted each graph into an itemset
This dataset contains only 3 large graphs, with an averageof edges, and we were then able to mine the maximal edge-
of 2154 vertices and 81,607 edges per gragfach interac-  sets. Atz™ = 100% this yields 90 maximal frequent
tion graph is created using one source: the first graph has agyraphs.

edge if the proteins involved are known to interact (via bi-
ological experiments), the second graph has an edge if the
proteins are part of a known pathway, and the third graph
has an edge if the proteins have correlated gene expression
values.

Synthetic Implanted Dataset (Sl):We wrote a graph gen-
erator that accepts seed graphs and implants them in larger
graphs to create a databa3eFirst, we restrict the seeds to
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be a-orthogonal. TheS| a-orthogonal seeds can be gener- ° 200 800 1200 1600 2000

ated randomly or they may be extracted from a real dataset. # Random Walks

We generat¢D| graphs with the average graph size taken Figure 6. Random Walk Performance (PI)
2http://dtp.nci.nih.gov/docs/aids/aidkata.html Next, we ranORIGAMI on the original Pl dataset. Fig-

3This dataset was provided by Prof. Igor Kuznetsov at SUNafly ure 6 shows the number of uniqgue maximal patterns found



versus the number of random walks. The figure shows 01
thatall 90 maximal patterns were found after 1400 random 06
walks, and it took under 300s running time! This illustrates
the effectiveness of our random walks maximal pattern min-
ing approach. In this particular example, it was able to re-

turn the exact set of maximal patters (iM\ = M).
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Table 1 shows the time taken to mine the protein struc-
ture dataset at different values of minimum support. It/
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also shows the number of maximal anebrthogonal pat- 04 W00 -8 o
terns found (fOra _ 02) AISO Shown iS the aVerage 05 05 06 0[}65 07 075 08 200 300 400 500 :a;‘o 700 800 900 1000
entropy of the patterns il and inR. Note that for a (€) Avs.3(a=0.2) (d) TrueA on CM
set of graphgj, the average entropy is given 2§G) =

ZGe‘gglﬁ(G) , WhereH(G) — _ Zl Di In D, wherepi is the Comparison of random clique and Local optimization algorithm
fraction of occurrences off in protein familyi. For ex- 06 : ‘ Random s
ample, if7™" = 8, and the protein subgraph appears in 05 | Local Optimal &= |

8 different HOMSTRAD families, then its entropy will be g B=05

—8%In(§) = 2.079. The maximum possible entropy fora 2 04

pattern with support exactly™™ is also shown. We cansee & 5|

that in generabrIGAMI produces relatively good patterns S

that have about half the entropy compared to the maximum :Z; 0.2 |

entropy. An example of a low entropy pattern in the Im- o1l

munoglobulin family from HOMSTRAD is shown in Fig- '

ure 7. 0
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(e) Random maximal clique vs. local optimization on CM

Figure 8. Performance on DTP and CM

The results are shown in Figure 8. In (a)-(c) we plot
three curves, corresponding to increasing number of unique
maximal patterns found, i.e., for differepﬂ\ values. Fig-
ure 8(a) plots the effect @f on the average residue, which is

defined ad2BMI  As we can observe, asincreases the
[M]

average residue shrinks to under 10% indicating thattthe
orthogonals-representative set has left unrepresented less
than 10% of the mined maximal patterﬁs\. Figure 8(b)
plots the size of the orthogonal representative set (or maxi
Next we mined the chemical compound datasets. Note thatmal clique) for differentx. We see that, as expected, bigger
neither gSpan nor SPIN were able to run on the full 40942 cliques are found for larget. Figure 8(c) shows the effect
graph DTP dataset. On the other hand, we were able toof 3 on average residue. A$increases, we find that aver-
successfully ruroriIGAMI on DTP, using as the stopping age residue increases, since the more stringent (i.e eigh
criteria for M, the number of unique maximal patterns gen- the representativeness threshold, the fewer the patteas t
erated. We next extracted orthogonal representativemets f are represented.

different values ofv andz. Whereas SPIN was not able to run on the full DTP

Figure 7. Low Entropy Motif (in Red)

5.2.3 Chemical Compound Mining



dataset, we were able to run it on the smaller 1084 CM is a very difficult problem to solve, as it consists of indi-
dataset at a minimum supportofi® = 25/1084 = 2.3%. vidually hard problems: i) computing similarity between
At this support level it output 1227 maximal patterns in graphs, ii) random sampling from the set of frequent max-
about 181s. Thus for this smaller dataset we know the trueimal graphs, and iii) finding maximal cliquesoRIGAMI

set of maximal patternd1. Figure 8(d) plots the average employs effective techniques to tackle these challenges, a
residue with respect to the true maximal 8¢t and thetime ~ demonstrated empirically on a variety of datasets. Unlike
for mining as a function of the size of1. The observed previous techniques that focus on the distance in the trans-

trend is that agM| increases, the average true residue also aCtion space to obtain representatives, our approach cap-
decreases, since the orthogonal set is able to represeat mofUres representatives by considering the distances iretihe p
true maximal graphs. tern space. We introduced a randomized approach fO( min-
Figure 8(e) shows a comparison of random maximal ing maximal sub_graph patterns. The method is designed
clique method and the local optimization method for dif- [© COVer the partial order of subgraphs, so that orthogonal
ferenta values using the CM dataset. In every case, the maximal patterns are obta|.ned quw_:kly. We formulat'ed. the
residue of the local optimal method is 30% to 50% smaller ¢-Orthogonaljj-representative set finding as an optimiza-

than that of the random maximal clique method. tion problem. We show that the optimization problem is
NP-Hard and we thus propose a local optimization solu-

tion that is efficient and practically feasible. We demon-

5.2.4 Implanted Seed Mining strate thabRIGAMI is able to mine good quality orthogonall
D] T | 7™ | [R] | Seeds Found representative sets, especially for datasets whereitraalit
500001 50 | 200 | 25 479 enumerative methods fail completely.
30000| 50 | 200 | 26 5/9
40000 | 50 | 200 | 27 8/9 References
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20000| 20 | 200 | 25 4/9 [2] H.Bunke and K. Shearer. A graph distance metric based on
20000| 30| 200 | 21 5/9 the maximal common subgraphPattern Recognition Let-
20000 40 200 | 25 6/9 3] f ? 1|%:255-C25%_ 193'8' d J.-F. Boulicaut. A S
. Calders, C. Rigotti, and J.-F. Boulicaut. urvey on
20000 60| 200 | 24 79 Condensed Representation for Frequent SetSolmstraint-
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