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Abstract

In this paper we introduce a new concept, network atomic
operations (NAOs) to create a zero-cost consistent cut. Us-
ing NAOs, we define a wall-clock-time driven GVT algo-
rithm called Seven O’Clock that is an extension of Fujimoto’s
shared memory GVT algorithm. Using this new GVT algo-
rithm, we report good optimistic parallel performance on a
cluster of state-of-the-art Itanium-II quad processor systems
for both benchmark applications such as PHOLD and real-
world applications such as a large-scale TCP/Internet model.
In some cases, super-linear speedup is observed.

1 Introduction

At the heart of an optimistic parallel simulation system is
the ability to reclaim memory and re-use it to schedule fu-
ture events as well as support state-saving operations as part
of speculative event processing. Global virtual time (GVT)
defines a lower bound on any unprocessed event in the sys-
tem and defines the point beyond which events should not be
reclaimed. Thus, it is imperative that the GVT computation
operate as efficiently as possible.

Global virtual time (GVT) algorithms must solve two key
problems. The first is the transient message problem. Here, a
message is delayed in the network and neither the sender nor
the receiver consider that message in their respective GVT
calculation. Thus, a GVT algorithm must account somehow
for all messages scheduled. The second problem is called si-
multaneous reporting. This problem arises “because not all
processors will report their local minimum at precisely the
same instant in wall-clock time” [8]. Here, the underlying as-
sumption is that event processing is allowed to continue asyn-
chronously during the GVT computation which enables better
overall parallel performance.

Asynchronous GVT algorithms rely on the ability to create
a “cut” across the distributed simulation that divides events
into two categories: past and future [8, 18]. GVT is then de-
fined by the lower bound on unprocessed events in the “past”
of the cut, which is in effect an estimate of the true GVT since
events are being processed during its computations. Creating

a cut can be done in several ways depending on the archi-
tecture of the machine(s) being used. For distributed com-
puting platforms, the primary method of creating a “cut” is
via message-passing as was defined by Mattern [18]. Here,
messages are sent such that at most two cuts are made. The
first cut signals the “start” of the GVT computation. The sec-
ond cut, if needed based on message counts computed in the
first cut, consider any transient messages discovered from the
first cut. Please note, that these cuts need not be consistent.
A consistent cut is defined as a cut where there is no mes-
sage that was scheduled in the future of the sending proces-
sor but received in the past of the destination processor. These
messages can be ignored because by definition they must be
scheduled at a time that is greater than GVT computed us-
ing a consistent cut. The “cuts”, while not consistent, effec-
tively divide past from future in a causally consistent manner
to solve the simultaneous reporting problem. Additionally,
because of the use of message counts, it is able to determine
if a second “cut” round is needed and traps any transient mes-
sages.

In contrast, a shared memory multiprocessor greatly sim-
plifies the GVT algorithm. Fujimoto’s GVT algorithm [7]
generates a cut by setting a global flag positive. In a shared
memory system this operation is observed on all processors
in a causally correct order because the underlying hardware
memory management mechanism ensures that no two proces-
sors will observe different orderings of memory references to
a shared variable. Shared memory multiprocessor systems
that adhere to this memory ordering model are called sequen-
tially consistent [14]. The impact this memory model has on
a GVT algorithm are that: (i) no messages are lost which pre-
vents the transient message problem, and (b) the simultaneous
reporting problem is solved because all processor effectively
“observe” the start of the GVT calculation at the same instant
of wall-clock time.

The motivation behind our research here is the question:
Is there a method to achieve some of the benefits of sequen-
tially consistent shared memory but in a loosely coordinated,
cluster computing environment? The answer turns out to be
yes. In this paper, we propose the idea of a network atomic
operation (NAO), which enables a zero-cost cut mechanism
which greatly simplifies GVT computations in a cluster com-



Algorithm 1 Fujimoto’s Shared Memory GVT Algorithm:
Variable Definitions.
Global Variables
int gvt_flag;
lock_t gvt_lck; /* mutual exclusion variable */
int gvt_interval; /* number of time thru batch loop */
virtual_time_t lvt[npe]; /* LVT of each processor */
virtual_time_t gvt;

Processor Private Variables
virtual_time_t send_min_ts;

Algorithm 2 Fujimoto’s Shared Memory GVT Algorithm:
Initiate GVT.
Steps to Initiate GVT within the Scheduler Loop

if(this processor is the MASTER)
{

gvt_cnt++;
if( gvt_cnt >= gvt_interval AND
processor status is GVT_NORMAL)
{
gvt_cnt = 0;
if(gvt_flag == -npe)
{

lock(&gvt_lck);
gvt_flag = npe;
unlock(&gvt_lck);

}
set processor status to GVT_COMPUTE;

}

}
else if (gvt_flag > 0 AND

processor status is GVT_NORMAL)
set processor status to GVT_COMPUTE;

Algorithm 3 Fujimoto’s Shared Memory GVT Algorithm:
Receive Events.
Steps to Receive Events and Anti-messages within Scheduler
Loop

move positive messages from shared memory
message queue to processors priority queue.
process any rollbacks.
remove anti-messages from shared memory
‘‘cancel’’ queue.
process any message cancellations and
rollbacks.

puting environment. We demonstrate its reduced complexity
by extending Fujimoto’s shared memory algorithm to operate
across a cluster of shared-memory multiprocessors (SMP).
We present a performance study using the PHOLD bench-
mark and TCP network model.

Algorithm 4 Fujimoto’s Shared Memory GVT Algorithm:
Compute GVT.
Steps to Compute GVT Once Initiated within Scheduler Loop

if( processor status is GVT_COMPUTE )
{

set processor status to GVT_WAIT
lvt[my_pe] = min(send_min_ts,

smallest event in
priority queue);

lock(&gvt_lck);
gvt_flag--;
if( gvt_flag == 0)
{
gvt = min( lvt[0] ... lvt[npe-1] );
gvt_flag = -1;
set processor status to GVT_NORMAL;
reset send_min_ts to max time value;
unlock(&gvt_lck);
collect processed events and state < GVT;
if( gvt > end time of simulation )

goto DONE;
} else
{
unlock(&gvt_lck);
set processor status to GVT_WAIT;

}
}
else if(processor status is GVT_WAIT AND

gvt_flag < 0 )
{

lock(&gvt_lck);
gvt_flag--;
unlock(&gvt_lck);
if( gvt > end time of simulation )
goto DONE;

collect processed events and state < GVT;
set processor status to GVT_NORMAL;
reset send_min_ts to max time value;

}

2 Fujimoto’s GVT Algorithm and
NAOs

We begin with an overview of Fujimoto’s GVT algorithm,
as shown in Algorithms 1 – 5. Please note, there are minor
modifications from the original algorithm presented in [7],
but the correctness and efficient execution is preserved. These
5 parts are described as follows:

1. Variables (Algorithm 1): The key shared variable is
the gvt_flag, which contains a mutual exclusion vari-
able, gvt_lck.

2. Initiate GVT (Algorithm 2): The algorithm is initi-
ated when the “master” processor iterates through the
event scheduler loop gvt_interval times before set-
ting the gvt_flag equal to the number of processors



Algorithm 5 Fujimoto’s Shared Memory GVT Algorithm:
Process and Schedule Events.
Steps to Process and Schedule Events within Scheduler Loop

Process smallest event in priority queue;
if( sending a new event during

event processing )
{
enqueue message on destination

receive queue;
if( gvt_flag > 0 AND

processor status is NOT GVT_WAIT )
send_min_ts = min( send_min_ts,

time-stamp of new event);
}

DONE:
compute parallel simulation stats and exit.

(i.e., npe). Here is where the algorithm exploits the se-
quentially consistent memory properties. Every proces-
sor will “observe” the start of the GVT at the same in-
stant in wall-clock time. More precisely, once the flag
has been set, any other messages sent, are the respon-
sibility of the sender, as shown in Algorithm 5. This
provides a true separation between events in the logi-
cal past and logical future. When another processor ob-
serves the start of a GVT computation, it changes its sta-
tus to “needs to compute an local virtual time (LVT)”
This is denoted by send_min_ts.

3. Receive Events (Algorithm 3): Here, new events and
anti-messages are processed from arrival queues shared
between processors. Each processor has its own ex-
ternally exported queue that all other processors use to
send events. A mutual exclusion lock is used around
the queue to correctly serialize the arrival of either new
events or anti-messages. Because of sequentially con-
sistent memory, no message can be lost “in the net-
work” and so the transient message problem is intrin-
sically solved. Observe that this “receive” and process
rollbacks and anti-messages is a necessary step prior to
computing any part of the GVT. It is also a normal step
in every iteration through the scheduler loop.

4. Compute GVT (Algorithm 4): Once the new events
and anti-messages are processed, each processor com-
putes its local virtual time (LVT) value, which is the
smallest unprocessed event that it is “aware” of, which
includes any events it sent after the gvt_flag was set.
This is denoted by send_min_ts. The last processor
to compute its LVT also computes the minimum among
all LVTs, which becomes the new GVT value. To inform
other processors that the new GVT value is available,
the gvt_flag is set to negative one. The last proces-
sor never “waits” for the GVT value and skips that state,
while all other processors move to the “asynchronously
waiting for GVT” state.

Algorithm 6 gvt_interval is a predefined number of it-
erations, and gvt_count is the current number of iterations.
CPU 0:

a. If(gvt_interval == gvt_count)
b. set gvt_flag positive

CPU 1:
c. if(gvt_flag)
d. start processing LVT

5. Process Events (Algorithm 5): In this last step, forward
event processing commences. Here, the smallest event
is removed from the pending event set and processed. If
a new event is scheduled and the gvt_flag has been
set greater than zero and the LVT value has not been
reported (i.e., the processor should not be in the “wait”
state), then it means this processor must consider this
event in its LVT computation.

2.1 Network Atomic Operations

To directly extend Fujimoto’s GVT algorithm to a network of
machines, would require a sequentially consistent distributed
memory model, similar to what is provided in a shared mem-
ory system. As we described above, each processor observes
the “start” of the GVT computation at the same wall clock
time because of sequentially consistent memory. In reality,
a processor attempting to read the flag may be stalled while
the underlying system updates the local cache with the cor-
rect value of the flag. Consider the following abstracted view
of the algorithm run in parallel on an SMP machine as shown
in Algorithm 6.

Running this code on a single processor defines the sequen-
tial consistency. The statements could be ordered on a single
CPU as O = {a, b, c, d}. In this case both CPU 0 and 1
would begin computing GVT. However, if we change the in-
terleaving of instructions to O = {a, c, b, d} then the GVT
computation would only begin on CPU 0. CPU 1 would be-
gin processing more events, but when an event is sent, the
gvt_flagwould be checked per the algorithm to ensure the
sender correctly accounts for events during the GVT compu-
tation. The instruction, call it e, would then be accounted
for by CPU 1 because e occurred after instruction b, and the
consistent cut is properly formed.

NAOs provide a similar functionality in a distributed sys-
tem, however they are clock-based and not memory or state-
based. The general concept is that an operation may occur
atomically within a network of machines if all machines
“observe” the event at the same instant of wall clock time.
This functionality can be implemented on modern proces-
sors because most architectures now provide a time-stamp
counter, or clock-cycle counter for performance measuring,
such as the rdtsc instruction on all x86 series proces-
sors [11]. So we can compute wall-clock time based off of
each processor’s time-stamp counter and synchronize these
counters to a common view of wall clock time. Calls to read-



Algorithm 7 Here, gvt_interval redefined as a measure
of time usually in clock cycles, and not defined as the number
of batch round through the scheduler.
CPU 0:

a. if(local clock time >= gvt_interval)
b. start computing GVT

CPU 1:
c. if(local clock time >= gvt_interval)
d. start computing GVT

ing the CPU clock adhere to the principles of a sequentially
consistent memory model because wall clock time is consis-
tent across all processors. Consider the following clock-based
approach shown in Algorithm 7.

If we again attempt to create a sequential ordering of in-
structions, it becomes obvious that any permutation is guar-
anteed to be consistent. Consistency is guaranteed because
instructions a and c in Algorithm 7 will evaluate to true if
and only if the same instance of wall clock time has passed
for each CPU. Because we can only read the current wall-
clock time (as measured in clock cycles), any permutation of
the possible orderings is valid because wall clock time is as-
sumed to be the same for all processors. There are limitations
which we will discuss later in the paper.

So NAOs may be characterized as a subset of the possi-
ble operations provided by a complete sequentially consistent
memory model. For example, NAOs can only occur at pre-
defined intervals, not dispersed throughout the time-scale of
the running application. Not only must NAOs occur at agreed
upon intervals, but they must also take on a specific meaning
or value. In the case of the GVT algorithm, we use NAOs
to generate a consistent cut. The system is either in a GVT
computation, or it is not. Further, GVT computations occur
at a predefined frequency through the runtime of the applica-
tion. An NAO cannot be used to give some global variable
any value, because the only global variable in an NAO is wall
clock time. However, any sequence of operations can be per-
formed once the clock has been read.

2.2 Clock Synchronization

The heart of a network atomic operation is the assumption
that all processors share a highly accurate, common view of
wall-clock time. For this to occur, each processor’s time-
stamp or cycle-counter must be synchronized in some fash-
ion. This is a well researched problem in distributed com-
puting. The most recent, relevant result for our operating
environment is by Ostrovsky and Patt-Shamir [20]. Here,
they present provably optimal clock synchronization scheme
where the clocks have drift and the message latency may be
unbounded. Previous to this result, all other optimal results
were based on non-drifting clocks. Moreover, they suggest
that operational clock synchronization algorithms need not be
general and “that they should work for the particular system
in which they are deployed”. We take this view here. In par-

ticular, because of the time-scale of the clock is 1,000 times
greater than message sends (i.e., nanoseconds vs. microsec-
onds), clock drift rates can largely be ignored here.

Additionally, since our contribution is not about clock syn-
chronization algorithms, we used a simplified approach. To
synchronize the clocks across all processors, we use a net-
work barrier. Here, a master time keeper sends a synchro-
nization message to each node, which responds back with its
local time-stamp-counter. The master time keeper then sends
a message to each processor with an appropriate time-stamp
counter value that would be when in real-time measure in cy-
cles the first GVT is to occur. Upon receipt of that message,
each processor is released from the barrier and begins pro-
cessing events. We recognize that for a large 1000 processor
cluster, this approach has some scalability limitations. For
such an operating environment, we would implement Ostro-
vsky and Patt-Samir algorithm [20].

3 Seven O’Clock GVT Algorithm

We can now give a definition of a network atomic operation:
Definition: An NAO is an agreed upon frequency in wall-

clock time at which some event is logically observed to have
happened across a distributed system.

Each processor in the system uses the NAO to determine
the current state of the system depending upon the logical
meaning of the NAO. For example, we use an NAO to deter-
mine if a GVT computation has been started. There is no ac-
tual global variable, such as the gvt_flag in Algorithm 2,
which signals the start of the GVT. Instead, we simply com-
pute GVT every n units of wall-clock time.

We have affectionately call this algorithm the “Seven
O’clock Algorithm”. Seven O’clock comes from the idea that
if we could have synchronized wall clocks on each network
node, then we could simply compute GVT at well-defined in-
tervals, i.e., every minute starting from Seven O’Clock, where
Seven O’Clock is simply the start time of the scheduler. Dur-
ing the discussion of this algorithm we assume that each pro-
cessor’s timestamp counter is perfectly synchronized with all
of the other counters. We introduce the complexity of clock
drift and jitter at the end.

As we previously indicated, if one were to open up the un-
derlying hardware implementation of a sequentially consis-
tent shared memory system, a number of messages would be
observed being passed over the memory bus between memory
and cache modules. Also, any memory reads to a shared loca-
tion could be blocked while waiting for the memory address
to be made consistent. In particular, these consistency mes-
sages would either be well synchronized in time over a mem-
ory bus or acknowledged over a network depending on the ar-
chitecture [9, 15]. Because we assume a distributed message
passing system without acknowledgments, we need some ad-
ditional information about the communications environment
to avoid the transient message problem (i.e., events lost in the
network). This problem can be overcome by adding a small
amount of time to the NAO expiration, max_send_delta_t.

Definition: max_send_delta_t is a worst case bound on the
time to send an event through the network.



This delta allows for the sending processor to account for
remotely sent events which may cross the cut boundary. Note
that this is not the same as delta causality which allows for
excessively old events to be discarded. While it may seem un-
reasonable to assume such a value can be determined in prac-
tice, current cluster computing networks rely on high-speed
switching fabrics. These fabrics typically have extremely low
loss probabilities (1e − 12 or less) and can typically support
the full bandwidth of all ports. Consequently, the worst case
is experimentally computable and does not vary greatly from
the average case.

The states of the Seven O’Clock algorithm are shown in
Figure 1 and are discussed below.

• State A: Events are processed normally and not ac-
counted for in GVT computation. This is no different
from Fujimoto’s GVT Algorithm.

• GVT “start”: The NAO signals the consistent start of
the GVT to all processors, just as setting the gvt_flag
in Fujimoto’s algorithm.

• State B: Events sent during the max_send_delta_t
interval are accounted for on the sending side. This is
similar to how Fujimoto’s Algorithm uses gvt_flag
to capture events the receiving processor might not
consider in the sender’s LVT computation. Here, our
algorithm reads the processor’s local cycle counter,
determines if it is within the max_send_delta_t
time of a GVT computation. If it is, then it
captures this event’s timestamp against the mini-
mum of any previously scheduled events during the
max_send_delta_t time.

• State C: Processors compute LVT by taking
min(unprocessed events, events sent during B).
This is identical to Fujimoto’s GVT Algorithm.

• State D: Node 1 is first to complete local GVT algorithm
and propagates this value to other nodes.

• State E: Node 0 completes it’s local GVT algorithm and
receives Node 1’s. It takes the minimum of the two and
retransmits this value back to Node 1. The other proces-
sors check for the new GVT value at some point in the
future and read the value from the shared memory. The
processors return to state A.

The only other differences between Fujimoto’s GVT algo-
rithm and Seven-O’Clock are: (a) physically receiving mes-
sages and (b) physically sending messages. In the receiving
step (Algorithm 3), all remotely sent new event messages and
anti-messages are read from a communications channel, such
as a socket. This is in addition to the shared memory queu-
ing structures. From the standpoint of the GVT algorithm, it
captures messages sent over either communications medium.
Likewise, when a message is sent, the algorithm does not dif-
ferentiate between which events are shared memory or off-
system messages.

3.1 Proof of Correctness

As previously noted, in order for a GVT algorithm to operate
correctly, it must solve the transient message and simultane-
ous reporting problems.

First, we assume all processors clocks are perfectly syn-
chronized and there are no clock drift or jitter problems. We
will relax this constraint later.

Proof: To prove that a transient message cannot occur,
assume that a transient message occurs in the scheduler.
Then the time to send the event must be greater than the
max_send_delta_t. But by definition max_send_delta_t
is a worst-case bound on the time to send an event. This leads
to a contradiction because the transient event took longer to
send than the worst-case bound.

Next, the simultaneous reporting problem occurs when all
processors do not begin computing their local minimum at
the same instant. In fact, this is exactly what happens in the
Seven O’Clock algorithm. Because the consistent cut is gen-
erated using an NAO, each processor in the distributed system
begins accounting for messages at precisely the same instant
in wall clock time. Therefore this problem does not occur in
this GVT algorithm.

Theorem: The simultaneous reporting problem cannot oc-
cur in a system where a consistent cut is defined across all
processors at precisely the same instant in wall clock time.

Proof: Assume to the contrary that the simultaneous re-
porting problem can occur.

CASE 1: Assume each processor’s clock is perfectly syn-
chronized with all other processor clocks. For the simultane-
ous reporting problem to occur, at least two processors must
have different views of wall clock time. This is a contradic-
tion because there only exists one notion of wall clock time.

CASE 2: Each processor’s clock is synchronized with
some degree of error, which is bounded by epsilon. In order
for the problem to occur now, at least two processors must
have different views of wall clock time, which differs by at
most epsilon. This means that in epsilon time between two
processors, a message was sent which was not accounted for.
This is a contradiction because it is not possible to send a
message in epsilon time and not account for the event being
sent. Consider the steps for remote sending of events:

1. Send the event.

2. Read local time-stamp clock.

3. If time_now + max_send_delta_t >= gvt_interval,
then account for the event.

Since epsilon is a value far less than max_send_delta_t,
we must always account for the sent event. In the event
that epsilon >= max_send_delta_t, we simply change
our max_send_delta_t to have a larger value to overcome
epsilon.

3.2 Problems with Clock-Based Algorithms

While the discussion of clock synchronization and its associ-
ated problems are outside of the scope of this paper, the Seven



Figure 1: States of the Seven O’Clock Algorithm.

O’Clock algorithm does provide a mechanism to solve each
of these problems. Three problems arise in any clock-based
algorithm: drift, jitter and synchronization error. During the
course of a simulation, clocks may drift together, or apart.
In the later case, this can lead to a gradual disparate view of
time. Clock jitter occurs when a time is discretized and the
width of the time units is not uniform. This can be a cause of
clock drift over time depending on the frequency and size of
the jitter. Finally, it is difficult to synchronize clocks to a high
degree of granularity. This can lead to two processors being
synchronized, but off by an indeterminate amount. Each of
these problems can be dealt with in the Seven O’Clock algo-
rithm by adjusting the definition of max_send_delta_t. Re-
call that this value is a worst-case bound on the time to send
an event between two processors.

We now redefine max_send_delta_t as the maximum of:

1. worst-case bound on events sends

2. two times the synchronization error

3. two times the maximum clock drift during execution

We observe that the max_send_delta_t parameter is sim-
ply an adjustment to the NAO to compensate for in-transit
events that the sender must account for if they will not be re-
ceived prior to the NAO expiring at the receiver. The “two
times” factor comes from the observation that one processor
could have a max synchronization error or clock drift in the
negative direction relative to the absolute real time (i.e., mas-
ter node) and the other processor could have the max synchro-
nization error or clock drift in the positive direction. Thus,
these two processors are “out of synch” by at most a factor of
two times maximum error or drift. However, in practice these
error and drift values are several orders of magnitude smaller
than the maximum time to send an event through the network,
and can be safely ignored in most operating circumstances.

3.3 Limitations

Two issues arise from the introduction of the Seven O’Clock
algorithm that do not exist in other GVT algorithms. Both
stem from the general problem which is that the Seven
O’Clock GVT algorithm cannot be “forced”. First, GVT
must advance for a simulation to determine that the simu-
lation must end. In the Rensselaer’s Optimistic Simulation
System( ROSS ) parallel scheduler this happens quickly be-
cause events to be scheduled past the end time are not pro-
cessed and the GVT interval counter climbs quickly so that
GVT may be computed when the system is effectively out of
events. The Seven O’Clock algorithm cannot be forced be-
cause each node must wait for the NAO to expire. At the end
of a simulation, the ROSS system has no events scheduled
for processing, and is simply waiting for the CPU to com-
pute the next GVT interval. This situation cannot be aborted
early because each network node is unaware of other nodes
still actively processing events. The time wasted is bounded
in the worst case by the size of the GVT interval. It is reason-
able to expect this value to be small in relation to the overall
time spent in execution, and so we do not consider this to be
a major loss because it can be effectively amortized away.

The fact we cannot force a GVT computation leads to the
second limitation to the system. When all of the free events
were consumed in the ROSS parallel scheduler, we were pre-
viously able to “jump” the GVT interval counter and force a
GVT computation to occur. Refreshing the GVT value meant
that we could reclaim at least one additional event in the sys-
tem and continue forward processing. When free events are
exhausted in the ROSS distributed scheduler we can no longer
force GVT, and so must simply wait for the next GVT interval
to pass. This problem occurs when we do not have sufficient
optimistic memory to continue forward execution. The solu-
tion to this problem is to simply add more optimistic memory,
or more network nodes, further distributing the model so that
this does not occur. An indirect cause of this problem is spec-
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Figure 2: PHOLD results in parallel case.

ulative execution. In this case, stalled waiting for GVT to
pass can act as a throttle on the faster nodes in the network
such that they cannot overly speculatively execute, thereby
creating the potential for long rollbacks. This problem is best
solved by tuning the GVT interval to more closely match the
amount of available memory.

4 Performance Study

There are two benchmark models used in this performance
study. The first is a synthetic workload model called PHOLD.
This commonly used benchmark has been modified to sup-
port reverse-computation and is configured to have mini-
mal LP state, message sizes and event processing. The for-
ward computation of events involves computing three ran-
dom numbers: one for computing if a remote event should
be created, one used to compute the time-stamp and one used
for the destination LP. The reverse computation involves “un-
doing” an LP’s random number generator (RNG) in order to
restore it’s state. Because the RNG is perfectly reversible, the
reverse computation restores seed state by computing the per-
fect inverse function as described in [3]. The destination LP
is determined by calling a uniformly distributed random num-
ber generator in the range of 0 to 100. If the generated value
is less than the specified percent of remote messages allowed,
we choose the destination LP over an exponential distribution
of LPs, otherwise, the event will be sent to the source LP. The
third call determines the offset timestamp for events and is
exponentially distributed with a mean of 1.0, with the model
completing at timestamp 100. For all experiment runs, we
mapped LPs to PEs in a round robin fashion. Each simula-
tion run contained 1 million LPs, and the number of KPs was
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for I/O operations.
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determined as NPEs2 ∗4. The message population per LP is
16. This model is a pathological benchmark which has mini-
mal event granularity while producing a configurable number
of remote events which can result in “thrashing” rollbacks.

The second application is a model of TCP and this imple-



mentation follows the Tahoe specification [5]. There are three
main data structures in this model: the data packet which
is sent between hosts in the data plane, the network router
LPs which maintain queuing information and forward packets
through the network and the host LPs which keep statistical
information on the transferring of data. For detailed model
design and implementation, we refer the interested reader to
[25].

For all TCP experiments, each TCP connection maintained
a consistent configuration. The transfer sizes are infinite and
so each TCP sender/receiver pair operates for the duration of
the simulation. Each host pair is generated randomly during
the initialization of the model. The random nature of con-
nections means that there is a high percentage of “long haul”
links which results in a large number of remote events being
scheduled between PEs. The synthetic topology is hierarchi-
cal, and contains 4 levels, the top-most being fully connected.
A router in a given level has N lower level routers or hosts
connected to it, so the total number of nodes in the system is
equal to: N4 + N3 + N2 + N . The nodes were enumerated
in such a way that the next hop can be calculated based on the
destination at each hop. The bandwidth, delay and buffer size
for the synthetic topology is as follows:

• 2.48 Gb/s, a delay of 30 ms, 3MB buffer

• 620 Mb/s, a delay between 10 and 30 ms, 750 KB buffer

• 155 Mb/s, a delay of 5, 1o and 30 ms, and 200 KB buffer

• 45 Mb/s, a delay of 5 ms, and 60 KB buffer

• 1.5 Mb/s, a delay of 5 ms, and 20 KB buffer

• 500 Kb/s, a delay of 5 ms, and a 15 KB buffer

4.1 Computing Testbed and Experiment Setup

The Itanium2 processor [10] is a 64 bit architecture based
on Explicitly Parallel Computing (EPIC) which intelligently
bundles instructions together that are free of data, branch or
control hazards. This approach enables up to 48 instructions
to be in flight at any point in time. Current implementations
employ a 6-wide, 8-stage deep pipeline. A single system can
physically address up to 250 bytes and has a full 64-bit virtual
address capability. The L-3 cache comes in a 3 MBs config-
uration and can be accessed at 48 GBs/second which is the
core bus speed. For all experiments here, up to 4, quad Ita-
nium processor servers were use. TCP over Gigabit Ethernet
was used as the interconnection network between quad pro-
cessor systems.

When applicable, the parallel scheduler computed 64
events per batch loop, and computed GVT after 64 batch
loops. Thus, up to 4096 events will be processed between
GVT epochs. These settings have been determined in the past
to yield high performance. For the Seven O’Clock Algorithm,
the NAO is configured to fire every 250 milliseconds to com-
pute GVT. Optimistic event memory was computed in each
case from the following formula: OptimisticMemory =

C ∗NumPEs∗Batch∗GV TInterval [3]. Here, NumPEs
is the number of processors used within the network, and

C is a small constant factor. Each processor can consume
Batch ∗ GV TInterval events per GVT epoch and C deter-
mines an amount of reserve buffers for optimistic execu-
tion during the asynchronous GVT computations. During
distributed execution, each processor can consume approxi-
mately the NAO time interval (in cycles) divided by the aver-
age time (in cycles) to compute one event per GVT epoch.

4.2 PHOLD Performance Data

For the Itanium cluster results, we configured PHOLD with
10% remote messages with 16 seed event per LP and used
the Myrinet network. Shown for completeness, Figure 2
shows that ROSS parallel scheduler continues to provide lin-
ear speedup. In fact, it proved difficult to derive a sequential
case which did not show a slight super-linear speedup. Com-
paring the results in the parallel and distributed case in Figure
3 is complicated because we have results based both on the
number of processors used and on the number of nodes used.
We start by considering two nodes maximizing the processors
before increasing the number of nodes. Then we consider
three nodes, and finally four nodes.

When a fourth processor is allocated per node, perfor-
mance degrades. We attribute this phenomenon to our sim-
ulation processes competing with other operating system ser-
vice processes resident on each node, such as Network File
System (NFS) daemons, for processing time. For two and
three processors cases, the Linux scheduler would bind those
service jobs to other available processors. When all four pro-
cessors are used, the Linux scheduler now must multiplex
our simulators’ threads and these service processes among
all processors leading to an increase in context switch over-
heads. To confirm this hypothesis, we measured the amount
of context switches which occurred in each case. For the two
and three processor cases we observed 12 and 14 involuntary
context switches respectively. However, for the four proces-
sor case, we found 1123 involuntary context switches. This
is a 100 fold increase.

After close analysis of the parallel and distributed system
we conclude that there are two possible speedups in a par-
allel and distributed system: speedup due to parallelism and
speedup due to distribution. In Figure 4 we see that the sys-
tem is in fact generating a better speedup as we go more dis-
tributed. Besides context switching, other problems may arise
such as memory bus overloading or serialized memory refer-
ences [2, 15, 19], which limit the possible speedup due to
parallelism. By maximizing the number of nodes used in a
simulation it is possible to avoid or reduce these problems by
de-coupling the hardware systems which are limiting perfor-
mance.

4.3 TCP Performance Data

Computing the LP to PE mapping for the TCP-TAHOE
model becomes difficult when the number of processors avail-
able is not some multiple of 32. Therefore we present here
the results for the 2- and 4-node simulation runs. Figure 5
shows that we again generate a very linear speedup. How-
ever, the speedup is sub-linear because of the available num-
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Figure 5: Results for TCP-TAHOE running on 2 and 4-nodes.

ber of kernel processes (KPs). In [3], KPs where introduced
as an aggregation structure for reducing LP fossil collection
and rollback overheads. In our implementation of this opti-
mization, we hypothesize that we are seeing the same per-
formance problem here, but on a much larger scale. With 1
million LPs, each modeling some end (either source or des-
tination) of a TCP connection, the model requires far greater
than 32 KPs in order to achieve good performance. So it is
constrained by the way the topology of the TCP network was
mapped to LPs/KPs/PEs. However, we believe with a better
mapping, the performance would improve.

5 Related Work

Samadi’s algorithm [24] solves the simultaneous reporting
problem through the use of message acknowledgments. Here,
processors will tag any “ack” message that it sends in the pe-
riod from when the processor reports its LVT until it receives
the new GVT value. This process prevents any messages
from “slipping through the cracks” [8].

In addition to Fujimoto’s and Mattern’s GVT algorithms,
there have been a number of predecessors. Preiss [22] intro-
duced a scheme which places the PEs into a ring. The first
round completes when a token has been passed around the
ring and returns to the initiating PE. When the initial token is
received, a PE begins accounting for remotely sent messages
which may or may not complete prior to the GVT computa-
tion. On receiving the second token, a local GVT value is
computed as the minimum between the value stored in the
token and the PEs local minimum. Improvements to this al-
gorithm have been proposed by Bellenot [1] which reduce the
complexity of message passing by organizing PEs into trees
rather than a ring. Lin and Lazowska [16] propose a new data

structure that reduces the frequency of acknowledgment mes-
sages. The work done by Tomlinson and Garg [23] uses coun-
ters to detect transient messages. However, this scheme does
not employ the use of a “cut” as Mattern’s algorithm does.
Pancerella [21] propose a hardware based scheme whereby
host systems using custom network interface cards are inter-
connected to form an efficient reduction network to rapidly
compute GVT.

In follow-up research, Lin [17] uses control messages to ef-
ficiently find/flush out transient messages. At about the same
time, D’Souza et. al [4], proposes a statistical approach to
estimating GVT.

Prior to Fujimoto’s GVT algorithm, Xiao et al. [26], pro-
poses an asynchronous GVT algorithm that exploits shared-
memory multiprocessor architectures. Here the concept of
“cages” is used, where each processor own some set of
“cages” that it places or lays down in order to track the LVT of
that processor. It is interesting to note, that here a global Cage
Flag much like the gvt_flag in Fujimoto’s Algorithm, is
used to “kick off” the GVT computation.

Related to both “consistent cuts” and sequentially consis-
tent memory is the issue of causality. Most recently, Zhou et
al [27], propose a “relaxed” causal receive ordering algorithm
called critical causality for distributed virtual environments.

6 Conclusions

We present a new idea of Network Atomic Operations, and
apply it to solving the global virtual time problem. We use an
NAO to generate a zero-cost cut in a distributed system which
is both scalable and efficient. Our experimental results indi-
cate a super-linear speedup over sequential. We also propose
that there are two forms of speedup, one due to paralleliza-
tion and one due to distribution. The parallel scheduler results
were already super-linear, however there is more speedup in-
herent to distribution because we eliminate bottlenecks such
as the memory bus and context switching. Finally, NAOs lead
us to viewing the behavior of Time Warp in the frequency
domain because they define the relationship between virtual
time and wall-clock time. In the future, such a view may po-
tentially prove beneficial in better understanding Time Warp
behavior.
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