
Efficient Execution of Time Warp Programs
on Heterogeneous, NOW Platforms

Christopher D. Carothers and Richard M. Fujimoto, Member, IEEE Computer Society

AbstractÐTime Warp is an optimistic protocol for synchronizing parallel discrete event simulations. To achieve performance in a

multiuser network of workstation (NOW) environment, Time Warp must continue to operate efficiently in the presence of external

workloads caused by other users, processor heterogeneity, and irregular internal workloads caused by the simulation model. However,

these performance problems can cause a Time Warp program to become grossly unbalanced, resulting in slower execution. The key

observation asserted in this article is that each of these performance problems, while different in source, has a similar manifestation.

For a Time Warp program to be balanced, the amount of wall clock time necessary to advance an LP one unit of simulation time should

be about the same for all LPs. Using this observation, we devise a single algorithm that mitigates these performance problems and

enables the ªbackgroundº execution of Time Warp programs on heterogeneous distributed computing platforms in the presence of

external as well as irregular internal workloads.

Index TermsÐDiscrete event simulation, distributed simulation, network of workstations (NOW), time warp, dynamic load balancing.

æ

1 INTRODUCTION

TIME Warp is an optimistic synchronization mechanism
develop by Jefferson and Sowizral [28] used in the

parallelization of discrete event simulation. The distributed
simulator consists of a collection of logical processes or LPs,
each modeling a distinct component of the system being
modeled, e.g., a server in a queuing network. LPs
communicate by exchanging timestamped event messages,
e.g., denoting the arrival of a new job at that server.

The Time Warp mechanism uses a detection-and-
recovery protocol to synchronize the computation. Any
time an LP determines that it has processed events out
of timestamp order, it ªrolls backº those events, and
reexecutes them. For a detailed discussion of Time Warp,
as well as other parallel simulation protocols, we refer the
reader to [19].

With few exceptions, most research on Time Warp to
date assumes the simulation program has allocated a fixed
number of processors when execution begins, and has
exclusive access to these processors throughout the lifetime
of the simulation. Specifically, interference from other,
external computations is minimal, and no provisions for
adding or removing processors during the execution of the
simulation are made. In fact, in most experimental studies,
one typically goes to great lengths to eliminate any
unwanted external interference from other user and system
computations in order to obtain performance measure-
ments that are not perturbed by external workloads. These
extreme measures are taken because a Time Warp program

that is well-balanced when executed on dedicated hardware
may become grossly unbalanced when executed on
machines with external computations from other users.
Logical processes (LPs) that are mapped to heavily utilized
processors will advance very slowly through simulated
time relative to others executing on lightly loaded proces-
sors. This can cause some LPs to advance too far ahead into
the simulated future, resulting in very long or frequent
rollbacks. While good from an experimental standpoint, this
ªdedicated platformº paradigm is often not the prevalent
paradigm one encounters in practice. In particular, net-
works of desktop workstations (NOWs) and distributed
compute servers consisting of collections of workstation-
class CPUs interconnected through high-speed LANs have
become prevalent. Despite the continual, reduced cost of
computing hardware, shared use of computer resources
will continue to be a common computing paradigm in the
foreseeable future.

Moreover, this multiuser computing environment
is typically composed of heterogeneous workstations
that contain different processors. These processors may
have quite different performance characteristics that, if
not taken into consideration, can lead to poor Time
Warp performance.

In addition to performance-robbing external workloads
and processor heterogeneity, the application model
itself can be a source of perturbation. In many simulation
models, the amount of CPU time required to process an
event varies among logical processes (LPs), and the event
population may differ across LPs, both of which can
degrade performance.

The key observation asserted in this article is that each of
these performance problems, while different in source, has
a similar manifestation. For a Time Warp program to be
balanced, the amount of wall clock time (i.e., elapsed real-
time) necessary to advance an LP one unit of simulation
time should be about the same for all LPs. Using this

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 11, NO. 3, MARCH 2000 1

. C.D. Carothers is with the Department of Computer Science, Rensselaer
Polytechnic Institute, 110 8th St., Troy, NY 12180-3590.
E-mail: chrisc@cs.rpi.edu.

. R.M. Fujimoto is with the College of Computing, Georgia Institute of
Technology, Atlanta, GA 30332-0280. E-mail: fujimoto@cc.gatech.edu.

Manuscript received 18 Nov. 1997; revised 12 Aug. 1998; accepted 3 Apr.
1999.
For information on obtaining reprints of this article, please send e-mail to:
tpds@computer.org, and reference IEEECS Log Number 105944.

1045-9219/00/$10.00 ß 2000 IEEE

observation, we devise a single algorithm that mitigates
these performance problems and enables the ªbackgroundº
execution of Time Warp programs on heterogeneous
distributed computing platforms in the presence of external
as well as irregular internal workloads.

To demonstrate the effectiveness of our Background
Execution (BGE) algorithm, we construct an experimental
testbed. In particular, we develop a model of a wireless
(PCS) communications systems that can be executed atop
our Georgia Tech Time Warp (GTW) system [22]. What is
special about this application is that it is an instance of a
class of applications that are self-initiated[34]. Here LPs
typically schedule most of their events to themselves, which
leads to relatively few remote messages making this class of
applications well suited for the NOW platforms, and which
are known to have high remote communication overheads.

Using this simulation model in addition to a synthetic
benchmark application, we demonstrate our Background
Execution (BGE) algorithm is able to: 1) dynamically
allocate additional CPUs during the execution of the
distributed simulation as they become available and
migrate portions of the distributed simulation workload
onto these machines, 2) dynamically release certain CPUs
during the simulation as they become loaded with other,
external, computations, and off-load the workload to
the remaining CPUs used by the distributed simulation,
and 3) dynamically redistribute the workload on the
existing set of processors as some become more heavily
or lightly loaded by changing externally or internally
induced workloads.

The remainder of this study is organized as follows:
Section 2 characterizes the different kinds of workload
imbalances to which Time Warp programs can be subjected.
Section 3 presents related work. Section 4 presents our BGE
algorithm that is suitable for balancing the load in the
presence of irregular internal workloads and external
workloads. We then describe the implementation of our
BGE algorithm in Section 5. The benchmark applications
used in this experimental study are discussed in Section 6.
Results from an experimental performance study are then
presented where we compare the performance of our GTW
system with and without our BGE algorithm in Sections 7,
8, 9, and 10. Section 11 summarizes our results and presents
future research directions.

2 CHARACTERIZATION oF TIME WARP WORKLOAD

IMBALANCE

For Time Warp programs, there are three sources of internal
workload imbalance: 1) event population, 2) event granularity,
and 3) communications. With irregular event population
workloads, the number of events processed over a period
of simulated time may differ among LPs. Consequently,
some LPs induce a much greater ªloadº on the processor
than others because they have to process more events to
reach the same point in simulated time. This can have a
detrimental impact on Time Warp performance, resulting in
the underloaded processors becoming ªoverly optimisticº
and being rolled back by the overloaded processors.
Applications that suffer from this behavior include digital

logic circuit simulations [8], [44] National Airspace System
models [51], [53] and PCS models where the portable
population differs among calling areas.

A special case of an unbalanced event population
workload is an unbalanced LP population where the
number of LPs per processor differs significantly. We make
LP population a special case because the driving force
behind the simulation is the event population. That is to
say, if we add LPs to a simulation where all LPs are the
same without adding any additional events, the forward
execution costs will remain approximately the same.

Load imbalances caused by irregular event granularity
workloads occur when the amount of wall clock time to
process an event varies greatly among LPs. We assume that
state saving overheads are part of event processing costs.
Thus, the event population for each LP could be the same,
but the amount of time a processor takes to process the
events varies. As with event population workloads, these
kinds of irregular workloads also cause the overloaded
processors to constantly roll back the underloaded ones,
leading to poor Time Warp performance. Applications that
exhibit this kind of internal workload include network
simulations, such as SS7 [54], ATM [26], and battle manager
simulations, such as TISES [48]. PCS models, such as those
presented in [12], can also be configured to generate event
granularity workload imbalances.

The last cause of internal workload imbalance is
communication. Here, an LP or group of LPs change their
communication pattern so that new off processor commu-
nications are introduced that did not exist previously. The
consequence of this is that some set of processors are now
using more CPU cycles to send and receive remote
messages, which can be quite costly in a NOW environ-
ment. The effect on Time Warp performance is that the
communication-laden processors act as if they are loaded
and slow their rate of advance through simulated time.
Meanwhile, the other processors advancing at a much faster
rate will be rolled back, thus reducing system performance.
These communications workloads typically happen in
applications where the ªactionº is subject to radical
changes, such as the Eagle combat model [38]. Due to
implementation-specific limitations, our BGE algorithm is
currently unable to mitigate this type of workload imbal-
ance. We do however suggest some solutions in Section 11.

In addition to irregular internal workloads, Time Warp
programs executing in a multiuser NOW environment can
be subjected to two sources of external workload imbalance.
The first source is a user-induced external workload, which
occurs when a user or group of users executes a program
either locally or remotely on the same pool of computing
resources that is currently being used by the Time Warp
program. These external workloads effectively ªstealº
CPU cycles from the Time Warp program, assuming the
operating system is ªfairº in its allocation of CPU resources,
causing some processors to become ªoverloadedº with
work. This can seriously degrade the performance of the
Time Warp program. Here LPs mapped to the ªover-
loadedº processors will require more wall clock time to
advance through simulated time, allowing ªunderloadedº
processors to advance at a much faster rate. These faster

2 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 11, NO. 3, MARCH 2000

processors become ªoverly optimisticº and are consistently
rolled back as the slow processors send them straggler
events that arrive in an LPs past, resulting in a ªthrashingº
rollback behavior and degraded Time Warp performance.

Included in user-induced workloads are system-induced
workloads. These are workloads generated by the network
operating system, such as automated backup and software
distribution programs, such as depot.

The last source of external workload imbalance is
processor heterogeneity, where processor performance char-
acteristics vary among workstations in a NOW. From a
Time Warp programs point of view, workstations contain-
ing older, slower processors appear as though they are
overburdened with work when compared with more
advanced workstations. As with user-induced workloads,
heterogeneous processors create a situation where LPs
mapped to slow processors progress at a rate less than that
of LPs mapped to faster processors, resulting in long
rollbacks because the faster processors become ªoverly
optimistic,º greatly reducing the performance gains of the
distributed simulation.

With the exception of the communication workload
imbalance, we will demonstrate how our BGE algorithm is
able to detect and mitigate each of these workload
imbalances.

3 RELATED WORK

Background execution is essentially a load management
problem. Traditionally, load balancing or load sharing
involves distributing the workload across a fixed set of
processors in order to minimize the elapsed time to execute
the program. Many load balancing techniques designed to
support distributed systems (e.g., NOWs) have been
proposed and implemented, such as [52]. However, when
executing Time Warp programs on a NOW, the traditional
load balancing problem must be extended in three ways
which necessitates the need for a new algorithm. First, the
load balancing mechanism must take into account dynami-
cally changing external workloads produced by other
computations. These external loads cannot be controlled
by the load management software. Second, the set of
processors that can be utilized by the distributed simulation
expands and contracts during the execution of the program
in unpredictable ways. Finally, the set of processors may
have different performance characteristics that must be
taken into consideration.

Optimistic synchronization mechanisms introduce new
wrinkles to dynamic load management: high processor
utilization does not necessarily imply good performance
because a processor may be busy executing work that is
later undone. Further, there is a close relationship between
load management and the efficiency (e.g., amount of rolled
back computation) of the synchronization mechanism, as
discussed earlier. These factors necessitate development of
load management techniques specific to Time Warp. Thus,
process/object migration systems such as Accent [55],
Amoeba [33], Charlotte [1], Condor [29], Locus [50], MOSIX
[3], MpPVM [13], RHODOS [56], Sprite [35], and V-System
[49] that distribute jobs onto networked workstations as
independent processes (i.e., not parallel program processes)

to ªsoak upº otherwise unused CPU cycles, are not
sufficient for Time Warp simulations.

Dynamic load management of Time Warp programs has
been studied by others. Reiher and Jefferson propose a new
metric called effective processor utilization, which is defined
as the fraction of the time during which a processor is
executing computations that are eventually committed [37].
Based on this metric, they propose a strategy that migrates
processes from processors with highly effective utilization
to those with low utilization. Reiher and Jefferson also
propose splitting a logical process into phases to reduce the
amount of process state that must be moved when an LP
migrates from one processor to another. Glazer and Tropper
propose allocating virtual time slices to processes, based on
their observed rate of advancing the local simulation clock
[24]. They present simulation results illustrating this
approach yields better performance than the Reiher/
Jefferson scheme for certain workloads. To our knowledge,
this scheme has not been implemented on an operational
Time Warp system. Goldberg describes an interesting
approach to load distribution that replicates bottleneck
processes to enable concurrent execution [25]. Time Warp is
used to maintain consistency among the replicated copies.

More recently, Wilson and Nicol [53] devise a method for
automated load balancing in the SPEEDES parallel simula-
tion environment [46]. The scheme they propose collects
computation data, which consist of the number of events
processed by each LP. These data are saved in a file and
used during subsequent runs to statically partition the
simulation application onto the set of available processors.
Using this approach, the performance of the current run is
only improved based on data collected from previous runs
of the simulation.

Additionally, Avril and Tropper [2] present a scheme for
dynamically load balancing Time Warp programs with
irregular, internal workloads. Here processor load is defined
to be the number of events which were processed by the
LPs assigned to that processor, including events rolled back
and reprocessed. Using this scheme, they improve Time
Warp's throughput by 40 to 100 percent for VLSI models
from the ISCS'89 benchmarks, where throughput is defined
to be the number of non-rolled-back events per unit of time.
A fundamental difference between this approach and ours
is the explicit exclusion of virtual time in the load balancing
metric. The consequence of this decision is that it implicitly
assumes that all events span the same amount of virtual
time. Moreover, by using event counts in the processor load
metric, it assumes that all events have the same computa-
tional requirements. While these two assumptions are true
for VLSI simulation models, it is not true of all simulation
models, such as TISES [48]. Consequently, these assump-
tions limit the utility of their approach.

None of these approaches address the question of
balancing the load in the presence of external workloads
and processor heterogeneity. The approach proposed here
utilizes the ideas of not considering rolled back computa-
tion in deriving load balancing metrics, and workload
allocation based on the rate of simulated time advance in
developing an approach for background execution.

CAROTHERS AND FUJIMOTO: EFFICIENT EXECUTION OF TIME WARP PROGRAMS ON HETEROGENEOUS, NOW PLATFORMS 3

Burdorf and Marti [10] propose an approach to periodi-
cally compute the average and standard deviation of all the
LP local clocks in the system. If the average local clock
among the LPs mapped to a processor is greater than the
system-wide average plus one standard deviation, it is
concluded that this processor is advancing too rapidly
through simulated time, so additional LPs are migrated to
that processor to ªslow it down.º Specifically, the LP with
the smallest local clock is moved. In addition, other LPs that
have low virtual clocks (specifically, a local clock less than
the system-wide average minus one standard deviation) are
moved to the processor that has the LP with the largest local
clock. Marti and Burdorf observe that this approach will
balance the workload in the presence of external computa-
tions competing for the same processors. A drawback with
this approach is that it depends on virtual time differences
among LPs to detect load balances. Message-initiated
applications [34] can exhibit behaviors which allow under-
loaded processors to advance their LPs only to be rolled
back later due to late arriving messages caused by slow
processors. Thus, when the load distribution algorithm
takes a snapshot of where LPs are with respect to virtual
time, it could be that all LPs are at the same point, despite
the presence of a load imbalance. Moreover, throttling
techniques, such as RiskFree TWOS [4], SRADS [17],
Adaptive Flow Control [36], Elastic Time Algorithm [45]
and Breathing Time Warp [47] limit the advance of
processors such that LPs are not allowed to become ªoverly
optimisticº and may all at the same point in virtual time,
despite an obvious workload imbalance. Consequently,
under certain application workloads or when this approach
is combined with other risk-limiting, throttling mechan-
isms, load imbalances may go undetected.

Schlagenhaft et al. [41] propose an approach to balance
the load of a VLSI circuit application on a distributed Time
Warp simulator in the presence of external workloads. They
define an inverse measure of the load, called Virtual Time
Progress, which reflects how fast a simulation process
continues in virtual time. This approach has some simila-
rities with ours, however, neither it nor Burdorf's approach
address the question of dynamically changing the set of
processors utilized by the simulation, processor hetero-
geneity, or dynamically changing internal workloads.

Work in dynamic load balancing for conservative
parallel simulations has been done, as well. Most recently,
Boukerche and Das [7] devise a novel load balancing
scheme for an optimized version of the Chandy-Misra null
message algorithm [14]. Their approach introduces the
notion of CPU-queue length as a measure of workload on
each processor. This workload measure is determined for
both real messages and null messages on each processors
and combined using a weighted average function to
compute the overall workload on a processor. Using this
approach, they reduce synchronization overheads in the
Chandy-Misra algorithm by 30 to 40 percent when
compared to the use of a static load balancing algorithm.
While good results are achieved with this approach for
conservative simulation protocols, it is not appropriate for
optimistic protocols, because an unknown amount of work
that is currently pending on a processor could be later

undone. Optimistic protocols, such as Time Warp, require a
measure of workload that only considers the amount of
committed computation.

4 THE BGE WORKLOAD MANAGEMENT POLICY

The load management policy used here consists of two
components:

1. The processor allocation policy that defines the set of
processors that may be used by the Time Warp
program. In general, this usable set of processors will
change dynamically throughout the execution of the
distributed simulation.

2. The load balancing policy that migrates LPs between
processors in the usable set. This policy must
maintain efficient execution, in spite of dynamically
changing external workloads in the processors in the
usable set. It is assumed the Time Warp system has
no control over these workloads, nor control over
priority of execution in the operating system of these
external computations relative to the Time Warp
program.

Dynamic load distribution of individual LPs burdens
simulations containing large numbers (say, thousands) of
LPs. This is because a large number of entities must be
considered by the load balancing algorithm, increasing the
computation required for load distribution, and load
balancing information that must be maintained. Further,
because migrating each LP requires a certain amount of
overhead, independent of the ªsizeº of the LP, migrating
many LPs from one processor to another is less efficient
than migrating a group of LPs as a single unit. Here, LPs are
first grouped (by the application) into clusters of LPs, and
the cluster forms the atomic unit that can be migrated from
one processor to another. In addition to reducing load
management and process migration overheads, this
approach will keep LPs that frequently communicate
together, on the same processor, provided they are grouped
within the same cluster. We assume the modeler has
enough knowledge of the application to do a good job of
ªclusteringº the LPs together. Once an LP is assigned to a
cluster, it remains so for the lifetime of the simulation.

In our BGE algorithm, a central process is responsible for
monitoring the processors that are to be used by the
distributed simulation. This process executes periodically at
a user-defined scheduling interval, denoted by Tschedule and
estimates the expected amount of CPU time that would be
allocated to a Time Warp simulation if it were to execute on
that host, based on the current workload of this host over
the last schedule interval. The load balancing policy is
responsible for assigning LP clusters to processors. Our
implementation of the load balancing policy uses a central
process that executes periodically every Tschedule seconds to
determine which clusters should be moved to another
processor or processing element (PE).

4.1 Processor Allocation

Initially, all processors are in the usable set. However, as
shown in Fig. 1, should a processor lose all of its clusters as
a result of normal load balancing, the BGE algorithm

4 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 11, NO. 3, MARCH 2000

records the current load and removes that processor from
the usable set. We call this load the DeAllocLoad. This
processor remains unusable until the current load over a
Tschedule interval falls below DeAllocLoad=2.

When a processor is added to the usable set, its status is
set to ACTIVE and its Processor Advance Time (PAT) value is
set to zero, making it a prime candidate for accepting new
clusters. Conversely, processors removed from the usable
set are marked as being INACTIVE. PAT is the metric used
to trigger load migrations and will be discussed in greater
detail in the next section.

4.2 Load Balancing Policy

The load balancing policy attempts to distribute clusters
across processors to equalize the rate of progress of each
processor through simulated time, taking into account the
internal (Time Warp) and external workloads assigned to
each processor, as well as differences in processor speed
(processor heterogeneity). The central metric that is used to
accomplish this is the processor advance time (PAT). The
processor advance time indicates the amount of wall clock
time required for a processor to advance one unit of
simulated time in the absence of rollback. Since we are
only interested in obtaining a measure of ªusefulº work,
the BGE algorithm only considers committed or ªusefulº
computation, and rolled back computation is not allowed
to be treated as additional computation load. Our reason

for excluding ªnonusefulº work in our metric is because
these computations are application dependent and not
always caused by workload imbalances (internal or
external). In fact, even if the load is balanced, Time Warp
systems can still experience a cascade of rollbacks caused
by the application [30]. These rollbacks create an unstable
situation where rollbacks become geometrically longer
and ultimately result in significantly longer execution times
than the sequential simulation. Consequently, if these
ªnonusefulº computations are included in the metric
they might fool the system into making a wrong load
balancing decision.

The load balancing policy moves clusters from proces-
sors with large PAT values to those with lower values with
the goal of minimizing the maximum difference between
the PAT values in any pair of processors. PAT values are
easily measured for the current mapping of clusters to
processors. However, in order to assess the effect of
redistributing clusters, another mechanism is required to
estimate how well (or poorly) the load will be balanced if a
hypothetical move of cluster(s) between processors is
performed. For this purpose, the cluster advance time (CAT)
metric is defined. CAT is defined as the amount of
computation required to advance a cluster one unit of
simulated time, again in the absence of rollback.

More precisely, we define:

1. CATc;i is the estimated amount of computation time
required by cluster c to advance one unit of
simulation time on host i, measured in seconds.

2. TWFraci is the fraction of total CPU cycles that a
Time Warp program on processor i was allocated
over the last Tschedule interval. This measure is used to
account for a processor's user-induced, external
workload.

3. PATi is defined as the sum of all CATc;i=TWFraci
values of clusters mapped, or hypothesized to be
mapped, to processor i.

Operationally, CATc;i is calculated as follows:

CATc;i � CPUc;i=�GV T �1�
where CPUc;i is the amount CPU time used to process
committed events by cluster c on processor i over the last
Tschedule interval, and �GV T is the change in GVT over the
last Tschedule interval. By dividing that result by �GV T , we
obtain the amount of computation time required to advance
cluster c one unit of simulation time. By combining the
above definitions, we obtain the following:

PATi �
XCiÿ1

c�0

CATc;i=TWFraci �2�

�
XCiÿ1

c�0

CPUc;i=�TWFraci�GV T � �3�

� CPUi=�TWFraci�GV T �; �4�
where CPUi �

PCiÿ1
c�0 CPUc;i.

We derive (4) by substituting CATc;i in (1). By per±
forming dimensional analysis on (4), we observe that PATi

CAROTHERS AND FUJIMOTO: EFFICIENT EXECUTION OF TIME WARP PROGRAMS ON HETEROGENEOUS, NOW PLATFORMS 5

Fig. 1. Background Execution Algorithm.

does in fact represent the amount of wall clock time needed
to advance processor i one unit of simulation time. We
observe that based on its definition,

TWFraci � TotalCPUi=Tschedule;
where TotalCPUi is the amount of total amount of user
CPU time given to processor i over the last Tschedule interval.
Note that TotalCPUi is equal to CPUi plus the amount of
time spent doing ªnonusefulº work. Substituting these
equations into (4) yields:

PATi � �CPUiTschedule�=�TotalCPUi�GV T � �5�

� �Tschedule�=�GV T �6�
which is wall clock time, represented by Tschedule per unit
of simulation time, represented by �GV T . We allow
TotalCPUi to cancel CPUi, since they both are a measure
of CPU cycles consumed.

If cluster c is moved from processor i to processor j, then
PATi is reduced by the amount CATc;i and PATj is
increased by CATc;j. The new PAT values reflect the
expected wall clock time for each processor to advance one
unit of simulation time after the move is made.

The load balancing algorithm attempts to minimize the
maximum of �PATi ÿ PATj� over all i and j, shown in
Fig. 1. The algorithm repeatedly attempts to move cluster(s)
from the processor containing the largest PAT value.
Clusters on the donating processor are scanned in order
of highest communication affinity to lowest affinity to the
receiving (low PAT) processor (see Fig. 2). Cluster-
processor communication affinity is determined based on
message counts over the last Tschedule interval. This is done
to lessen the potential for new remote communications to
be introduced into the distributed simulation computation.
For each cluster, processors are scanned from low PAT
values to high in order to locate a destination for the

offloaded workload. If moving the cluster will result in a
reduction in the difference between PAT values, the move is
accepted, and the procedure is repeated. If subsequent
moves fail to reduce the difference in PAT values, the
algorithm terminates and resumes when the next Tschedule
interval begins.

Because statistics are collected for each processor
individually regarding cluster CPU utilization and proces-
sor load, no modifications are required of the initial PAT
value comparison in order to account for processor
heterogeneity. However, we observe that once a cluster c
migrates from some processor i to another processor j, we
must modify the CPU time consumed by cluster c on
processor i to reflect the difference in the relative speeds of
processors i and j. To accomplish this we introduce a new
parameter, �i, which denotes the relative speed of processor
i, and is set by the user. This parameter is used in the
MoveCluster function, shown in Fig. 3. Here, the migrating
cluster's CPU time, CPUdestpe;c is increased or decreased by
the ratio of the source processor's � to the destination
processor's �. Consequently, if the source processor is twice
as fast as the destination processor, then the migrating
cluster's CPU time will be doubled. Likewise, if the
destination processor is twice as fast as the source
processor, then the migrating cluster's CPU time will be
reduced by half.

Load migration is only performed if the maximum
difference in PAT values between any pair of processors
exceeds �PATmax, where � is a user-defined percentage
between zero and one. This avoids performing migrations
when the benefit that can be realized by the migration
is modest.

5 IMPLEMENTATION

Our BGE algorithm is implemented as part of the Georgia
Tech Time Warp (GTW) system, which is a parallel discrete
event simulation executive based on Jefferson's Time Warp
mechanism [27]. Currently, it runs on shared-memory
machines as well as distributed memory platforms. The
initial implementation was developed on a BBN Butterfly,
GP-1000 [18]. From there, it has been rehosted to the KSR,
the SGI Power Challenge, and the Sun Solaris multi-
processor platforms. A detailed description of all of GTW's
optimizations can be found in [16].

To enable the shared-memory GTW kernel to execute in
a distributed environment and support dynamic load
management, several significant changes were made. First,
a reflector-thread is created on each workstation to manage
all external communications. Its tasks include the sending

6 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 11, NO. 3, MARCH 2000

Fig. 2. TryToOffLoad function. PE�0::N ÿ 1� is sorted from lowest
to h ighest PAT value. PE�NumActiveProcessorsÿ 1� i s the
active processor with the highest PAT value. Processors
PE�NumActiveProcessor::N ÿ 1� are inactive and have a PAT value
set of infinity.

Fig. 3. MoveCluster function.

and receiving of all GVT, application defined, and dynamic
load management messages. Application messages or
events are marshalled to the Time Warp kernel(s) that are
executing on that local workstation via shared-memory. To
mitigate any OS overheads, the reflector-thread is user-level
and periodically polled by the GTW kernel. PVM [23] is
used for remote or off-processor communications.

Another change was the piggy-backing of Mattern's
GVT algorithm [32] on top of the existing shared-memory
GVT algorithm [21]. In this arrangement, Mattern's algo-
rithm forces the shared-memory algorithm to be executed
on each workstation to determine its local virtual time. This
information, in conjunction with a lower bound on all
transit messages between consistent cuts, is used to
approximate GVT.

The last significant change to the shared memory
GTW executive was adding support for moving LP clusters
among the different workstations. A well known problem in
migrating Time Warp LPs (and thus clusters of LPs) is the
fact that each contains a large amount of state. Specifically,
each LP maintains a history of state vectors in case rollback
is later required. While phases could be used to address this
problem (see [37]), this requires implementing a mechanism
for rollbacks to span processor boundaries because a
rollback may extend beyond the beginning point of a
recently created phase. A simpler, though perhaps more
radical, solution is to rollback the entire simulation
computation to GVT if any load redistribution is to be
performed. This makes migration of Time Warp LPs no
more expensive than migrating nonoptimistic computations
because there is no need to migrate the history information.
This approach also has the side effect of ªcleaning upº
overly optimistic computations. In this sense, this approach
is not unlike the mechanism described in [31], which found
such periodic, global rollbacks to be beneficial. Our
experiments indicate that this mechanism provides a
reasonably simple and efficient mechanism for reducing
migration overhead.

We define Tschedule as the interval of time used for
determining load redistribution decisions, and is a user-
defined parameter given in seconds. This implementation
performs load management synchronously, i.e., a barrier is
used to stop all processes once the workload policy
program has determined that LP cluster migrations are
necessary. After the distributed simulation is halted, work-
load policy migrations are performed, and then the
simulation is allowed to resume execution.

To calculate CATc;i, CPUc;i, as shown in (1), must be
determined for all clusters in the system. To obtain this
value, we employ the use of monotonically increasing
hardware timers1 and measure the computation time used
to process each event. These timers where chosen because
microsecond resolution was needed to accurately measure
these low granularity computations (i.e., computations that
only require tens of microseconds to execute). Other Unix
timers, such as gettimeofday and getrusage only

provide millisecond resolution on platforms such as the
SGI, which is insufficient for our needs.

Using the fast hardware timers, CPUc;i is a running
sum over the Tschedule interval that includes the time to
1) enqueue each event into the pending set of events,
2) dequeue each event from a cluster's calendar queue,
3) state saving overheads prior to event processing, and
4) event processing time. Recall that CPUc;i only includes
timing information from committed events during the
Tschedule interval.

Next, to calculate TWFrac, which represents the
allocated CPU time as a percentage of elapsed wall clock
time, denoted by Tschedule, the getrusage system call is
used. Since a typically Tschedule interval ranges between 5 and
50 seconds, the getrusage system call provides the
required timer resolution in this case. This system call
returns information describing the resources utilized by the
current process, or all its terminated child processes,
including such statistics as CPU time spent in user space,
CPU time spent in the operating system, page faults, and
swaps. By dividing the user CPU time over the last Tschedule
interval by Tschedule, TWFrac is obtained.

The BGE manager (BM) is implemented as a separate
stand alone program that currently executes on its own
machine. It was designed this way to provide a clean
separation between the load management policy and the
mechanism needed to support it. Moreover, this design
simplifies the implementation by not having to integrate
this functionality into the existing GTW executive.

Currently, this version of GTW executes on networks of
Silicon Graphics and Sun Solaris uniprocessor workstations
and multiprocessor servers.

6 BENCHMARK APPLICATIONS

For the experiments presented in this study, we used the
following two benchmark applications.

6.1 PHold Synthetic Workload

PHold is a simulation using a synthetic workload model
[20]. The simulation consists of a fixed message population
that moves among the LPs making up the simulation. The
processing of a message consists of computing for a certain
amount of time and then sending one new message to
another LP with a certain timestamp increment. The
distribution of the computation time per event, the time-
stamp increment, and the LP to which the message will be
forwarded are parameters of the synthetic workload.

6.2 PCS

A PCS network [15] provides wireless communication
services for nomadic users. The service area of a PCS
network is populated with a set of geographically dis-
tributed transmitters/receivers called radio ports. A set of
radio channels are assigned to each radio port, and the
users in the coverage area (or cell for the radio port) can send
and receive phone calls by using these radio channels.
When a user moves from one cell to another during a phone
call, a hand-off is said to occur. In this case, the PCS network
attempts to allocate a radio channel in the new cell to allow
the phone call connection to continue. If all channels in the

CAROTHERS AND FUJIMOTO: EFFICIENT EXECUTION OF TIME WARP PROGRAMS ON HETEROGENEOUS, NOW PLATFORMS 7

1. On the Sun/Solaris machines, the gethrtime system call is used and
provides microsecond timing resolution. On the SGI/IRIX machines, the
hardware timer is memory mapped into GTW's address space and provides
half-microsecond resolution.

new cell are busy, then the phone call is forced to terminate.
It is important to engineer the system so that the likelihood
of force termination is very low (e.g., less than 1 percent).
For a detailed explanation of the PCS model, we refer the
reader to [11].

7 INTERNAL WORKLOAD EXPERIMENTS

In this section, the results from our experimental study
are presented. For all experimental data presented in this
section, we use eight 167 MHZ Sun Sparc Ultra-1 work-
stations running version 2.5 of the Solaris operating system.

7.1 PHold Configuration

We configure the PHold program to have a one of two
computation granularities: null and one millisecond. In the
null case, event processing is made as small as possible. It
consists of scheduling a single event into the future at a time
t� 1:0, where t is the timestamp of the event currently
being processed. In the one millisecond case, a one
millisecond delay loop is added to the processing over-
heads of the null event. Like the null case, a single event is
scheduled into the future at a time t� 1:0.

Each LPs initial message population is 25. Each of these
events is assigned a timestamp that is exponentially
distributed between 0 and 1. The number of LPs is fixed
at 2,048, making the total message population 51,200. These
LPs are grouped into 128 clusters, 16 LPs each. These
128 clusters are evenly distributed onto the eight proces-
sors, giving each processor 16 clusters or 256 LPs. The
maximum number of clusters a processor can support is 32.

PHold is additionally configured to be self-initiated.
When an event is processed where the source LP is different
from the destination LP, the destination LP will schedule
the next d generations of the event to itself. By d
generations, we mean that the child of the event, and the
child's child, and so on up to d times will be scheduled for
the same LP. After d generations of the event have been
produced, the destination LP is randomly picked. For the
experiments discussed here, d is a number initially
generated for each event based on a uniform distribution
between 0 and 2,000.

For the static workload experiments, a one millisecond
delay loop was added to the event computation
whenever any LP mapped to cluster 0 processes an event.
All other LPs process null events. Cluster 0 was mapped to
PE 0. This type of workload is an unbalanced event
granularity workload.

For the time-varying workload experiments, a one
millisecond delay loop was added to the event computation
whenever any LP mapped to cluster zero processed an
event for the first-third of the simulation, then to the
second-third of the simulation this delay loop was shifted
to LPs in cluster 31 on PE 1. Finally, in the last third of
the simulation, the delay loop is shifted to LPs in cluster 63
on PE 3.

7.2 PCS Configuration

PCS is arranged with 2048 cells. Each cell is configured with
25 to 75 portables per cell, yielding an initial message-
population from 51,200 to 153,600 respectively. The number
of channels per cell is 10. Call holding times are
exponentially distributed with a mean of three minutes.
Call mobility rate is exponentially distributed with a mean
of 1 every 75 minutes. Call interarrival times per portable
are exponentially distributed with a mean of 10 minutes.
LPs are divided into 128 clusters, 16 LPs to a cluster, and
16 clusters to a processor.

In PCS, an irregular event population internal workload is
introduced by giving each Cell (LP) mapped to cluster 0, an
initial portable-population (i.e., event population) of 1,000.

7.3 Rules for Setting � and Tschedule
Recall, � determines how sensitive the BGE algorithm is to
workload imbalances and Tschedule In determining the best
values for � and Tschedule, several factors were considered.
First, we were concerned that the monitoring of GTW might
significantly degrade GTW performance for small values of
Tschedule, which determines how frequently GTW perfor-
mance data are collected. For each cluster the following
information is collected: 1) CPU time, 2) number of events
processed, 3) number of events rolled back, 4) number of
events events aborted,2 and 5) a cluster communications
matrix. The cluster communications matrix for a cluster
denotes the destination cluster for every message sent by
this cluster over the last Tschedule interval.

To quantify this perturbation, we compared the execu-
tion times of null event granularity PHold under balanced
internal workload conditions with and without BGE
monitoring. � was set to 1.0 to eliminate all migrations.
The results of this comparison are shown in Table 1. We
observed that for event small values of Tschedule (i.e., 10 and
20 seconds), the perturbation was less than 8 percent.
Consequently, we believe that monitoring overheads are
not a significant factor in determining the value for Tschedule
or �.

The next factor to be considered is migration costs, which
includes the amount of time required to halt and roll the
simulation back to GVT, known as halt time, as well as the
time to effect the prescribed LP cluster migrations, called
move time. We observed move times are affected by the
amount of data contained within a cluster as well as how
many clusters are moved. Halt times are affected by the
degree to which GTW is ªout-of-balanceº since the more
ªout-of-balanceº GTW is the further some processors must
be rolled back during the halt phase.

8 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 11, NO. 3, MARCH 2000

2. As a flow-control mechanism, GTW will ªabortº an event if, during
the processing of that event, no memory is available to schedule a future
event.

TABLE 1
GTW Performance Comparison Using Balanced Null Event

Granularity PHold with and without BGE Monitoring

Moreover, both � and Tschedule affect total migration
costs. As Tschedule is increased, the opportunity for migration
decision points decrease, which decreases the rate at which
clusters could be moved. Likewise, if � is increased, the
maximum difference in observed PAT values must be
greater to effect any cluster migrations, thus reducing
the likelihood that any cluster migration will happen,
particularly for small to medium sized workload imbal-
ances. As a result, one may have a tendency to set both �

and Tschedule to large values. However, we shall see that
other factors such as reaction time and workload sensitivity
suggest otherwise.

To better understand how migration costs, reaction time
and workload sensitivity interact for particular set of � and
Tschedule values, we conducted experiments where we
induced an internal workload on PCS with 75 events per
LP and varied � and Tschedule across a wide range of values
to determine the set of values that minimizes execution
time. The results of this experiment are shown in Fig. 4. The
execution times are the average over three runs.

We observe that as � is increased from 0.05 to 0.15 and
Tschedule is increased from 5 to 15 seconds, the execution time
drops. Please note that the origin of the graph in Fig. 4 is
� � 0:05 and Tschedule � 5 seconds. The reason for this
behavior is because when both values are set low, the
migration costs overshadow any benefits gained due to an
increase in reaction time (small Tschedule) or sensitivity
(small �). It is at this point the system is in the ªvalleyº
of low execution times and is where the system should
operate to achieve the highest possible performance.
However, as � and Tschedule are increased beyond those
values, the execution time increases and continues to do so.
This behavior is attributed to a slow reaction time, which is

caused by increasing Tschedule, and lower algorithm sensi-
tivity, which is caused by increasing �.

Based on our experience with the BGE algorithm, we
make the following guidelines for setting � and Tschedule
such that the ªvalleyº of low execution times is discovered
in as few runs as possible.

. Initially, configure � � 0:05, and Tschedule � 5.
By setting � and Tschedule low, we avoid having to

worry about the BGE algorithm not detecting an
unbalanced workload or having a slow reaction
time.

. If it is observed that the BGE algorithm is consis-
tently initiating cluster migrations every Tschedule
epoch, particularly when the workload is balanced,
increase � by 0.05 and Tschedule by 5 seconds.

. If the total migration costs are greater than 10 percent
of total execution time, then increase � by 0.05 and
Tschedule by 5 seconds. This will reduce the migration
costs without having to be concerned about a slow
algorithm reaction time or the BGE algorithm not
detecting an unbalanced workload.

7.4 Performance Results

In this section we compare the execution time of GTW with
and without our BGE algorithm with the introduction of a
internal (static and time-varying) workloads. In all cases,
the results presented are the average of three runs.

We define Speedup as the sequential execution time
divided by GTW (parallel) execution time. For all the results
presented here, a fast sequential simulator is used, which
contains an optimized Calendar Queue [9]. The Calendar
Queue has a O�1� enqueue and dequeue time for the
simulation models tested here. Consequently, our speedup

CAROTHERS AND FUJIMOTO: EFFICIENT EXECUTION OF TIME WARP PROGRAMS ON HETEROGENEOUS, NOW PLATFORMS 9

Fig. 4. Perspective Plot of PCS, 75 events per LP: Execution Time as a function of � and Tschedule. The minimum along the � axis is 0.05 and for the

Tschedule axis is 5 seconds.

results are very conservative compared to using a O�log�n��
data structure, such as the Skew Heap [43] or Splay Tree
[42]. Our experiments indicate, that the sequential execution
time for null event granularity PHold is 2.6 times faster
when using the Calendar Queue than with the Skew Heap.
Similar results where reiterated in a recent, comprehensive
study of priority queue data structures by Ronngren and
Ayani [39].

Next, we define SpeedUp Improvement as

�SpeedupGTWÿBGE ÿ SpeedupGTW �=SpeedupGTW
where SpeedupGTWÿBGE is the speedup obtained with the
BGE algorithm and SpeedupGTW is the speedup obtained
without the BGE.

As shown in Table 2, we observe good improvements in
speedup, ranging from about 30 percent for PHold to
almost 130 percent for PCS. However, the overall speedup
may seem low. Closer examination of these internal
workload reveals that the execution time obtained by
GTW with BGE is within 5 percent of optimal for PHold
and 50 percent of optimal for PCS.

To determine the optimal execution time for PHold, we
use a technique called Critical Path Analysis (CPA), devel-
oped by Berry and Jefferson [5]. CPA provides a means of
analyzing the eventdependencies in a parallel simulation,
such that the minimum execution time assuming an infinite
number processors can be determined. The critical path of a
simulation is the longest path, measured in real time,
through the event dependency graph.

In constructing a dependency graph for the PHold model
(static workload case) with the one millisecond event
granularity for all LPs mapped to cluster 0, we note that
there are very few interactions between LPs due to the self-
initiating nature of this particular model. This allows us to
simplify the critical path analysis by assuming that no
dependencies exist between LPs (this assumption actually
reduces the optimal execution time). Now, because of
clustering, all LPs mapped to the same cluster will process
events sequentially. Consequently, it is easy to see that the
events processed by an LP assigned to cluster 0 form the
critical path. This is due to their one millisecond event
granularity, compared to the eight microsecond event
granularity for events processed in other clusters.

The execution time of the critical path can be calculated
as follows. First, there are 16 LPs with 25 initial events each
assigned to cluster 0. Each of these events has an initial time
stamp of about zero. Upon processing, an event is
scheduled for the same LP 1 unit of simulated time into
the future. Consequently, to advance 1,000 units of
simulated time, the LPs of cluster 0 must process 16 � 25 �

1; 000 � 400; 000 events. Each of these events require one
millisecond of processing time, yielding an optimal execu-
tion time of 400 seconds. The execution time reported by
GTW with BGE is 418 seconds, which is only 4.5 percent
greater than the optimal.

The critical path in the time varying internal workload,
PHold model is similar to the static internal workload.
Here, the critical path starts with cluster 0 then migrates to
cluster 31 and ends with cluster 63. Because the simulation
end time was twice as long, the critical path is twice as long,
yielding an optimal execution time of 800 seconds. For GTW
with BGE, the best execution time is 840 seconds, which is
only 5 percent greater than optimal.

Using Amdahl's Law, we observe that the PCS model
performs within 50 percent of the optimal speedup for an
infinite number processors with zero overhead for synchro-
nization. Amdahl's Law states that compute time can be
divided into the parallel portion and serial portion, and no
matter how high the degree of parallelism in the former, the
speedup will be asymptotically limited by the serial portion.
To use this Law we first find the percentage of the PCS
application that must be done sequentially. To do that, we
observe that cluster 0 has about 40 times more work to
perform per unit of time than the other clusters (computed
by 1,000 event per LP divided by 25 events per LP).
Consequently, cluster 0 comprises �40=�40� 127�� � 23:95%
of the entire simulation computation, and this computation
must be performed serially, since all LPs in this cluster are
mapped to the same processor. We also note that cluster 0 is
the critical path, if we assume no dependencies. Using
Amdahl's Law, the absolute best speedup is then
1=0:23:95 � 4:175. Given that we are operating in a NOW
environment with high communications overheads (i.e., no
special purpose communications hardware is employed),
a speedup of 2.2 does appear in line with what can
be expected.

8 EXTERNAL WORKLOAD EXPERIMENTS

In this section, the results from our experimental study are
presented. Here, we use eight 167-MHZ Sun Sparc Ultra-1
workstations running version 2.5 of the Solaris operating
system. A workload manager program ensures the external
workloads are consistently induced. All results presented
are the average over three trials.

8.1 PHold

Both the null and 1ms event granularity PHold models are
configured with 2,048 LPs and 25 initial messages per LP,
yielding a total message population of 51,200. These LPs are
grouped into 128 clusters, 16 LPs each. These 128 cluster are
evenly distributed onto the eight processors, giving each
processor 16 clusters, or 256 LPs. The above PHold
configuration parameters are used in all experiments
presented here.

8.2 PCS

We configure the call initiated PCS model with 2,048 cells
and 25 portables per cell. The number of channels per cell is
10. Call holding times are exponentially distributed with a
mean of three minutes. Call mobility rate is exponentially

10 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 11, NO. 3, MARCH 2000

TABLE 2
Performance of BGE Algorithm in the Presence of Irregular

Internal Workloads for GTW with BGE, � � 0:15, and Tschedule �
10

distributed with a mean of 1 every 75 minutes. Call inter-
arrival times per portable are exponentially distributed with
a mean of 10 minutes. LPs are divided into 128 clusters,
16 LPs to a cluster, and 16 clusters to a processor.

8.3 Performance Results

In this section, we compare the execution time of GTW with
and without our BGE algorithm in the presence of external
(static and time-varying) workloads. In all cases, the results
presented are the average of three runs. A summary of the
performance results is shown in Table 3.

For the static workload experiments, we induce three,
increasingly larger, static workloads on PE 1 and run each
application (null PHold, PCS, and 1ms PHold). In the first
case, a single external task is induced on PE 1. We then
induce two tasks on PE 1, and in the third case, four
external task are induced on PE 1. Each external task is CPU
bound and performs no external I/O.

For the time-varying workload experiments, we induce
two, increasingly larger static workloads on PE 1, with a
varying on and off-period and run each application. In the
first case, a two task external workload is induced on PE 1.
We then induce four tasks on PE 1. In each case, we vary the
on and off periods, but keep them equal. That is to say that
the on period is equal to the off period. Consequently, all of
the time-varying workloads have a 50 percent duty cycle.
Here, we vary the on/off period among the following set of
values: 25, 50, 150, and 250 seconds.

First, we present the comparison results for null event
granularity PHold. We observe that GTW with BGE is
consistently faster than GTW without it, ranging from 30
percent faster in the one task case to 170 percent faster in the
four task case. It was determined that relatively small
values of � � and Tschedule yield the fastest execution times.

Despite the significant improvements in speedup, GTW
with BGE is still only able to obtain a speedup of about 2 on
eight processors. However, given the low event granularity
of the PHold application combined with the high overheads
for sending and receiving messages, these results appear in
line with what can be expected.

Next, we compare the performance of GTW with and
without the BGE algorithm using the PCS model. We
observed a similar pattern to that previously shown for the
null event granularity PHold model, where GTW with BGE
for all static workloads yields shorter execution times.
However, for PCS, the fastest execution results when
Tschedule � 30 as opposed to Tschedule � 20 for null event
granularity PHold. The reason this increases in Tschedule is

because the move costs for PCS are higher because of a
larger message size. For PCS, the message data contained in
an event is 72 bytes, compared to only 8 bytes for PHold.

In this last series of static external workload experiments,
we compare GTW with and without the BGE algorithm
running 1ms event granularity PHold. Similar to the
previous two series of experiments, we again observe that
GTW with the BGE algorithm completes 1ms event
granularity PHold with significantly shorter execution
times than plain GTW, yielding a peak performance
improvement of 260 percent in the four task case.

Now, unlike the previous applications, when running
1ms PHold, PE 1 was deallocated from the usable set of
processors, as shown in Fig. 5. The primary difference
between these applications is event granularity. Conse-
quently, these findings suggest that event granularity plays
an important role in determining when a processor should
be deemed unusable.

Last, we observe some anomalous cluster allocations
occurring during the deallocation of PE 1. It appears
another processor during the same epoch has 11 of its 16
clusters redistributed. This behavior is attributed to
inaccuracies in cluster CPU utilization times. We will re-
visit this phenomenon in the next section and provide a
detailed explanation for its occurrence.

For the time-varying workloads, it was determined that
� � 0:15 and a Tschedule � 50 did the best overall at
consistently detecting and migrating the load imbalance at
the appropriate points. However, these settings appear to
conflict with the best settings for internal and static external
workloads, particularly for Tschedule. For these workloads,
the fastest execution time results when Tschedule was set to a
much lower value. We attribute this phenomenon to an
increase in inaccurate cluster CPU utilizations being
reported. These inaccuracies will be quantified later in
this section.

For Null PHold in the presence of the two task, time-
varying workload, we observe that in each case, GTW with
BGE is faster than GTW without BGE, ranging from
10 percent in the 150 second case to almost 30 percent
faster in the 250 second case. For the four task workload, we
observed similar speedup improvements.

Now, the observed improvement in speedup may seem
low (only about 30 percent in the four task, 250 second
case), however, when the amount of lost computation
power due to the time-varying workload is considered, this
improvement is in line with what can be expected. For these
experiments, the four task time-varying workload has a

CAROTHERS AND FUJIMOTO: EFFICIENT EXECUTION OF TIME WARP PROGRAMS ON HETEROGENEOUS, NOW PLATFORMS 11

TABLE 3
Performance of BGE Algorithm in the Presence of External Workloads

50 percent duty cycle, thus giving GTW a full eight PEs half
the time and 7.2 PEs when the workload is active. 7.2 PEs is
calculated by the fact that GTW on PE 1 is given 20 percent
of PE 1s available CPU cycles (i.e., 1=5 since there are four
external tasks plus GTW all vying for PE 1), plus the other
seven machines. Thus, on average, GTW is given �7:2�
8�=2 � 7:6 processors, which means that GTW is losing
0:4 processors, or only about 5 percent of the available
computing power.

Next, we present the time-varying results using PCS.
Here, for both the two and four task, time-varying work-
loads, the observed performance is somewhat different
from that of null event granularity PHold. The primary
difference is in the 50 and 150 second cases. In both cases,
we observe little or no reduction in execution time. We
attribute this phenomenon to a combination of thrashing
migrations every Tschedule epoch and higher migration
overheads for the PCS. Because of these higher migration
costs in the PCS model, only a 20 percent increase in
speedup is obtained for GTW with the BGE algorithm,
shown in Table 3.

Last, we present the results using 1ms event granularity
PHold. Here we observe that GTW with BGE consistently
yields shorter execution times than GTW without BGE both
the two task and four task, time-varying external work-
loads. Even the 50 second case with four tasks yields lower
execution times, which was not the case for null event
granularity PHold. We attribute these findings to the low
migration overheads of the PHold model, combined with
the one millisecond event granularity. Despite the some-
what thrashing cluster migrations made by the BGE

algorithm in the 50-second case, these large event granula-
rities appear to mask them, enabling GTW with BGE to
process events at slightly faster event rate than GTW
without BGE.

We observe a reasonable increase in speedup given the
5 percent loss of total computing power due to the four task,
time-varying external workload. This speedup is attributed
to the reduction in number of aborted events which is a
consequence of the BGE algorithm migrating clusters off PE
1. In fact, PE 1 is deallocated from the usable set during the
workload's on-period, and then reallocated when workload
sleeps, as shown in Fig. 6.

However, what is surprising about these cluster alloca-
tions, is that there appears to be an additional processor that
has lost its clusters at the same time PE 1 is being
deallocated. This phenomena was also observed in the four
task, static external workload case for 1ms event granularity
PHold. It appears as if there exists an additional time-
varying workload being induced on one of the other
processors. Further examination of the BGE's trace files
reveals that additional external workloads did not exist. So
if this phenomena is not the result of an additional external
workload, then what is the cause? Upon closer examination
of a the BGE algorithm decisions, the single cluster mapped
to PE 1 contains an over-inflated CAT value due to
inaccuracies being reported in CPU utilization for that
cluster. When this cluster is migrated off PE 1 as a
consequence of normal BGE processing, the receiving
processor now appears to be overloaded with work.
Consequently, the BGE algorithm begins to migrate clusters
off that processor, as well.

12 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 11, NO. 3, MARCH 2000

Fig. 5. 1ms Event Granularity PHold: Cluster Allocation over Time with Four Static, External Tasks on PE 1.

Now, in many of the previous experiments, we have

attributed particular anomalous behavior to inaccuracies

being reported in cluster CPU utilization. To quantify these

inaccuracies, GTW was instrumented to record the number

of events and event processing times for the purpose of

creating a histogram. We then reran 1ms event granularity

PHold with four task, time-varying external workload

on PHold. The results from this experiment were

very surprising.
The histogram, shown in Fig. 7, confirms that PE 1 is

recording numerous perturbations of event processing

times. There were over 500 events recorded with event

processing on the order of 160 milliseconds. The actual

event processing time should have been only one milli-

second. In another case, over 300 events were recorded with

event processing times in excess of 300 milliseconds. These

collective perturbations make PE 1 appear as though it is

consuming 75 percent more CPU time than it is in reality.

We attribute these timer perturbations to timed event

computations being charged for cycles they do not con-

sume, because the hardware clock continues to run while

the GTW process has been interrupted by the operating

system to allow the other external tasks time to execute.

9 HETEROGENEOUS EXPERIMENTS

The results from our heterogeneous platform study are

discussed in this section. For all experimental data

presented here, we employed the use of three different

kinds of machines: 1) 167 MHZ Sun Sparc Ultra-1 work-

station running version 2.5 of the Solaris operating system,

2) 200 MHZ SGI Indy workstation running version 6.2 of the

IRIX operating system, and 3) 40 MHZ Sun Sparc IPX

running version 2.5 of the Solaris operating system.

9.1 Determining �

In order to determine the appropriate value for �, we

compared the sequential execution of the PCS simulation

among the various platforms used in these experiments. We

determined that the Sun Ultra is about two times faster than

the SGI Indy workstation and is about 22 times faster than

Sun IPX workstation, thus yielding a � value of 22.0 for the

Ultra workstations, 11.0 for the Indy workstation and 1.0 for

the Sun IPX workstation.

9.2 Performance Results

In this section, we present the results from the comparison

of GTW with and without the BGE algorithm in the

presence of heterogeneous processors. Here, we create

two different heterogeneous configurations. The first con-

sists of seven Sun Ultra workstations and one SGI Indy.

This configuration is referred to as 7-fast and 1-slow. The

second configuration consists of six Sun Ultra workstations,

one SGI Indy, and one Sun IPX. This configuration is

dubbed 6-fast and 2-slow. For these experiments, the PCS

model is used.
For both configurations, the optimal value pair set of �

and Tschedule was determined to be 0.15 and 30 seconds,

CAROTHERS AND FUJIMOTO: EFFICIENT EXECUTION OF TIME WARP PROGRAMS ON HETEROGENEOUS, NOW PLATFORMS 13

Fig. 6. 1ms Event Granularity PHold: cluster allocation over time with four time-varying (250 seconds case), external tasks on PE 1. For GTW with

BGE, � � 0:15, and Tschedule � 50.

respectively. This is the same value set pair that was

deemed best for PCS in the static, external workload

experiments. These results underscore the observation that

processor heterogeneity and static external workloads are in

fact duals of each other. That is to say, from the point of

view of a Time Warp program, a processor with half the

computing power behaves as if it has twice the static

external workload as the other processors.
In this first series of heterogeneous experiments, we

present the results for the 7-fast and 1-slow configuration.

Here, we observe an almost 70 percent improvement in

speedup, which mirror static external workload results.
The cluster allocations for this configuration, shown in

Fig. 8, reveal a picture that is very similar to that found for
the static external workloads. Here, we observe the slow
processor, denoted by PE 7, having about half its workload
removed and redistributed among the other processors.
This is what one would expect to happen given that PE 7 is
half as fast as the other processors. Consequently, it should
be allocated half the number of clusters.

Next, we present the results for the 6-fast and 2-slow

configuration. The purpose of this analysis is to see how

significant the performance degradation is when we use

computing technology that has a large difference in

processing capabilities. As previously indicated, in this

configuration the Sun Ultra is about 22 times faster than the

Sun IPX workstation. When we compare the performance

for the 6-fast and 2-slow configuration with the 7-fast and

1-slow configuration, we observed a 25 percent decrease in

speedup. Now, because we are reducing the total amount of

computing power by 12 percent, this accounts for about half

the observed performance degradation. The other half is

accounted for by the 700 percent increase in aborted events

in the 6-fast and 2-slow configuration. The reason for

these aborted events is because Sun IPX with one cluster

(see cluster allocations in Fig. 9, PE 7) is still not progressing

fast enough. Recall that the Sun IPX is 22 times slower

than the Sun Ultra, however one cluster represents about

1=16 of the workload that is assigned to Sun Ultras.

Consequently, the Sun IPX is still overloaded with work,

despite having only one cluster, but is not sufficiently

overloaded to warrant deallocation by the BGE algorithm.

Because the Sun IPX is overloaded, the rate of GVT's

advance is slowed, which causes the Sun Ultras to become

overly optimistic and abort events. This suggests that LP

clusters may need to be divided into smaller units of

computation, to allow the slower IPX processor to share a

smaller portion of the workload.

10 COMBINATION-WORKLOAD EXPERIMENTS

For all experimental data presented here, the PCS simula-

tion model is used. The configuration remains unchanged

from that previously used in other experiments. The one

exception is that for LPs mapped to cluster 0, which in turn

is mapped to PE 0, 1,000 initial events are assigned. All

other LPs are assigned 25 initial events. This was done to

recreate the static internal workload used for PCS experi-

14 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 11, NO. 3, MARCH 2000

Fig. 7. 1ms Event Granularity PHold: histogram of event processing times for loaded PE 1, which is four time-varying (250 seconds case), external

tasks.

ments presented in Section 7. The experiments are

performed on eight 167 MHZ Sun Ultra-1 workstations,

where a four task, time-varying workload is induced on

PE 1. The on period for this workload is 150 seconds,

however, the off period is only 50 seconds. Thus, this

workload has a 75 percent duty cycle.

Fig. 8. PCS: cluster allocation over time on 7-fast processor and 1-slow processor (best case). For GTW with BGE, � � 0:15, and Tschedule � 30.

Fig. 9. PCS: cluster allocation over time on six fast processors and two slow processors. For GTW with BGE, � � 0:15, and Tschedule � 30.

We observed that GTW with the BGE algorithm

improves speedup by 100 percent over GTW without

BGE. As seen in previous experiments, the BGE algorithm

migrates the appropriate number of clusters off the over-

loaded processors and redistributing them among the

underloaded processors, as shown in Fig. 10. It is observed

that both PE 0s and 1s cluster allocation is reduced to that of

a single cluster. However, at 150 seconds into the execution

of the simulation, PE 1 is reloaded with work. This

phenomenon is in response to the time-varying external

workload on PE 1 going to sleep for 50 seconds.

11 CONCLUSIONS AND FUTURE WORK

For Time Warp programs executing on a NOW environ-
ment, there are internal and external workload sources that
must be taken into consideration if efficient execution is to
be maintained. The principal contribution of this work is
devising a single algorithm that is able to mitigate both
kinds of irregular workloads. The observation driving this
algorithm is that in order for a Time Warp program to be
balanced, the amount of wall clock time necessary to
advance an LP one unit of simulation time should be about
the same for all LPs in the system. In particular, we have
demonstrated using a PCS simulation model as well as a
synthetic application that our Background Execution Algo-
rithm (BGE) is able to:

. dynamically allocate additional CPUs during the
execution of the distributed simulation as they

become available and migrate portions of the
distributed simulation workload onto these
machines,

. dynamically release certain CPUs during the simu-
lation as they become loaded with other, external,
computations, and off-load the workload to the
remaining CPUs used by the distributed simulation,
and

. dynamically redistribute the workload on the exist-
ing set of processors as some become more heavily
or lightly loaded by changing externally or internally
induced workloads.

During the course of this experimental study, two

implementation-specific limitations were discovered. The

first concerns the inability of our algorithm to detect

internal workload imbalances caused by a sharp change

in the simulations communication pattern. This limitation is

a result of current commercial Unix operating systems, such

as Sun Solaris and SGI IRIX, not providing applications a

mechanism for determining how much time the operating

system spends processing socket operations on the behalf of

the application. One solution to this problem is to use a

high-performance message-passing system, such as

Myrinet [6], or Rosu et al.'s fast ATM firmware [40]. In

these systems, the operating system is avoided, placing all

message-passing overheads in GTW's address space and

thus allowing the communication overheads to be easily

obtained by direct measurement. Here, each cluster's CAT

value would then be the sum of the amount of wall clock

16 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 11, NO. 3, MARCH 2000

Fig. 10. PCS: cluster allocation over time with combination of four time-varying (150/50 second case), external tasks on PE 1 and static internal

workload on PE 0. For GTW with BGE, � � 0:05, and Tschedule � 5.

time spent processing committed events plus the time spent
sending and receiving committed off-processor messages.

The second implementation-specific limitation concerns
the accuracy of event processing times. Because the timers
used are free running, monotonically increasing, hardware
clocks, timed event computations may include the time for
operating system related tasks or time slices of other
external workloads, should the operating system de-
schedule the current running process during the timing of
an event.

The obvious solution to these limitations is to modify
the operating system such that better performance
analysis support is provided. However, this solution lacks
portability across many platforms. To ensure application
portability, techniques need to be developed that make
use of the current operating system interfaces and enable
the accurate approximation of system resource utilization.
One possible solution we plan to investigate in the future
is using context switch statics provided by the getrusage
system call combined with operating system time slicing
statistics to develop an error potential measurement.
This error potential will then be subtracted from the cluster
CPU utilization statistics to increase the accuracy of the
timing measurements, thus making the BGE algorithm
more accurate.

While the focus of this work has centered on efficient
execution of Time Warp on NOW platforms, we believe
these results are applicable in other synchronization
protocols. The key observation made by this work is based
on a fundamental truth that not only applies to Time Warp
programs, but to any data-parallel, distributed simulation
synchronization protocol. For example, in a conservative
synchronization scheme, if the amount of wall clock time
required to advance an LP one unit of simulation time
differs among the various processors, then some form a
load imbalance exists.

Finally, when viewed from a higher level, Time Warp
load management techniques, such as the one presented
here, are stability assurance mechanisms (SAMs), which
monitor the Time Warp system and make changes in the
behavior of the system to maintain efficient execution.
Other SAMs include flow-control, and adaptive memory
buffer management techniques. An open question is how
do these various SAMs interoperate? At the very least these
mechanisms should be designed such that they do not
interfere with one another or feed back on each other in a
manner that degrades performance. However, an even
more interesting question than the issue of interoperability
is the existence of a unifying SAM that encompasses all
types of SAMs for Time Warp systems. What about for all
distributed simulation protocols in general? To answer
these questions, further investigation is required.

ACKNOWLEDGMENTS

This work was supported by the U.S. Army, Contract
DASG60-95-C-0103, and funded by the Ballistic Missile
Defense Organization, and the U.S. National Science
Foundation, Grant Number CDA-9501637.

REFERENCES

[1] Y. Artsy and R. Finkel, ªDesigning a Process Migration Facility:
The Charlotte Experience,º Computer, vol. 22, no. 9, pp. 47±53,
Sept. 1989

[2] H. Avril and C. Tropper, ªThe Dynamic Load Balancing of
Clustered Time Warp for Logic Simulation,º Proc. 10th Workshop
on Parallel and Distributed Simulation (PADS '96), pp. 20±27, May
1996.

[3] A. Barak, S. Guday, and R.G. Wheeler, The MOSIX Distributed
Operating System: Load Balancing for Unix. Springer Verlag, 1993.

[4] S. Bellenot, ªPerformance of a Risk-Free Time Warp Operating
System,º Proc. Seventh Workshop on Parallel and Distributed
Simulation (PADS '96), pp. 155±158, vol. 23, May 1993.

[5] O. Berry and D. Jefferson, ªCritical Path Analysis of Distributed
Simulation,º Proc. 1985 SCS Multiconference on Distributed Simula-
tion, pp. 57±60, Jan. 1985.

[6] N.J. Boden, D. Cohen, R. Felderman, A.E Kulawik, C.L. Setiz,
J.N. Seizovic, and W.-K. Su, ªMyrinet: A Gigabit per Second
Local Area Network,º IEEE Micro, vol. 15, no. 1, pp. 29±36,
Feb. 1995.

[7] A. Boukerche and S.K. Das, ªDynamic Load Balancing Strategies
for Conservative Parallel Simulations,º Proc. 11th Workshop on
Parallel and Distributed Simulation, pp. 20±28, June 1997.

[8] J. Briner, ªFast Parallel Simulation of Digital Systems,º Advances in
Parallel and Distributed Simulation, vol. 23, pp. 71±77, Jan. 1991.

[9] R. Brown, ªCalendar Queues: A Fast 0(1) Priority Queue
Implementation for the Simulation Event Set Problem,º Comm.
ACM, vol. 31, no. 10, pp. 1,220±1,227, Oct. 1988.

[10] C. Burdorf and J. Marti, ªLoad Balancing Strategies for Time Warp
on Multiuser Workstationsº The Computer J., vol. 36, no. 2,
pp. 168±176, 1993.

[11] C.D. Carothers, R.M. Fujimoto, and Y.-B. Lin, ªA Case Study in
Simulating PCS Networks Using Time Warp,º Proc. Ninth Work-
shop on Parallel and Distributed Simulation, pp. 87±94, 1995.

[12] C.D. Carothers, Y.-B. Lin, and R.M. Fujimoto, ªA Redial Model for
Personal Communications Services Networks,º Proc. 1995 Vehi-
cular Technology Conf. (VTC '95), pp. 135±139, July 1995.

[13] K. Chanchio and X.-H. Sun, ªEfficient Process Migration for
Parallel Processing on Nondedicated Networks of Workstations,º
Technical Report 96-74, ICASE, Dec. 1996.

[14] K.M. Chandy and J. Misra, ªDistributed Simulation: A Case Study
in Design and Verification of Distributed Programs,º IEEE Trans.
Software Eng., vol. 5, no. 5, pp. 440±452, Sept. 1979.

[15] D.C. Cox, ªPersonal Communications±A Viewpoint,º IEEE Comm.
Magazine, vol. 128, no. 11, 1990.

[16] S. Das, R. Fujimoto, K. Panesar, D. Allison, and M. Hybinette,
ªGTW: A Time Warp System for Shared Memory Multiproces-
sors,º 1994 Winter Simulation Conf. Proc., pp. 1,332±1,339, Dec.
1994.

[17] P.M. Dickens and P.F. Reynolds, Jr., ªSRADS with Local Roll-
back,º Proc. SCS Multiconference on Distributed Simulation,
pp. 161±164, vol. 22, Jan. 1990.

[18] R.M. Fujimoto, ªTime Warp on a Shared Memory Multiproces-
sor,º Proc. 1989 Int'l Conf. Parallel Processing, vol. 3, pp. 242±249,
Aug. 1989.

[19] R.M. Fujimoto, ªParallel Discrete Event Simulation,º Comm. ACM,
vol. 33, no. 10, pp. 30±53, Oct. 1990.

[20] R.M. Fujimoto, ªPerformance of Time Warp under Synthetic
Workloads,º Proc. SCS Multiconference on Distributed Simulation,
vol. 22, pp. 23±28, Jan. 1990.

[21] R.M. Fujimoto and M. Hybinette, ªComputing Global Virtual
Time on Shared-Memory Multiprocessors,º technical report,
College of Computing, Georgia Inst. Technology, Aug. 1994.

[22] R.M. Fujimoto, S.R. Das, K.S. Panesar, M. Hybinette, and
C. Carothers, ªGeorgia Tech. Time Warp Programmer's
Manual for Distributed Network of Workstations,º Technical
Report GIT-CC-97-18, College of Computing, Georgia Inst.
Technology, July 1997.

[23] A. Geist, A. Beguelin, J. Dongarra, W. Jian, R. Manchek, and
V. Sunderam, ªPvm 3 User's Guide and Reference Manual,º
Technical Report TM-12187, Oak Ridge Nat'l Laboratory, May
1993.

[24] D.W. Glazer and C. Tropper, ªOn Process Migration and Load
Balancing in Time Warp,º IEEE Trans. Parallel and Distributed
Systems, vol. 3, no. 4, pp. 318±327, Mar. 1993.

CAROTHERS AND FUJIMOTO: EFFICIENT EXECUTION OF TIME WARP PROGRAMS ON HETEROGENEOUS, NOW PLATFORMS 17

[25] A. Goldberg, ªVirtual Time Synchronization of Rplicated Pro-
cesses,º Proc. Sixth Workshop on Parallel and Distributed Simulation,
vol. 24, pp. 107±116, Jan. 1992.

[26] F. Hao, K. Wilson, R.M. Fujimoto, and E. Zegura, ªLogical Process
Size in Parallel ATM Simulations,º 1996 Winter Simulation Conf.
Proc., pp. 645±652, Dec. 1996.

[27] D.R. Jefferson, ªVirtual Time,º ACM Trans. Programming Lan-
guages and Systems, vol. 7, no. 3, pp. 404±425, July 1985.

[28] D.R. Jefferson and H. Sowizral, ªFast Concurrent Simulation
Using the Time Warp Mechanism, Part I: Local Control,º
Technical Report N-1906-AF, RAND Corporation, Dec. 1982.

[29] M. Litzkow and M. Livny, ªExperience with the Condor
Distributed Batch System,º Proc. IEEE Workshop on Experimental
Distributed Systems, Oct. 1990.

[30] B.D. Lubachevsky, A. Shwartz, and A. Weiss, ªAn Analysis of
Rollback-Based Simulation,º ACM Trans. Modeling and Computer
Simulation, vol. 1, no. 2, pp. 154±193, Apr. 1991.

[31] V.K. Madisetti, D.A. Hardaker, and R.M. Fujimoto, ªThe Mimdix
Operating System forParallel Simulation and Supercomputing,º J.
Parallel and Distributed Computing, vol. 18, no. 4, pp. 473±483, Aug.
1993.

[32] F. Mattern, ªEfficient Distributed Snapshots and Global Virtual
Time Algorithms for Non-Fifo Systems,º J. Parallel and Distributed
Computing, vol. 18, no. 4, pp. 423±434, Aug. 1993.

[33] S.J. Mullender, G. van Rossum, R. van Renesse, and H. van Staveren,
ªAmoeba±A Distributed Operating System for the 1990s, Computer,
vol. 23, no. 5, pp. 44±53, May 1990.

[34] D.M. Nicol, Performance Bounds on Parallel Self-Initiating
Discrete Event Simulations, ACM Trans. Modeling and Computer
Simulation, vol. 1, no. 1, pp. 24±50, Jan. 1991.

[35] J.K. Osterhout, A.R. Cherenson, F. Douglis, M.N. Nelson, and
B.B. Welch, ªThe Sprite Network Operating System,º
Computer, vol. 21, no. 2, pp. 23±36, Feb. 1988.

[36] K. Panesar and R.M. Fujimoto, ªAdaptive Flow Control in Time
Warp,º Proc. 11th Workshop on Parallel and Distributed Simulation,
June 1997.

[37] P.L. Reiher and D. Jefferson, ªDynamic Load Management in the
Time Warp Operating System,º Trans. Society for Computer
Simulation, vol. 7, no. 2, pp. 91±120, June 1990.

[38] D.O. Rich and R.E. Michelsen, ªAn Assessment of the Modsim/
TWOS Parallel Simulation Environment,º 1991 Winter Simulation
Conf. Proc., pp. 509±518, Dec. 1991.

[39] R. Ronngren and R. Ayani, ªParallel and Sequential Priority
Queue Algorithms,º ACM Trans. Modeling and Simulation, vol. 7,
no. 2, pp. 157±209, Apr. 1997.

[40] MC. Rosu, K. Schwan, and R.M. Fujimoto, ªSupporting Parallel
Applications on Clusters of Workstations: The Intelligent Net±
work Interface Approach,º Proc. 1997 IEEE High Performance
Distributed Computing, Aug. 1997.

[41] R.S. Haft, M. Ruhwandl, C. Sporrer, and H. Bauer, ªDynamic
Load Balancing of a Multicluster Simulation on a Network of
Workstations,º Proc. Ninth Workshop on Parallel and Distributed
Simulation, vol. 24, pp. 175±180, July 1995.

[42] D.D. Sleator and R.E. Tarjan, ªSelf-Adjusting Binary SearchTrees,º
J. ACM, vol. 32, no. 3, pp. 652±686, July 1985.

[43] D.D. Sleator and R.E. Tarjan, ªSelf-Adjusting Binary Heaps,º
SIAM J. Computing, vol. 15, no. 1, pp. 52±69, Feb. 1986.

[44] L. Soule and A. Gupta, ªAn Evaluation of the Chand-Misra-Byrant
Algorithm for Digital Logic Simulation,º ACM Trans. Modeling and
Computer Simulation, vol. 1, no. 4, Oct. 1991.

[45] S. Srinivasan and P.F. Reynolds, Jr., ªNPSI Adaptive Synchroniza-
tion Algorithms for PDES,º Proc. 1995 Winter Simulation Conf.
(WSC '95), pp. 658-665, Dec. 1995.

[46] J. Steinman, ªSpeedes: A Multiple-Synchronization Environment
for Parallel Discrete Event Simulation,º Int'l J. in Computer
Simulation, vol. 2, no. 3, pp. 251±286, Mar. 1992.

[47] J. Steinman, ªBreathing Time Warp,º Proc. Seventh Workshop on
Parallel and Distributed Simulation, vol. 23, pp. 109±118, May 1993.

[48] THAAD Project Office, ªSoftware Product Specification for the
THAAD Integrate System Effectiveness Simulation (TISES),ºuser
documentation for TISES software, Sept. 1995.

[49] M.M. Theimer, A. Lantz, and D.R. Cheriton, ªPreemptable Remote
Execution Facilities for the V-System,º Proc. 10th ACM Symp.
Operating System Principles, Dec. 1985.

[50] G. Thiel, ªLocus Operating System: A Transparent System,º
Computer Comm., vol. 14, no. 6, pp. 336±346, 1991.

[51] F. Wieland, E. Blair, and T. Zukas, ªParallel Discrete Event
Simulation (PDES): A Case Study in Design, Development, and
Performance Using Speedes,º Proc. Ninth Workshop on Parallel and
Distributed Simulation, pp. 103±110, June 1995.

[52] M.H. Willebeek-LeMair and A.P. Reeves, ªStrategies for Dynamic
Load Balancing on Highly Parallel Computers,º IEEE Trans.
Parallel and Distributed Systems, vol. 4. no. 9, pp. 979±993, Sept.
1993.

[53] L.F. Wilson and D.M. Nicol, ªExperiments in Automated Load
Balancing,º Proc. 10th Workshop on Parallel and Distributed
Simulation, pp. 4±11, May 1996.

[54] Z. Xiao and F. Gomes, ªBenchmarking SMTW with an SS7
Performance Model Simulation,º unpublished project report for
CPSC 601.24, Fall 1993.

[55] E.R. Zayas, ªAttacking the Process Migration Bottleneck,º Proc.
11th ACM Symp. Operating System Principles, pp. 13±24, 1987.

[56] W. Zhu and A. Goscinski, ªProcess Migration in RHODOS,º
Technical Report CS90/9, Dept. Computer Science, Univ. College,
Univ. of New South Wales, Mar. 1990.

Christopher D. Carothers is an assistant
professor in the Computer Science Department
at Rensselaer Polytechnic Institute. He received
the BS, MS, and PhD degrees from the Georgia
Institute of Technology in 1991, 1996, and 1997,
respectively. Prior to joining Rensselaer, he was
a research scientist at the Georgia Institute of
Technology. As a PhD student, he interned twice
with Bellcore, where he worked on wireless
network models. In the summer of 1996, he

interned at the MITRE Corporation, where he was part of the DoD High
Level Architecture development team. His research interests include
parallel and distributed systems, simulation, wireless networks, and
computer architecture.

Richard M. Fujimoto is a professor in the
College of Computing at the Georgia Institute of
Technology. He received the BS degrees from
the University of Illinois (Urbana) in 1977 and
1978 in computer science and computer engi-
neering and the MS and PhD degrees in
computer science and electrical engineering from
the University of California (Berkeley) in 1980
and 1983. He has been an active researcher in
the parallel and distributed simulation community

since 1985, and has published over 70 technical papers in this field. He
has given several tutorials on parallel and distributed simulation at
leading conferences, and has coauthored a book on parallel processing.
He served as chair of the technical working group responsible for
defining the time management services for the DoD High Level
Architecture (HLA). Fujimoto is an area editor for ACM Transactions
on Modeling and Computer Simulation. He also served as chair of the
steering committee for the Workshop on Parallel and Distributed
Simulation (PADS) from 1990 to 1998. Dr. Fujimoto is a member of
the IEEE Computer Society

18 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 11, NO. 3, MARCH 2000

