
Linux Support for Transparent Checkpointing of Multithreaded
Programs

Christopher D. Carothers and Boleslaw K. Szymanski
Department of Computer Science
Rensselaer Polytechnic Institute

110 8th Street
Troy, NY 12180, U.S.A.

{chrisc,szymansk}@cs.rpi.edu

February 20, 2002

1 Introduction

The most common use of checkpointing is in fault toler-
ant computing where the goal is to minimize loss of CPU
cycles when a long executing program crashes before com-
pletion. By checkpointing a program’s state at regular in-
tervals, the amount of lost computation is limited to the
interval from the last checkpoint to the time of crash. Re-
search in this class of checkpoint algorithms and systems
has been ongoing for at least last 15 years.

Our interest here is on the fast, efficient checkpoint-
ing of threaded programs that execute on shared-memory
computing platforms. We are motivated by problems that
arose in our investigation of new parallel simulation and
computation synchronization methodologies. There are t-
wo paradigms in which the ability to checkpoint (save the s-
tate of the computation) quickly is crucial. One is the spec-
ulative execution of a portion of code that otherwise would
be suspended by synchronization. For example, consider a
program reading an object mirrored on the local site. If this
object changes infrequently, then instead of waiting verify
the validity of the local copy, the program can checkpoint
and then speculatively read the object. If the local copy is
invalid, the executing copy of the program can be killed,
and the copy with pre-reading state executed. The amount
of time saved by not waiting to verify the validity of a local
object copy defines the gain of the speculative execution.

In general, letp be a probability that the speculation is
unsuccessful and would require rolling back the computa-
tion to the speculation point. Letr denote the cost of such
a rollback ands the saving resulting from elimination of
waiting for synchronization when speculation is success-
ful. Finally, let so be the cost of speculation, (mainly the
cost of checkpointing, incurred regardless of the outcome
of the speculation). Under this assumptions, speculation is

beneficial when:s > o + r � p or, equivalentlyp < (s � o)=r:
Hence, smaller the value ofo, cost of checkpointing, more
widely speculative execution can be applied beneficially.

The primary contribution of this paper is a new algo-
rithm for fast, efficient checkpointing of large-scale shared
memory multithreaded programs. This approach leverages
the existingcopy-on-write semantics of the virtual memo-
ry system by introducing a newcheckpoint system call
into the Linux operating system. While based on Linux, we
believe that the core idea and algorithmic approach is gen-
eral enough that it could be put into any operating system.

2 Linux Internals

The Linux Operating System is one of many variants of U-
NIX. Like most versions of UNIX, Linux supports virtual
memory, process creation and control, interrupts, symmet-
ric multiprocessing, interprocessor communications, sys-
tems management for many types of files, communication-
s (i.e., sockets) and a host multimedia peripheral devices
such as sound and video. As of this writing, the curren-
t most stable version of Linux is 2.4.10. Our algorithm
is based on is 2.4.8 Linux version, however, it is a non-
trivial task to port our implementation to more recent ver-
sions within the stable 2.4 source tree.

2.1 LinuxThreads

Starting at the user-level, multithreaded programs are typi-
cally realized on Linux using a threading package such as
LinuxThreads or Next Generation POSIX Threading (IB-
M).

1



Developed by Xavier Leroy, LinuxThreads is an imple-
mentation of POSIX 1003.1c Pthread interface. This im-
plementation provides the appearance of kernel level thread-
s by realizing each thread as a separate UNIX process which
shares the same address space with all other threads. Schedul-
ing between threads is handled by the kernel scheduler, just
like scheduling between UNIX processes.

One of the drawbacks of LinuxThreads is that each thread
is realized as a full kernel process. This prevents what is
called N:M threading models where many threads can be
bound to a particular kernel-level process or thread. Cur-
rently, SGI, SUN and IBM UNIX variants support this thread-
ing model. Other problems with LinuxThreads include dif-
ferent process identifiers for each thread and the use of us-
er defined signals which prevents programs that need both
threading and user defined signals from operating cleanly.

LinuxThreads are created by using theclone system
call. This Linux specific system call allows processes to
be created in such a way that they can share resources at
a variety of different levels. In particular, a process and
its child can be configured to share (or not to share) vir-
tual memory, file system information, file descriptors, and
signal handlers.

In LinuxThreads, when the thread is created, a thread
manager process is instantiated which then spawns the new
thread using theclone system call. This manager thread
then waits for other thread create requests as well as per-
forms other thread management functions.

It should be noted thatclone system call can be used
to checkpoint threaded programs, but it would require sig-
nificant modifications to the LinuxThreads library. In par-
ticular, the Pthread manager would have to be modified to
clone itself where none of its previous resources are shared
by threads.This newly cloned thread manager would then
create new threads that share resources with the cloned thread
manager. The cloned thread group and their respective
parent threads would then have to coordinate the transfer
of thread specific state across two address spaces, such as
thread stacks. The stacks could be reproduced by having
the parent threads callsetjmp to save the stack context
and the child threads would calllongjump using the stack
context pointer set by the parent threads call tosetjmp.
Because thread stacks are realized in the heap space of the
thread manager, stack copying could be avoided, howev-
er there is some performance penalty associated with these
additional system calls and thread synchronization.

An additional disadvantage of usingclone for check-
pointing is that implementation would be tied to Linux-
Threads. As we have pointed out, there are other thread
packages available under Linux. Moreover, LinuxThreads
is mated to the GNU C Libraryglibc. It is well known
fact in the Linux community that upgrading or modifying
the local version ofglibc is difficult and must be done
with extreme care. The problem is that such modifications

risk breaking every binary in the system because of the use
of shared libraries (i.e., the new shared library is no longer
compatible with the version your binaries were linked a-
gainst). Since an OS checkpoint system call is not tied to a
specific thread packages it is ultimately easier to implement
and support.

2.2 System Calls and Process Creation

On the Intel (x86) port of Linux, system calls are realized
by using software interrupts. In particular, interrupt 0x80
is used. Internal to the OS is a jump table of system call-
s which relates their numbers to the specific code address
where that system call begins.

Because the invocation of a system call is architecture
specific, all top-level system call handler routines are in the
asm code directory. As a matter of convention, all system
call handlers have thesys_ prefix. For example, thefork
system call handler issys_fork. These system calls then
typically invoke a more general handler routine that is not
architecture specific. The prefix for those handlers isdo_.
In the case of process creation, the general handler routine
for all of types of processes creation (i.e., fork, vfork or
clone) isdo_fork.

As a part of the design of a system call, the kernel al-
ways provides access to the calling process’ control block
or task structure by invoking a macro calledcurrent, as
well as CPU register state which is passed as an argument.
This macro returns a pointer to the task structure that in-
voked this system call. Beyond system calls,current is
the process that has control of CPU. In the case of multi-
ple CPUs, each CPU is running a different process and thus
current will be different across CPUs.

The structural layout of the process control block in-
cludes variables to record the scheduling priority and pol-
icy, memory management, current processor, list pointers
used to place a process in a wait queue or run queue, signal
handler state, file system information, interprocess commu-
nication information, and process specific statistics suchas
cpu usage, etc. This structure is called atask_struct
in the Linux Operating System.

Within the task_struct, process specific memory
management data is encapsulated into its own structure,
calledmm_struct. This data structure contains a mapped
address space of the process. Thus, by switching a process
from onemm_struct to another, its execution address
space is changed. We use this feature to cleanly imple-
ment our new system call. For the interested reader, these
structures are defined in/usr/src/linux/include/
linux/sched.h.

2



3 Checkpoint Algorithm

3.1 Overview

As previously indicated, our algorithmic approach lever-
ages the existingcopy-on-write capability of virtual mem-
ory by introducing a newcheckpoint system call. This
new system call is very similar to thefork andclone
system calls. The primary difference is thatcheckpoint
considers all processes that are part of a multithreaded pro-
gram.

The algorithm works by creating arendezvous of all
threads inside the kernel. By using a rendezvous approach,
the system call guarantees that the checkpoint is made con-
sistent. That is no copy of the address is made until all
threads have entered the system call and ceased all user-
level execution.

Once all threads of a program are inside the system cal-
l, the thread with the smallest process identifier is made
the “parent” or master thread. The parent thread then cre-
ates a new duplicatemm_struct which is a copy of it-
s own memory management structure. The parent thread
then makes this new structure active by setting thetask_
struct memory management pointers to the newmm_
struct. Meanwhile, the other threads are in a barrier
waiting for the parent thread to complete creation and swap
of memory management structures. Once the copy is com-
plete, each thread then swaps ittask_struct memo-
ry management pointers for the ones in the parent thread.
Now, all threads are actively using the new management
structure.

It is at this point that, our algorithm behaves like the
clone system call. After swapping the old memory man-
agement structure for the new one, each thread concurrent-
ly invokes thedo_fork routine. As previously indicat-
ed, it is this routine that does the work of process cre-
ation. However, each thread invokes thedo_fork routine
in such a way that it will share the current memory address
space. So, each new thread created will use the new mem-
ory structure that was just allocated and made active.

Once all threads complete thedo_fork routine, each
thread then swaps the new memory management structure
back for its old one. Thus, the new set of threads (children)
are running incopy-on-write shared address space of their
original parent threads.

On returning from thecheckpoint system call, the
children threads have a return value of zero and each parent
thread has a return value of the child thread that it created.
At this point, each parent thread could sleep itself or decide
to lower its priority and slowly write its state to stable stor-
age from which the program could be restarted in the event
of a hardware failure.

To revert back to a previous checkpointed state in the
multithreaded program (i.e., rollback), the children thread-

s would signal the parent threads to wake-up and then kill
themselves. Thus, the rollback operation is completely ac-
complished at the user-level. The parent threads could then
decide to redo the checkpoint or progress forward depend-
ing on the needs of the application.

Below we discuss the specifics of our algorithm imple-
mentation starting with the new global data structures that
where introduced into the Linux operating system.

3.2 Global Data Structures

In Algorithm 3.1, the new global data elements are present-
ed. The design philosophy is that because this is operating
system level software, correctness and robustness must be
guaranteed to the greatest possible extent. In keeping with
that design philosophy, we employ a multi-phase approach
in which a barrier synchronization among all the threads is
used between each phase.

Algorithm 3.1: GLOBAL DATA()int hekpoint waits := 0; 0; 0; 0pid t hekpoint min pid := 0x7fffffffspinlok t hekpoint mm lok :=SPIN LOCK UNLOCKEDstrut mm strut � hekpoint mm := NULLspinlok t hekpoint task lok :=SPIN LOCK UNLOCKEDstrut task strut�hekpoint parent task :=NULL
The first variable ischeckpoint_waits. This ar-

ray of four integers is used to implement the various bar-
riers between phases. Thecheckpoint_mm_lock is a
lock for thecheckpoint_mm variable, which is a pointer
to the current memory management structure that is being
checkpointed among a group of threads. Since only one set
of threads can be checkpointed at a time,checkpoint_
mm_lock is used to prevent another set of threads from
initiating a checkpoint operation until the current set is com-
plete. Thecheckpoint_task_lock provides internal
synchronization and coordination between phases. Finally,
the checkpoint_parent_task is the pointer to the
thread which ismaster (i.e., possesses the smallest process
identifier) among all the threads involved in the checkpoint
operation.

3



3.3 Core Algorithm

Algorithm 3.2: SYS CHECKPOINT(regs)
return (DO CHECKPOINT(regs))
procedure DO CHECKPOINT(regs)

ADMISSION()
CREATE MM(regs)
CLONE THREADS(regs)
RESTOREMM()
LEAVE()

Algorithm 3.3: DO CHECKPOINT(regs)
procedure ADMISSION()old mm := urrent! mm
if urrent! mm! mm users = 1

then

�lone flags := SIGCHLD
return (DO FORK(lone flags; regs))

SPIN LOCK(&hekpoint mm lok)
while hekpoint mm 6= NULL
and hekpoint mm 6= old mm
do

(
SPIN UNLOCK(&hekpoint mm lok)
SCHEDULE TIMEOUT(1)
SPIN LOCK(&hekpoint mm lok)

if hekpoint mm = NULL
then hekpoint mm := old mm

SPIN UNLOCK(&hekpoint mm lok)
if urrent! hekpoint ounter = 0

then mm users :=urrent! mm! mm users� 1
else mm users :=urrent! mm! mm users

SPIN LOCK(&hekpoint task lok)
if urrent! pid < hekpoint min pid

then hekpoint min pid := urrent! pidhekpoint waits0 ++
while hekpoint waits0 < mm users

do

(
SPIN UNLOCK(&hekpoint task lok)
SCHEDULE TIMEOUT(1)
SPIN LOCK(&hekpoint task lok)

SPIN UNLOCK(&hekpoint task lok)
In keeping with Linux system call convention,sys_

checkpoint is the top-level handler of the system as
shown Algorithm 3.2. This handler routine invokes the ar-
chitecture independent routine,do_checkpoint. This
routine is divided into the following four phases:admission,
create_mm,clone_threads,restore_mm, andleave.
These phases correspond to the different parts of the algo-
rithm as previous described at the start of this section.

Theadmission phase shown in Algorithm 3.3, deter-
mines which threads are allowed into the core parts of the
checkpoint system call. The first part determines if there

are no other threads sharing the current process’ memory
management structure (i.e., a single threaded/uniprocessor
program). If so, thecheckpoint system call behaves
just like afork system call by directly invoking thedo_
fork general handler routine. This is possible because the
do_fork routine can handle the concurrent processing of
fork system calls since shared variables are placed inside
of critical sections.

Algorithm 3.4: DO CHECKPOINT(regs)
procedure CREATE MM(regs)
if urrent! pid = hekpoint min pid

then

8>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>:

hekpoint parent task := urrentparent := urrent
if new mm := ALLOCATE MM() = NULL

then

(notify other threads of errorreset global variables
return (error)

MEMCPY(new mm;parent! mm)
DUP MMAP(new mm)
COPY SEGMENTS(new mm)old mm := parrent! mmparent! mm := new mmparent! ative mm = new mm
ACTIVATE MM(old mm;new mm)
SPIN LOCK(&hekpoint task lok)hekpoint waits1 := 1
SPIN UNLOCK(&hekpoint task lok)

else

8>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>:
SPIN LOCK(&hekpoint task lok)
while hekpoint waits1 = 0

do

8>>><>>>:SPIN UNLOCK(&hekpoint task lok)
if parent detets error

then return (error);
SCHEDULE TIMEOUT(1)
SPIN LOCK(&hekpoint task lok)

SPIN UNLOCK(&hekpoint task lok)parent := hekpoint parent taskold mm := urrent! mmurrent! mm := parent! mmurrent! ative mm := parent! mmurrent! mm! mm users++
ACTIVATE MM(old mm; urrent! mm)

Now, if checkpoint_mm is set, then that signals there
is an existing group of threads in the process of check-
pointing, so it must determined if the current process is
with the current checkpoint group or not by comparing the
checkpoint_mm variable to the process’ memory man-
agement structure pointer,mm. If the process is with the
checkpoint thread group, then it is allowed to pass through
the barrier. Otherwise, it will wait using theschedule_
timeout internal routine for ajiffy (i.e., 10 millisecond-
s). During this time, the Linux scheduler executes oth-
er runnable processes. This kind of barrier enables many
threads bound to a single processor to be involved in a
checkpoint operation.

4



Next, if checkpoint_mm is not set, then this pro-
cessatomically sets the variable to the address of its mem-
ory management structure. Once a thread is admitted (i.e.,
moves past the first barrier), it determines the number of
other threads in this thread group using the memory man-
agement structure’smm_users variable.

Algorithm 3.5: DO CHECKPOINT(regs)
procedure CLONE THREADS(regs)urrent! hekpoint ounter ++lone flags := (CLONE VM jSIGCHLD)retval := DO FORK(lone flags; regs)urrent! hekpoint ounter ��

SPIN LOCK(&hekpoint task lok)
while hekpoint waits2 < mm users

do

(
SPIN UNLOCK(&hekpoint task lok)
SCHEDULE TIMEOUT(1)
SPIN LOCK(&hekpoint task lok)

SPIN UNLOCK(&hekpoint task lok)
Algorithm 3.6: DO CHECKPOINT(regs)
procedure RESTOREMM(regs)new mm := urrent! mmurrent! mm = old mmurrent! ative mm = old mmnew mm rightarrowmm users��

ACTIVATE MM(new mm; old mm)
The current process’checkpoint_counter vari-

able records the number of times this process has been
checkpointed. Currently, we are special casing the first
checkpoint for LinuxThread programs. Recall, that Lin-
uxThreads create a thread manager. Thus, themm_users
variable is one greater than the number of checkpointing
threads. Consequently, we need to reduce the number of
mm_users by one for the purposes of keeping an accurate
count of the number of threads that will be involved in the
checkpoint operation. This is crucial since the subsequent
barriers block until every process has move into the barrier.

The last part of theadmission phase is the election
of the “parent” thread followed by a “task” barrier. The
task barrier uses independentwait variables. This is done
because with a large numbers of threads, it cannot be guar-
anteed that the last thread has left the previous barrier be-
fore the first one enters the next barrier. Last, these bar-
riers only allow an atomic evaluation of the barrier condi-
tion. This conservative approach was taken to insure ro-
bustness. It may be possible to relax this condition, howev-
er, a more comprehensive analysis and testing on other pro-
cessors would be required before any conclusions can be
made about the efficacy of this synchronization approach.

Shown in Algorithm 3.4, thecreate phase allows
the parent process to allocate a new memory management
structure and then swap this new one for its original. Dur-
ing this allocation the other threads wait in thecheckpoint_

wait1 barrier which releases them only when the parent
has completed the allocation and swap of memory man-
agement structures. Once complete, each process will then
swap the original memory management structure for the
new one as well.

A closer look at the memory management structure al-
location and swap process reveals a number of interesting
details. To create a new memory management structure, the
space is not only allocated, but also copied. After the copy,
a Linux specific initialization routine is invoked, which is
not shown in the algorithm. After that the virtual memory
page tables are duplicated in thedup_mmap routine. We
note here that in Linux this operation is encapsulated in a
semaphore. Last, descriptor tables which are used by the
processor to perform address translation are copied in the
copy_segments routine.

The swapping of memory management structures re-
quires that the old structure be deactivated and the new one
must take its place. This is accomplished by theactivate_
mm routine.

With the new memory management structure created,
the threads enter theclone phase, as shown in Algorith-
m 3.5. In it, each thread creates a child thread using the
do_fork handler routine that will take their place and u-
tilize the newly allocated address which is acopy-on-write
instant of the original address space. Once complete, all
threads synchronize in the third barrier.

Next, the original memory management structure need-
s to be restored (see Algorithm 3.6). Therestore_mm
completes this task by reverting back to the original mem-
ory management structure and then re-activating it.

Algorithm 3.7: DO CHECKPOINT(regs)
procedure LEAVE(regs)
if parent = urrent

then

8>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>:
SPIN LOCK(&hekpoint task lok)
while hekpoint waits3 6= mm users� 1

do

(
SPIN UNLOCK(&hekpoint task lok)
SCHEDULE TIMEOUT(1)
SPIN LOCK(&hekpoint task lok)hekpoint min pid := 0x7fffffffhekpoint waits := 0; 0; 0; 0hekpoint parent task := NULL;

SPIN LOCK(&hekpoint mm lok)hekpoint mm := NULL
SPIN UNLOCK(&hekpoint mm lok)
SPIN UNLOCK(&hekpoint task lok)

else

(
SPIN LOCK(&hekpoint task lok)hekpoint waits3 ++
SPIN UNLOCK(&hekpoint task lok)

return (retval)
The last phase of thecheckpoint system call isleave.

As shown in Algorithm 3.7, the parent waits in the fourth
barrier while all other processes exit. Once all threads have

5



left, the parent resets all global variables, which allows the
next set of threads to enter the system call and thus re-
starting the algorithm.

20

25

30

35

40

45

50

55

60

65

70

0 10 20 30 40 50 60 70

S
pe

ed
up

 R
el

at
iv

e 
to

 M
em

or
y 

C
op

y

Checkpoint Data Size (MB)

2 threads

Figure 1: Speedup of 2 thread checkpoint relative to user-
level memory copy.

4 Performance Study

4.1 Checkpoint vs. Memory Copy

The computing platform used in this study is a dual proces-
sor system running Linux 2.4.8. Each processor is a 400
MHz Pentium II. The total amount of physical RAM is 256
MB. We note here that the RAM is shared.

In this first series of experiments we compare the exe-
cution time of thecheckpoint system call to a user-level
memory copy method of checkpointing as a function of the
number of threads and the amount of data being check-
pointed. We measure performance in terms ofspeedup rel-
ative to memory copy (i.e., memory copy execution time
divided by system call execution time).

In Figure 1, we observe that the speedup for the 2 thread
case varies from 25 up to 67. These speedup results are
attributed to the efficiency ofcopy-on-write semantics of
the underlying virtual memory system. Interestingly, non-
linear speedup behavior is observed. For instance, there isa
large drop off in speedup when the data size changes from 8
MB to 16 MB, then a sharp increase at 32 MB followed by
a sharp decrease at 64 MB. The cause of this non-linear
behavior is not completely understood. We hypothesize

0

1

2

3

4

5

6

7

8

0 10 20 30 40 50 60 70

S
pe

ed
up

 R
el

at
iv

e 
to

 M
em

or
y 

C
op

y

Checkpoint Data Size (MB)

4 threads
8 threads

Figure 2: Speedup of 4 and 8 thread checkpoints relative to
user-level memory copy.

that it is due to differences in the amount of data copied
between memory copy and checkpoint at the various data
points. However, a more thorough performance analysis of
the Linux virtual memory subsystem is required before any
definitive conclusions can be drawn.

Finally, the speedup results for the 4 and 8 thread cases
are reported in Figure 2. There are between 2 to 4 times
more threads than processors. Thus, each thread will con-
text switch several times during the processing of the sys-
tem call and generate much greater overheads. Because of
this aspect, we observe a significant drop in speedup, par-
ticularly for small checkpoint data sizes. However, what is
surprising is that at 32 and 64 MB data sizes the speedup
results are above 4 for the 4 thread case and above 2 for the
8 thread case.

4.2 Start-to-Finish Results

As indicated in the first series of performance results, the
high speedups are attributed to thecopy-on-write semantic-
s of the underlying virtual memory system. To better un-
derstand how these raw system call performance statistics
would translate into overall start-to-finish program perfor-
mance, we conducted a full program performance test were
the start-to-finish execution time of a synthetic workload
program was measured. The workload program consists of
two threads and 64 MB of data. The synthetic threaded pro-
gram performs ten checkpoint operations of system using

6



0

1

2

3

4

5

6

7

8

1 10 100 1000

S
pe

ed
up

 R
el

at
iv

e 
to

 M
em

or
y 

C
op

y

Amount of Data Modified (KB)

Checkpoint Speedup

Figure 3: Speedup of 2 thread benchmark program using
checkpoint relative to full memory copy.

either memory copy or thecheckpoint system call. In
between the checkpoints, the threads would modify a cer-
tain amount of the data. The amount of modified data is
varied from 4KB to 1MB. The speedup results are report in
Figure 3

It is observed that total execution of the program us-
ing thecheckpoint system call is around one second
with a small increase in total execution time as the amoun-
t of modified data is increased. However, we see that the
memory copy execution time remains unchanged regard-
less of how much data is modified. When execution times
are translated into speedup results, we see that overall pro-
gram performance is increased by a factor of eight for small
data sizes and a factor of five for the 1 MB data size when
the new system call is used. We have observed that when
the amount of modified data approaches the total amount
of data in the program, the execution time is the same for
both memory copy and thecheckpoint system call.

5 Conclusions

Thecheckpoint system call is a new approach that lever-
ages the copy-on-write semantics of virtual memory to en-
able a transparent, fast, reliable, consistent state copy of a
large-scale, multithreaded program. In this paper we present
our algorithm and its implementation in the Linux Oper-
ating System. Our performance results demonstrate that

for many cases, the system call out-performs a user-level
copy, particularly when the number of threads out-number
the processors by a factor of 2 to 4 times. However, if the
number of threads become significantly larger relative to
the number of processors, then context switching overhead-
s dominate the cost of thecheckpoint system call and
user-level checkpointing is faster. We point out, though,
that this case is pathological in nature since the threaded
program itself would fail to realize much performance ben-
efit when run in such a configuration.

6 Acknowledgements

This research is supported by the DARPA’s Network Mod-
eling and Simulation program, contract #F30602-00-2-0537.

7


