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Abstract
In this paper, we show through detailed simulations that

BitTorrent can be used to assist a server or content dis-
tribution network (CDN) for large-scale streaming deliv-
ery. Specifically, a content owner can distribute a file to
over 131,072 users/peers with a peak swarm size of 16,384
concurrent users and a CDN bandwidth savings of 73%,
while achieving an average user buffer time of under 2 sec-
onds, which is an A+ on the StreamQ user performance rat-
ing system. Current research and even deployed systems
rarely have swarms in excess of 1,000 concurrent peers for
a single piece of content. Consequently, this is the first
study that reports on peer-to-peer streaming for swarms
of this scale. Further, the simulation model demonstrates
that a high quality of service can be provided, while signifi-
cantly reducing the distributor’s transit costs for these large
swarms.

1. Introduction

In 2005, peer-to-peer (P2P) accounted for roughly 60%
of all Internet traffic [36] (a European study from 2007
claimed this number was close to 95% during off-peak
hours [1]). Most of this traffic was due to file-sharing pro-
tocols such as BitTorrent. At any time, there are approxi-
mately 8 million users sharing 10 petabytes of data (mostly
media files). This accounts for nearly 10% of the worldwide
broadband connections [35]. While many files transferred
using P2P are done so illegally, P2P has become an attrac-
tive alternative for content owners to legally distribute files
because of reduced transit costs, and also the fact that cen-
tralized content server performance deteriorates rapidlyas
the number of clients increases.

BitTorrent is a robust P2P protocol that takes advantage
of peers’ bandwidth to efficiently replicate content. It is a
scalable mechanism that has been successful at distributing
large files quickly without overwhelming the capacity of the
origin servers [3]. BitTorrent also features a game theoreti-
cal incentive mechanism used to ensure the fair distribution
of content and prevent selfish peer behavior.

With so much digital media content being transferred, it
is natural to examine P2P’s potential for streaming delivery.
If content is streamed, the user can begin to enjoy it sooner,

and can evaluate its quality early on in order to preserve
valuable resources [46]. While many P2P protocols exist for
streaming, none have achieved the degree of performance,
scalability, user-fairness, and popularity as BitTorrenthas
for accomplishing time-insensitive mass-downloads. For
this reason, we explore using BitTorrent to assist in stream-
ing downloads.

Studied is a P2P streaming model based on BitTorrent
Assisted Streaming System (BASS) [15] over a wide range
of scenarios. Our work has two main differences from
[15]. First, our simulation scenarios are based on the large-
scale (100’s of thousands of users compared to 350 users)
distribution of television content using a combination of
subscription and on-demand usage patterns. Furthermore,
we employ a variation on the buffering scheme used in
[15]. Specifically, we add an additional buffer designed to
improve streaming quality by reducing the number of re-
buffers a user experiences.

Having streaming swarms of this size is by no means
far-fetched. CBS experienced 4.3 million (unique) down-
loads of its media player just before the 2008 NCAA March
Madness basketball tournament (an increase of 147% from
the prior year) [42]. Even more recently, 1.1 million view-
ers signed on in Great Britain to watch the 2008 Summer
Olympics in Beijing [23]. While the systems in these ex-
amples were server-only systems, they demonstrate signif-
icant growth in the online streaming community, and also
the need to incorporate P2P technologies in order to drive
down distribution costs in the near future.

In our model, a portion of theswarm(peering network)
downloads the content immediately upon its release (the
flash crowd). Soon after the release, on-demand viewers
join the swarm with the intention of streaming the content.
Simulations are performed using our full-detail “mainline”
BitTorrent simulator [8] and Internet topology model [28].
The two coupled together allow us the means to simulate
BitTorrent more accurately and on a scale orders of magni-
tude larger than previous efforts (as is required to simulate
television-size audiences). Further, our model preservesthe
designated market areas as defined by Nielsen Media Re-
search [33], allowing us to analyze trends by geographic
region in the United States.

Discussed next is related work and our contributions. In
Section 2, an overview of the BitTorrent protocol is pro-
vided. Our implementation is discussed in Section 3. Sim-
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ulation results are described in Section 4. Finally, our con-
clusions are presented in Section 5.

1.1. Related work

P2P streaming is often accomplished usingapplication
layer multicast, where an overlay network is constructed
containing the participating nodes. The content owner in-
jects the stream into the overlay, where the nodes may con-
sume it and forward it to their children. The structure of the
overlay is typically a tree, forest, or mesh.

A multicast tree is the simplest structure. Each node
receives content from a single parent, and forwards it to
its children. The height of this tree translates into its la-
tency, and the width translates into the number of bandwidth
bottlenecks. ZIGZAG [44] is an architecture composed of
a clustering hierarchy and a multicast tree of logarithmic
height and constant node degree. Overcast [21] also builds
a tree, but attempts to maximize a metric such as bandwidth
or latency from all nodes to the root. A common prob-
lem characteristic of multicast trees is their lack of fault-
tolerance. If a single node fails, it may disconnect portions
of the tree, rendering them useless until the failing node’s
children can recognize the failure and reconnect. Bayeux
[50] (an architecture that leverages Tapestry [48]) attempts
to solve this problem using secondary pointers.

Traditional tree-based multicast is not well suited for
P2P, as the burden of duplicating and forwarding traffic is
carried by a small subset of peers that are interior nodes of
the tree. This conflicts with the expectation that all nodes
will share this burden equally. SplitStream [11] splits the
stream into stripes, each delivered with a separate multicast
tree. It attempts to create a structure where interior nodesof
one tree are leaf nodes in all the remaining trees, in order to
fairly distribute the forwarding burden. Other systems that
use forests include Narada [13] and PALS [40].

Fundamentally, forest overlays suffer from the same
problems as tree overlays [47], since a node in any stripe
may fail. Like a forest, a mesh overlay allows for simulta-
neous downloads, but also allows parts of the file to come
from perpendicular nodes. If a node fails, other nodes
can continue to receive content while reconnecting to the
overlay. However, a protocol is needed to locate miss-
ing content in the network. Bullet [27], CollectCast [17],
and DONet/CoolStreaming [49] are examples of systems
that use mesh overlays. [2] uses network coding, segment
scheduling, and peer-matching algorithms to show that high
quality of service (QoS) video-on-demand (VoD) is feasible
in mesh-based overlays. Further, they show that poor per-
formance could be a result of under-utilizing network re-
sources. The swarms studied in this paper were small (typ-
ically 500 nodes), and it is unclear how these techniques
scale for larger swarms.

Under ideal conditions, application layer multicast
works well for streaming media. But, even with clever
techniques to ensure performance, scalability, and fault-
tolerance, all these schemes lack user incentives. Users up-
load in good-faith [43], and are not penalized if they choose

not to contribute their resources to the P2P network. This
has sparked some interest in using BitTorrent for streaming,
since BitTorrent employs an incentive mechanism.

A peer-assisted VoD architecture that uses a BitTorrent-
like network for topology management and a distributed
hash table (DHT) for data management is proposed in [20].
They show it is possible to achieve a good QoS, a low
startup time, and cost savings with the assistance of a P2P
network. BiToS [46] is a BitTorrent derivative that imposes
minimal changes to the protocol’s piece-picker to allow for
streaming. It organizes needed pieces into two queues, the
high-priority piecesand theremaining pieces. Any piece
that misses its playback deadline will be removed from
both queues and will no longer be considered for down-
load, thus degrading the video quality. With a probability
of p, the earliest deadline piece of the high-priority piece
set is requested, and with a probability of1 − p, the rarest
remaining piece is requested (p can be fixed or dynami-
cally assigned). The goal is to download pieces in order
as they are needed for playback, and occasionally down-
load rare pieces to make the peer an attractive trading part-
ner as per BitTorrent’s incentive mechanism. Thus, the dif-
ferent values ofp affect the video quality, and the down-
load time remains roughly the same. [7] describes another
piece-selection policy that attempts to achieve a good com-
promise between high piece diversity and the in-order re-
trieval of pieces. BASS [15] assists a server or content
distribution network (CDN) infrastructure with a P2P net-
work (BitTorrent) to reduce transit costs. [12] presents an-
other BitTorrent-assisted streaming technology called Tor-
rent Assisted Streaming (Toast), and provides results from
small-scale sessions (300 peers). In this paper, we simulate
BitTorrent-assisted video streaming for very large swarms
(up to 131,072 peers).

There is an emerging market for streaming media con-
tent using P2P. This trend is due to the fault tolerance, scal-
ability, and potential for transit cost savings characteristic
of P2P. Some companies currently offering streaming video
via P2P include: PPLive [37], PPStream [38], MySee [31],
Roxbeam [41], UUSEE [45], BitTorrent.com [5], Verisign
Kontiki [26], ITIVA [19], Joost [24], Pando [34], and Red
Swoosh [39]. In China alone, over 12,000,000 users have
accessed a service or downloaded software within the last
two years [47].

1.2. Contributions

Through the use of detailed simulations over a wide
range of large-scale scenarios, we show that using BitTor-
rent to assist a server or CDN infrastructure can result in a
high QoS for users, while reducing distributor transit costs
significantly. Specifically, a content owner can distributea
file to up to 131,072 users/peers with a peak swarm size
of 16,384 users and a bandwidth savings of 73%, while
achieving an average user buffer time of under 2 seconds
(see Table 1). Current research and even deployed sys-
tems such as CoolStreaming rarely have swarms in excess
of 1,000 concurrent peers for a single piece of content. Con-



sequently, this is the first study that reports on P2P stream-
ing for swarms of this scale. Further, we show that CDN
utilization scales roughly linearly with swarm size, demon-
strating that swarm size estimates can be used to estimate
CDN utilization, allowing content owners to optimize their
CDN bandwidth agreements.

2. The BitTorrent protocol

The BitTorrent protocol creates a virtual P2P overlay
network using five major components: (i)a torrent file, (ii)
a web site, (iii) a tracker server, (iv) seeders peers, and (v)
non-seeder peers.

A torrent file is composed of a header plus a number of
SHA-1 block hashes of the original file, where each block
or pieceof the file is a 256 KB chunk of the whole file.
These chunks are further broken down into 16 KB sub-
chunks calledslices. The header information denotes the
IP address or URL of thetracker for this torrent file. Once
created, the torrent file is then placed on a publicly acces-
sible web site, from which anyone can download. In addi-
tion, the original content publisher will start aseederpeer
with a complete copy of the content file as well as the tor-
rent file. The seeder uses the torrent file to register with
the tracker. The tracker server matches peers interested in
the same content with each other. New peers interested in
downloading the content pull the torrent file and then reg-
ister with the tracker. When anon-seedercompletes down-
loading the content, it becomes a seeder. Furthermore, both
seeder and non-seeder peers share content that they have
downloaded with other peers. Because of the size of the
peer-set(maximum of 80) and the random peer selection,
the probability of creating an isolated clique in the over-
lay network graph is extremely low, which ensures robust
network routes for piece distribution. The downside to this
approach is that topological locality is completely ignored,
resulting in much higher network utilization (i.e. more net-
work hops and consumption of more link bandwidth). Thus,
the protocol makes a robustness for locality tradeoff.

Peers in the swarm will begin to transfer slices of the
file amongst themselves in a cooperativetit-for-tat manner,
which is governed by BitTorrent’s complexchokeralgo-
rithm. The choker is designed to refuse cooperation with
selfish peers that do not contribute to the swarm [14].

When a piece is downloaded, the BitTorrent software
will validate that piece against the SHA-1 hash value for
that piece. When a piece is validated, that peer is able to
share slices of it with other peers who request it. Pieces
within a peer-set are exchanged using ararest piece first
policy, which is used exclusively after the first few ran-
domly selected pieces have been obtained (typically four
pieces). Because each peer announces to all peers in its
peer-set every piece it obtains (via a HAVE message), all
peers are able to keep copy counts on each piece and deter-
mine within their peer-set which piece or pieces are rarest
(i.e. lowest copy count). When a peer has obtained all
pieces of the file, it then switches to being a pure seeder

of the content. At any point during the exchange process,
peers may join or leave the swarm. Because of the highly
volatile nature of these swarms, a peer will re-request an
updated list of peers from the tracker periodically (typically
every 300 seconds). This ensures the survival of the swarm,
assuming the tracker remains operational.

More recently, BitTorrent has added a DHT based tracker
mechanism. This approach increases swarm robustness
even in the face of tracker failures. However, DHTs are
beyond the scope of the current investigation.

3. Implementation

The BitTorrent model is written on top ofROSS[9, 10],
which is an optimistically synchronized parallel simulator
based on the Time Warp protocol [22]. In this modeling
framework, simulation objects, such as peers, are realizedas
logical processes (LPs) that exchange time-stamped event
messages in order to communicate. Each message within
the BitTorrent protocol is realized as a time-stamped event
message, where the time stamps are generated by delays
from the network topology model [28], which realistically
approximates today’s home broadband Internet service.

The topology model is designed to abstract away details
that are non-pertinent to Internet simulations, where delays
experienced in the core are negligible compared to those in
the last mile [16]. It is comprised of several components
such as the network connectivity model, which defines the
nodes and links present in the simulated network. The back-
bone portion of the connectivity model comes from actual
traces, and therefore represents a subset of the actual Inter-
net backbone. Lower-tiered ISPs and their home users are
synthesized based on typical structures of cable and DSL
networks, and actual population and device usage distribu-
tions. Because of the hierarchical nature of these types of
networks, no home user adjacencies need to be stored (sav-
ing a significant amount of memory), since relationships be-
tween users, such as hop counts, can be calculated. From
these hop counts, we can generate realistic delays based
on distributions around delays we observed in actual traces,
and then estimate available end-to-end bandwidth.

In order to simulate at such a large scale, the simulator
needs to be further abstracted, and must use an efficient and
compact underlying data structure. This is accomplished
in part by simulating flows (at the slice-level) rather than
simulating at the packet-level. Further, the BitTorrent data
structure saves memory and processing time by eliminating
redundant data throughout the system, and also by not stor-
ing or transferring any data payloads for the file transfer.
Instead, we make adjustments based on the size of the data
that would have been transferred.

BASS [15] is a hybrid server/P2P streaming system for
large-scale VoD. In BASS, clients can stream via BitTor-
rent connections and media servers simultaneously. File
pieces are downloaded from a server sequentially, with the
exception of pieces already obtained using BitTorrent. Sim-
ilarly, the BitTorrent piece-picker will not choose to down-



load pieces scheduled prior to the current playback point,
as they have already been obtained. In [15], a P2P contri-
bution rate of 34% has been reported for a scenario of 350
peers distributing a 692 piece file (at 1 Mbps).

For our model to simulate BASS, two new entities
needed to be added. The first is astreaming server. A
streaming server is an LP that represents a highly-capable
peer, which answers all requests in FIFO order. With the ex-
ception of using the same piece/slice scheme, a server does
not run the BitTorrent protocol (it does not choke peers).
The implementation allows for any number of streaming
servers in the system. It should be noted that having these
servers in an environment with malicious or selfish peers
would require new security considerations. The second en-
tity added to the model is astreaming peer. This peer is a
BitTorrent peer, but is also responsible for keeping track of
buffer state and playback deadlines. Streaming peers may
co-exist and cooperate with non-streaming peers in a sim-
ulation run. Algorithm 1 demonstrates the minor modifica-
tions required at birth to accommodate streaming peers.

Algorithm 1: BIRTH Event

if streaming peer then1

Initialize buffers;2

Schedule PLAYBACK now;3

end4

// All peers
Initiate BitTorrent protocol;5

A streaming peer employs a double-buffering scheme
consisting of aplayback bufferand alook-ahead buffer(see
Figure 1). The playback buffer contains all video data that
will be played next. If this buffer is not full when required,
a re-buffer is triggered, causing the remaining buffer slices
to be requested from a server. In addition, all remaining
slices in the look-ahead buffer are also requested (see Algo-
rithm 2). The purpose of the look-ahead buffer is to down-
load pieces that have not missed their deadlines yet, but are
needed soon. The chance that these pieces will be down-
loaded via BitTorrent is small, and the goal is to reduce
the amount of re-buffers necessary, and the total buffering
time. Data coming from a server is treated in the same way
as data coming from a BitTorrent peer. This forces a peer
to send out HAVE messages for pieces downloaded from a
server. Further, the BitTorrent piece-picker does not needto
be modified, since a peer will not request data that it already
has, regardless of where it came from.

In the event of a re-buffer, the client will play the con-
tent as soon as it becomes available. Whenever content is
successfully played, the next playback is scheduled for the
point in the future when the current playback finishes. To
initiate the first buffering and playback, a streaming peer
has a playback event scheduled at its birth time. Clearly,
the size of the buffers impact both the QoS and the distribu-
tion costs (larger buffers result in less P2P contribution but
better QoS).

Figure 1. Double-buffering scheme. The play-
back buffer is 5 slices and the look-ahead
buffer is 15 slices in this example.

Algorithm 2: PLAYBACK Event

// Check playback buffer
for i = 1 to playback buffer.size do1

if playback buffer[i].missing then2

Requestplayback buffer[i].piece;3

Setmissed playback;4

end5

end6

// Check look-ahead buffer
for j = 1 to lookahead buffer.size do7

if lookahead buffer[j].missing then8

Requestlookahead buffer[j].piece;9

end10

end11

// Handle the successful or
unsuccessful playback

if missed playback then12

if Last playback wassuccessful then13

Storefirst unsuccessful time;14

end15

else16

if Last playback wasunsuccessful then17

Incrementrebuffers;18

Updatebuffer time;19

Clearfirst unsuccessful time;20

end21

// Playback was successful
Update both buffers;22

Schedule next PLAYBACK event;23

end24

4. Simulation results

In this section, we demonstrate system performance, cost
savings, and server utilization (average and peak) for sev-
eral streaming scenarios using our model of BASS.

In the following experiments, the distributed video con-
sists of 512 pieces at 700 Kbps (approximately 24 minutes,
which is the average length of a television show without
commercials). The simulated swarms have 16,384 (flash
crowds of 1,024 and 2,048) and 32,768 (flash crowds of



2,048 and 4,096) peers, where the flash crowds consist of
peers that are not streaming, consistent with the subscrip-
tion model for new content. Through prior experimenta-
tion, it was determined that the flash crowds should be at
least 1,024 peers. If the flash crowd is too small, there is
not enough content in the network to satisfy the stream-
ers, and buffering times are much higher. Further, our re-
sults suggest that the flash crowd does not need to be very
large, since larger flash crowds do not impact the buffering
times, the number of re-buffering events, or the P2P contri-
bution. The peers in each swarm arrive for approximately
two hours.

Different IP Television (IPTV) services, whether they are
server-only or P2P, offer a wide range of bit rates. For ex-
ample, PPLive [37] typically offers bit rates between 250
Kbps and 800 Kbps [18], and the server-oriented NeuLion
[32] offers playback at 700 Kbps. For this reason, no single
bit rate is more suitable than any other in our study, and we
chose 700 Kbps, which is roughly average amongst those
we have seen (later on we explore a higher bit rate of 1.5
Mbps). VCD quality video is typically 1.25 Mbps, DVD
quality is 5 Mbps, and HDTV is 15 Mbps [4].

In terms of our network topology and BitTorrent model
configuration, there are over 100 different parameters.
Here, we provide a brief overview of the most important.
Each host computer has upstream and downstream band-
widths of 64 KBps and 256 KBps respectively for DSL
subscribers, and 128 KBps and 512 KBps respectively for
cable subscribers. Each peer can support up to 80 con-
nections (default BitTorrent setting), which are established
using BitTorrent’s random peer selection algorithm from a
single tracker. Each connection’s data rate is based on the
TCP network bandwidth equation [30], which is a func-
tion of the maximum segment size (1380 bytes in BitTor-
rent), round trip time as determined by the path delay be-
tween peers, and a probability of packet loss, which is set
to 5%. The path delay between peers is determined by the
hop count between them (assuming a nominal 6 ms delay
per hop). The topology, delay per hop, and loss probabil-
ity were determined by real measurement data taken from
home broadband networks and various looking glass sites.
This data enabled us to efficiently construct a reasonable In-
ternet topology model for the top 31 Nielsen markets, which
includes over 100 million TV viewers [33]. As evidence of
this efficiency, we find that a 131,072 peer scenario requires
only 6.5 GB of memory to represent the network topology.
All simulations were executed on a 16-way AMD Opteron
2.8 GHz system with 64 GB of RAM, using only 1 of the
16 processors. The full details of the BitTorrent model and
Internet topology model can be found in [8] and [28] re-
spectively.

As mentioned above, the main discriminating variable is
the size of the look-ahead buffer. In our experiments, the
size of this buffer ranges from 500 to 3,000 slices by incre-
ments of 500. If the buffer is too small, the P2P contribution
is very high, however the buffering times are very poor. Fur-
ther, if the buffer is very large, there is a drastic decreasein
P2P contribution, with only a marginal increase in quality.
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Figure 2. Average buffer times experienced
by streaming peers as a function of look-
ahead buffer size (in slices). Swarm scenar-
ios range from 16,384 total peers with 1,024
peers in the initial flash crowd (legend label:
16384 − 1024) to 32,768 total peers with 4,096
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perienced by streaming peers as a function
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that the first buffer event is mandatory for
all streaming peers. Swarm scenarios range
from 16,384 total peers with 1,024 peers in the
initial flash crowd (legend label: 16384− 1024)
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In each run, a look-ahead buffer of size 500 results in an
average buffering time of 3.3 seconds (1.5 average buffer
events per user) with a P2P contribution of 78% (see Fig-
ures 2, 3, and 4 respectively). While this sounds good, 3.3
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Simulated Avg. Buffer Avg. P2P Avg. CDN Peak CDN

Peers Time (s) Buffers Contribution Util. (MBps) Util. (MBps)

16,384 1.8 1.3 73% 104 145
32,768 1.5 1.3 73% 158 312
65,536 1.4 1.3 73% 314 617
131,072 1.4 1.3 73% 633 1,228

Table 1. Streaming performance across sev-
eral metrics as a function of swarm size rang-
ing from 16,384 peers to 131,072 peers. The
flash crowd is 2,048 peers and the look-ahead
buffer is 1,000 slices.

seconds may be too long for some applications. A buffer-
ing time of under 2 seconds (1.3 average buffer events per
user) with up to a 73% contribution from the P2P network
can be achieved. This time can be further reduced by 0.4
seconds, but doing so reduces the P2P contribution by 16%.
Depending on the distributor’s budget and needs, the size
of the look-ahead buffer can be established. For an average
buffering time of 1.1 seconds, it is still possible to achieve
a P2P contribution of 53%. Thus, using BitTorrent to assist
a streaming server or CDN infrastructure can significantly
lower transit costs, while achieving an excellent QoS for
users.

4.1. QoS

Although the average user buffer times and number of
buffer events are very good, we would like to know how
all peers fare. Consider the case of 16,384 peers, a flash
crowd of 1,024, and a look-ahead buffer of 1,500 slices. The
average buffering time is 1.3 seconds (with a standard de-
viation of 2.6 seconds). The histogram in Figure 5 shows
that most peers do indeed experience good performance,
with 99.76% of peers experiencing a buffer time of under
3 seconds. Similarly, on average, each peer requires only
1.3 buffering events (with a standard deviation of 0.6 buffer
events), with 99.15% of peers requiring at most 2 buffer
events (including the initial mandatory buffering, see Fig-
ure 6).
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Figure 5. Histogram of the buffering times.
Observe that most streaming peers experi-
ence a buffering time of under 2 seconds.

Overall, streaming quality can be measured by a QoS
metric calledadjusted frustration time[25]. Adjusted frus-
tration time is defined as the total sum of buffering times,
plus a 2 second penalty for every re-buffering event. This
metric is used as part of the StreamQ user performance rat-
ing system. In this system, an adjusted frustration time of
under 6 seconds is given the grade of A+, 6 to 9 seconds
an A, 9 to 12 seconds a B+, and so on. Figure 7 is a his-
togram of the swarm’s adjusted frustration times (the aver-
age is 1.8 seconds, with a standard deviation of 3.1 seconds,
and 99.12% of users experience an adjusted frustration time
of under 3.6 seconds), indicating that the overall QoS is very
good. The StreamQ user performance ratings for this run
can be found in Table 2.

4.2. CDN utilization

Figures 8 and 9 show the average and peak CDN server
utilizations for each scenario. The peak never exceeds 390
MBps, and the averages are usually around half the peaks.
Further, for the simulated scenarios, the server utilization
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Figure 7. Histogram of the adjusted frus-
tration times. Observe that most stream-
ing peers experience an A+ StreamQ perfor-
mance.

scales roughly linearly with the size of the swarm. Thus,
if a content provider can estimate swarm sizes, an excellent
estimate of server requirements can be made.

Most CDNs and ISPs use a method calledburstable
billing [6] to charge their customers. This method charges
based on a regular sustained utilization, allowing brief us-
age peaks to occasionally exceed the threshold without
penalty. Typically, customers are billed at the95th per-
centile of their usage. This method is beneficial for cus-
tomers whose usage is fairly steady. If usage is bursty or
unpredictable, a flat-rate system that charges per byte (or
GB) delivered may be the best option. Table 3 shows the
95th percentiles and the total volume of data delivered with
and without the assistance of the P2P network.

Grade Frequency

A+ 16,245
A 21
B+ 15
B 13
C+ 18
C 15
D+ 5
D 10
F 42

Table 2. Distribution streaming peers grades
using the StreamQ performance rating sys-
tem. Note, that a grade of F is given when
a peer’s adjusted frustration time is 27 sec-
onds or more.
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Figure 8. Average server utilization as a func-
tion of look-ahead buffer size (in slices).
Swarm scenarios range from 16,384 total
peers with 1,024 peers in the initial flash
crowd (legend label: 16384 − 1024) to 32,768
total peers with 4,096 peers in the initial flash
crowd.

We confirm the claims published in [15] that most CDN
contribution occurs in the first pieces of the file, with very
little towards the end. This is due to the fact that BitTor-
rent (which usually employs a rarest piece first algorithm)
does not have a chance to obtain early pieces because they
are needed too soon, while the later pieces have more time
before playback, and thus more opportunities to be down-
loaded via BitTorrent. Figure 10 shows how many times a
slice (16 KB) is downloaded from the server, for each piece
(256 KB) of the file.
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Figure 9. Peak server utilizations as a func-
tion of look-ahead buffer size (in slices).
Swarm scenarios range from 16,384 total
peers with 1,024 peers in the initial flash
crowd (legend label: 16384 − 1024) to 32,768
total peers with 4,096 peers in the initial flash
crowd.

Simulated 95th Percentile CDN Delivered (GB) CDN Delivered (GB)

Peers CDN Util. (MBps) With P2P Network Without P2P Network

16,384 112 567 2,098
32,768 224 1,133 4,195
65,536 442 2,265 8,389
131,072 922 4,530 16,778

Table 3. 95th percentiles and the total vol-
ume of data delivered (GB) by the CDN with
and without the assistance of the P2P net-
work for several large swarms (16,384 peers
to 131,072 peers). The flash crowd size is
2,048 peers and a look-ahead buffer is 1,000
slices.

4.3. Video bit rate

To this point, all results in this paper have been for a bit
rate of 700 Kbps. In this section, we present results from
simulations at 1.5 Mbps (a 12 minute video), and show that
with a nominal increase to the look-ahead parameter, it is
possible to achieve a similar QoS and CDN requirements.
Table 4 shows that an increase of 500 slices to the look-
ahead buffer will allow us to achieve the same QoS as the
700 Kbps scenario (this is the point where both curves begin
to converge to 1.1 seconds and 1.3 buffer events). Table 5
shows the P2P contribution and the server utilizations for
these same scenarios. To achieve the same QoS, more CDN
involvement is required for the higher bit rate, which is ex-
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Figure 10. Distribution of slices delivered by
the CDN throughout the file, for the 16,384
peer, 1,024 flash crowd, and 2,000 slice look-
ahead scenario.

Simulated Bit Rate Look-Ahead Avg. Buffer Avg.

Peers (Kbps) (slices) Time (s) Buffers

16,384 700 1,500 1.4 1.3
16,384 1,500 2,000 1.4 1.3
32,768 700 1,500 1.3 1.3
32,768 1,500 2,000 1.4 1.3

Table 4. Impact of bit-rate and look-ahead
buffer size on QoS (buffer times and re-
buffers) across different swarm sizes.

pected since the only difference is that now all playback
deadlines occur sooner.

When the look-ahead buffer is 500 slices for all scenar-
ios (the worst case for both bit rates), the average buffering
time for the 1.5 Mbps video is approximately twice that of
the 700 Kbps video (a maximum of 7.2 seconds compared
to 3.6 seconds), and there are on average 0.6 more buffer
events per user. For any look-ahead buffer size, the P2P
contribution is consistently 10 to 13% less for the higher
bit rate. While the average and peak server utilizations ap-
pear to go down occasionally, they typically increase for the
higher bit rate by 30 Mbps and 60 Mbps respectively for the
16,384 peer swarms, and by 60 Mbps and 90 Mbps respec-
tively for the 32,768 peer swarms.

These results show that while P2P contribution decreases
and server utilization increases (an increase in overall CDN
involvement), the same QoS can be achieved at higher bit
rates as can with lower ones.



Simulated Bit Rate Look-Ahead P2P Avg. CDN Peak CDN

Peers (Kbps) (slices) Contribution Util. (MBps) Util. (MBps)

16,384 700 1,500 68% 104 155
16,384 1,500 2,000 50% 145 239
32,768 700 1,500 68% 188 332
32,768 1,500 2,000 51% 143 225

Table 5. P2P contribution and CDN utilization
as a function of swarm size, bit rate, and
buffer size.

5. Conclusions

In this paper, we have demonstrated the feasibility of
large-scale P2P assisted video streaming, and discussed its
inherent tradeoffs. Through a comprehensive campaign of
simulation scenarios, we have shown that a content distrib-
utor can fine-tune parameters in order to reduce CDN uti-
lization, making it possible to distribute files to large audi-
ences on a finite budget. One simulation run shows that a
file can be distributed to 131,072 users with a CDN savings
of 73%, while providing users with an average buffering
time of fewer than 2 seconds (an A+ on the StreamQ per-
formance rating system).

In the future, we will modify the simulated clients to
have dynamic behavior, in order to study network impacts
and security considerations. Another direction would look
at local caching strategies, so that a distributor can also of-
fer long-tail (less popular) content while continuing to save
in transit costs.

Since our study began, we have seen an increase in the
adoption of online video streaming (for example, the 2008
NCAA March Madness tournament [42] and the 2008 Sum-
mer Olympics in Beijing [23]). As online audiences con-
tinue to grow, more content owners will use a P2P network
to assist in distribution in order to reduce their data transit
costs. We have demonstrated how this can be accomplished
while keeping viewers satisfied, and have paved the way for
further research of this technology.
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