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Abstract

In recent years, many researchers have run simulations
of the Internet. The Internet’s inherent heterogeneity and
constantly changing nature make it difficult to construct a
realistic, yet computationally feasible model. In the con-
struction of any model, one must take into consideration
flexibility, accuracy, required resources, execution time, and
realism. In this paper, we discuss the methodology and cre-
ation of a model used to simulate Internet content distribu-
tion, and the rationale used behind its design. In particular,
we are interested in modeling the in-home consumer broad-
band Internet, while preserving geographical market rela-
tionships. In our performance study, our simulations expe-
rience tremendous speedups, and require a fraction of the
memory of other models, without sacrificing the accuracy
of our findings. Specifically, our piece-level model achieves
the accuracy of a packet-level model, while requiring the
processing of 40 times fewer events.

1 Introduction

File-sharing using peer-to-peer (P2P) protocols such as
BitTorrent [4] has become the “killer application” for the
consumer broadband Internet. CacheLogic’s [15] monitor-
ing of tier 1 and 2 Internet Service Providers (ISPs) in June
of 2004 reports that between 50% and 80% of all traffic is
attributed to P2P file-sharing. In 2005, those numbers ap-
pear to have been holding steady at 60% of all network traf-
fic on the reporting consumer-oriented ISPs. Consequently,
the impact of the P2P movement on the Internet has been
quite staggering, and broadband ISPs have not been pleased
with this rogue utilization of their network resources be-
cause the cost to them is prohibitive –on the order of$1 bil-
lion U.S. dollars[15], and the ISPs are not making any ad-
ditional revenue from these network intensive applications.
Thus, there is a need to design better, more ISP-friendly P2P

protocols. To meet this design goal, models need to be cre-
ated of both the P2P protocols and the networks they use.
For these applications, most of the network traffic and bot-
tlenecks exist in the in-home consumer broadband Internet.
With the key assumption that such traffic has a negligible
impact on the core of the Internet [27], our model is de-
signed to not only provide results from peers’ perspectives,
but also allow us to analyze how the traffic affects the “last-
mile” of a particular ISP’s network.

In this paper, we discuss the methodology and creation
of an Internet topology model for use in simulating large-
scale Internet content distribution. The specific P2P pro-
tocol in our study is BitTorrent. Our choice to examine
the BitTorrent protocol as opposed to others such as eDon-
key2k [7] is because BitTorrent’s design appears to be the
most amenable approach for legal content distribution. Un-
like other P2P protocols, BitTorrent’s tracker is a central
point that allows content owners to ensure that only legiti-
mate content is served in the distribution network.

Our topology model is comprised of several components
that are largely independent of each other. The components
include: the Internet connectivity model (Section 3), the
population model (Section 4), the delay model (Section 5),
the technology model (Section 6), and the bandwidth model
(Section 7).

In the design of these models, many decisions were made
whether or not to include certain features. Considered in
this process are the model’s overall realism, its accuracy,
the data collection and maintenance required, the execution
time of the simulations, and the required system resources.
In some cases, a model can be unnecessarily complex, and
produce results that either cannot be analyzed, or are no
better than those of a simpler version [12]. In Section 8, we
demonstrate the efficacy of our model, and discuss some of
the benefits that we reap as a result of our decisions.

We now give a brief description of the BitTorrent proto-
col, our simulator, and prior work that has been done in this
area.
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2 BitTorrent

BitTorrent is a robust P2P protocol that takes advantage
of peers’ bandwidth to efficiently replicate content. It is
a scalable mechanism that has been successful at distribut-
ing large files quickly and efficiently without overwhelming
the capacity of the origin servers [2]. There are many Bit-
Torrent clients in existence, and the implementations vary
greatly [17]. In this description, we consider the open
sourcemainlineclient developed by Bram Cohen, the pro-
tocol’s inventor.

2.1 BitTorrent Preliminaries

As the focus of this paper is the Internet topology model,
we will just briefly describe the BitTorrent protocol. Please
note that any settings specified hereinafter are default set-
tings of the mainline client. Also, many “behind the scenes”
details from the implementation have been purposely left
out in order to focus on, and simplify, the main ideas of the
protocol.

In BitTorrent, files transferred are split into 256 KB
pieces. These pieces are further divided intoblocks(blocks
are the transmission unit of the network). Atorrent is a
transfer session of one or many files, and is active if it con-
tains at least oneseed(a peer possessing all files). A peer
still downloading content is called aleecher. Users can join
an existing torrent by downloading a.torrentfile from a web
server. This server stores file information, including SHA-1
hash values for each piece (to check their integrity), as well
as the IP address of the torrent’stracker. The tracker is not
involved in the actual distribution of the files, but insteadis
a centralized system that keeps track of peers involved in
that particular torrent, and statistics relating to it. A tracker
can provide peer-set services to a number of torrents [7].

When a user joins the torrent, it contacts the tracker to
obtain a list of IP addresses of 50 random peers, forming
its initial peer-set(the peers it can potentially transfer data
to). If the cardinality of this set ever drops below 20 (due to
disconnects), the local peer once again contacts the tracker
for a new list of IP addresses. The maximum size of the
peer-set is 80, allowing for connections that are initiated
by remote peers (there are also restrictions regarding the
number of open connections). Whether or not pieces are
transferred depends on piece interest, how rare pieces are,
and a concept of choking [7].

Every peer in the torrent has knowledge regarding which
pieces each peer in its peer-set have. We say that peerX is
interestedin peerY , if Y has at least one piece thatX does
not have. Conversely, we say that peerX is not interested
in peerY , if X has every piece thatY has. That is, the
pieces possessed byY are a subset of the pieces possessed
by X . For a peerX to be able to send data to a peerY , Y
must be interested inX , andY must be unchoked byX .
We say that peerX chokespeerY if X is unable to send
data toY . Conversely, we say that peerX unchokespeerY
if X can send data toY . The choke algorithm is designed to
guarantee a reasonable level of download and upload recip-
rocation, thus penalizing those who infrequently upload and
rewarding those who frequently upload [7]. This algorithm

will be described in greater detail in Section 2.3.

2.2 Rarest Piece First Algorithm

To give each peer a chance to reciprocate faster (instead
of waiting to be unchoked), the first four pieces are provided
to a peer at random (therandom first policy). Towards the
end of a peer’s download,end game modeis initiated. In
end game mode, all remaining pieces are requested from all
peers. The communication complexity of this mode is high,
but allows the last pieces to be obtained quickly. Generally,
the peers run ararest first policy. In rarest first, a peer al-
ways requests the piece from its peers that it needs, and is
possessed by the fewest number of them. This allows rare
pieces to be replicated and more readily available [7].

2.3 Choke Algorithm

Another important algorithm used by BitTorrent is the
choke algorithm. This algorithm is intended to guarantee
a reasonable level of upload and download reciprocation.
As a consequence,free-riders(peers that never upload) are
penalized [7].

There are three different ways the choke algorithm is ini-
tiated by a peer in the leecher state: at a regular interval (10
seconds), when a peer leaves the peer-set, and each time
the interest of an unchoked peer changes. At the beginning
of every third round of the algorithm, one interested and
choked peer is chosen at random, called theplanned opti-
mistic unchoked peer. If a peer has not sent at least one
block in the last30 seconds, it is excluded from the unchok-
ing process. The peers that become unchoked are the three
fastest peers and the planned optimistic unchoked peer. If
the planned optimistic unchoked peer is one of the three
fastest, another is chosen at random. As a consequence,
four interested peers are unchoked in each round [7].

The algorithm run by a seed is slightly different, but is
initiated the same way. Peers that are unchoked and inter-
ested are ordered based on when they were last unchoked
(their upload rates break the ties). All other peers are or-
dered only by their upload rate, and are added to the bottom
of the first list. During two out of three unchoking rounds,
the first three peers are kept unchoked, and a fourth inter-
ested peer is randomly unchoked. During the third round,
the first four peers are kept unchoked. This algorithm is de-
signed to frequently change a seed’s active peer-set, and not
favor peers with high download rates [7].

2.4 Implications for Network Model De-
sign

As one can see, the dynamics and causal relationships
among peers is extremely complex. Consequently, we are
limited to the extent with which we can abstract away such
interactions without incurring losses with respect to peer-
protocol interactions. For example, a peer need not receive
a full 256 KB piece from a single peer, nor is it guaranteed
to receive blocks within a piece in-order, or pieces them-
selves in any particular order. Additionally, the pattern with
which pieces are received impacts the “rarest piece” within
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a peer-set. This rarest piece will vary among peer-sets as
their view of the available pieces changes over time. This
in turn impacts which pieces a peer will request, and ul-
timately determines the download completion time along
with other network effects. This point is especially critical
if we attempt to make any sort of cross-P2P model perfor-
mance comparisons. Thus, it is imperative that any abstrac-
tion preserve the dynamics between peers, peer-sets, avail-
able pieces, and rarest pieces. Because of this, we are forced
to model this protocol at the level of a piece. However, as
we will show, this level affords a 40x event reduction over
a pure packet-level model.

Because of this abstraction, our model, described in
greater detail in [31], efficiently simulates the BitTorrent
protocol with a memory footprint 30 to 1,000 times less than
the operational BitTorrent client, using commodity hard-
ware. The system is built on the ROSS discrete-event sim-
ulation system [32, 30], which provides a logical process
world view. Here, we map the active peer and tracker ob-
jects to logical processes that exchange time-stamped event
messages, which models the scheduling of real messages
between peers as prescribed by the BitTorrent protocol. Our
model is capable of scaling to 100’s of thousands of peers.
Model performance results and analysis for large torrents
ranging from 128 to 128,000 clients, with files up to 4,092
pieces have been conducted, but details on those results
have been reported elsewhere, and are beyond the scope of
this paper.

2.5 Related Work

2.5.1 Internet Mapping Projects

Caida [5] usedskitter data that they collected over time
to construct a connectivity model between registered Au-
tonomous Systems (AS) on the Internet. This model cap-
tures the connectivity between groups of networks, how-
ever, leaves internal network structure unknown. This
model is not suitable for our simulations because realistic
hop counts cannot be determined (AS can be disconnected
or even span the country in 1 hop). Further, we have no
data regarding the location of nodes or their corresponding
bandwidths.

Lumeta [9] also created an Internet map using trace data.
The map is very large-scale, and does give a notion of loca-
tion. However, probes were initiated from a single source,
thus the map is very tree-like, and hop counts cannot be ac-
curately inferred. Rocketfuel [21] is an Internet mapping
tool that allows for direct measurements of router-level ISP
topologies. The number of required traces is significantly
reduced by exploiting BGP routing tables, using properties
of IP routing to eliminate redundant measurements, alias
resolution, and using DNS to divide maps into POPs and
backbone. Using 300 sources and 800 sinks, Rocketfuel
creates extremely detailed maps of specific ISPs [22]. We
use a similar technique to map parts of the backbone and
POPs, however, we abstract out specific ISPs. This allows
us to scale to larger simulations while keeping realistic ISP
properties.

Mercator [24] is a similar tool that uses informed
random-access hop-limited probes to explore the IP address

space. Targets are informed by the results of earlier probes
as well as IP address allocation policies. Mercator is de-
ployable anywhere because it makes no assumptions about
the availability of external information to direct the probes.
It uses alias resolution and a technique called source-routing
to direct probes in non-radial directions from the source
in order to discover cross-links that would not have other-
wise been found. In our model, we use carefully chosen
addresses and ranges to probe in order to guarantee the cov-
erage of certain key geographic regions.

[23] describes a model of the U.S. Internet backbone
constructed using merged data sets from the existing Inter-
net mapping efforts Rocketfuel and Mercator, and identifies
areas where the research community lacks data, such as link
bandwidth and link delay data.

2.5.2 Abstractions

Presented in [29] are fluid models used to study the scal-
ability, performance, and efficiency of BitTorrent-like file-
sharing mechanisms. The idea is to approximate a system
through theoretical analysis, rather than a detailed simula-
tion.

In [16], NIx-Vector routing (short for Neighbor-Index
Vector) is introduced. Typically, routing of packets on the
Internet consists of a series of independent routing decisions
made at each router along the path between any source and
destination. Hence, when many packets are sent between
the same pair of nodes, the same decisions are made re-
peatedly and independently, without knowledge of any pre-
vious decisions. A NIx-Vector is a compact representation
of a routing path that is small enough to be included in a
packet header. Once this vector exists, routing decisions
can be made at each router in constant time, without requir-
ing caching or state saving. This technique can significantly
reduce the burden on routers.

Staged Simulation [19] is a technique for improving the
runtime performance and scale of discrete-event simulators.
It works by restructuring discrete-event simulators to oper-
ate in stages that pre-compute, cache, and reuse partial re-
sults to drastically reduce the amount of redundant compu-
tation within a simulation. Like all abstraction techniques,
there are advantages and trade-offs. Experiments show that
this technique can improve the execution time of the NS2
simulator considerably.

One of the first flow-based network models was reported
in [1]. Here, a two order of magnitude speedup is achieved
over a pure packet-level model by coarsening the repre-
sentation of the traffic from a packet-basis to a “cluster”
of closely spaced packets called atrain. Narses [25] and
GPS [26] are other flow-based network simulators that ap-
proximate the low-level details such as the physical, link,
network, and transport layers. A similar framework is pre-
sented in [28]. Our simulator is also flow-based performing
at the piece-level without neglecting low-level details, al-
lowing us to analyze application layer behavior as well as
the effects on the underlying network.

Most recently, [13] reports a new method for periodically
computing traffic at a time scale larger than that typically
used for detailed packet simulations. This is especially use-
ful for large-scale simulations where the execution cost is
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exceedingly expensive. Results suggest huge speedups are
possible when comparing background flows to those sim-
ulated in pure packet simulators. In addition, comparing
the foreground interactions verifies the accuracy of the tech-
nique.

[18] discusses a novel approach for scalable and efficient
network simulation, which partitions the network into do-
mains and the simulation time into intervals. Each domain
is simulated concurrently and independent of the others, us-
ing only local information of the interval. At the end of
each interval, simulation data is exchanged between do-
mains. When the exchanged information converges to a
value within a prescribed precision, all simulators progress
to the next time interval. This approach results in speedups
due to the parallelization with infrequent synchronization.

Common to all of these approaches is the trade-off of
accuracy for a decrease in computational complexity. In
many cases, that trade-off must be made in order to make
the model computationally tractable. Our plight is no differ-
ent here. Large-scale P2P protocol sessions exist for many
hours to days. To capture the larger-scale session dynamics
within a tractable computational budget on common hard-
ware is not possible at the packet-level. What makes our ap-
proach different are the constraints P2P protocols and Bit-
Torrent in particular place on our network abstraction cou-
pled with the in-home broadband usage model.

3 Internet Connectivity Model

The Internet connectivity model defines all the nodes and
links present in the simulated network. As the Internet is
constantly changing, a true-to-life connectivity graph ofthe
Internet does not exist. Our model features two key com-
ponents: the Internet backbone, and the neighborhood-level
networks of lower-tiered ISPs. The Internet backbone con-
tains many of the key links that glue the Internet together.
The backbone is very non-uniform, and has evolved slowly
over time. The neighborhood-level networks on the other
hand, are very uniform, and have evolved based on the cur-
rent Internet connection technology trends (i.e. cable or
DSL). In particular, these two device technologies have dif-
ferent performance characteristics that need to be consid-
ered when distributing large video content to in-home audi-
ences via the Internet.

In order to preserve realism and accuracy in our simu-
lations, the model must capture many properties of the In-
ternet, especially those in the “last mile” where most of the
delay and congestion for in-home broadband networks is
likely to occur. Additionally, our model must allow for a
configurable number of nodes. Thus, we have developed a
hybrid abstraction connectivity model to do just that.

3.1 Backbone

The importance of the Internet backbone is obvious, and
because of its non-uniformity, cannot be generated easily.
Because of this, our model uses a subset of the actual back-
bone. These nodes and connections were obtained by per-
forming thousands of traces from 15sourcesto 99 sinks
all over the U.S. (see Figure 1). We reached 3,331 distinct

nodes, and covered 6,239 edges. The maximum experi-
enced degree (number of links connecting a single node)
was 36, and the average degree was 3.746. When data is
sent across the backbone in the simulation, we can use typi-
cal delays based on the path length to estimate its total back-
bone delay. Figure 2 shows the lengths of distinct shortest
paths in the simulated backbone. Within the modeled back-
bone, low-tiered ISPs were located in many of the desig-
nated market areas defined by Nielsen Media Research [14].
These markets are driven by the Nielsen Rating System,
which is used to determine viewing rates of cable and broad-
cast television shows by location. We use the Nielsen mar-
ket data to provide a distribution of potential home viewers
of content received over the Internet. This aspect is dis-
cussed in the sections below. By design, these nodes border
the backbone, and can therefore be used to expand to the
particular ISP’s neighborhood-level networks.

Figure 1. This figure is the connectivity graph
of the backbone of the connectivity model.
The nodes represent sources, sinks, interme-
diate backbone routers, and identified low-
tiered ISP routers. The edges represent links
between respective nodes.

3.2 Neighborhood-Level

Having up-to-date trace results for all ISPs would allow
for maximum realism in our simulations. However, this
would require constant data gathering, and the memory re-
quired to store such data (typically an adjacency matrix or
adjacency list) can be on the order of gigabytes for large
simulations like the ones we study. For example, a 100,000
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Figure 2. This figure shows the distribution of shortest path lengths for distinct paths in the back-
bone of the connectivity model. This curve is typical of the I nternet, demonstrating that we have
preserved the required path properties.

by 100,000 matrix with 32-bit entries would require ap-
proximately 37 GB of memory (see Table 1 for memory
comparisons). Luckily, network design theory implies, and
traces confirm, that neighborhood-level networks have sim-
ilar structures regardless of the particular ISP (in particular
we looked at cable and DSL ISPs). Because of this, spe-
cific ISPs have been abstracted out of the model, and we
can dynamically generate these types of networks in a re-
alistic manner. In this case, the speedup, the reduction of
required system resources, and the elimination of the need
to maintain an up-to-date connectivity model is worth the
slight degradation of system realism.

Figure 3 shows the connectivity graph resulting from one
set of traces to a popular cable ISP. From the figure, we can
see how the routers are interconnecting at the different net-
work levels, and also thefan-outsat the network’s edge con-
necting to home computers/networks. This figure includes a
total of 21,146 nodes resulting from responses from 21,037
homes and 109 intermediate routers. From this set of traces,
the average fan-out size is approximately 540 nodes.

Our market/neighborhood-level model allows us to take
advantage of symmetries that exist at the consumer broad-
band level of the Internet. This allows us to route with-
out using any adjacency-storing data structures. For ex-
ample, all peers in the same neighborhood have common
routers (usually a few hops away) used to route within the
neighborhood. Similarly, peers within the same market area
have common routers used to route between neighborhoods
and the ISP’s backbone. Thus, an individual peer’s adja-
cencies are unimportant. Whether a message is being sent
to the same neighborhood, a different neighborhood within
the same market, or to a completely different market, hops
along the paths to common routers can be accounted for,
and the message can be forwarded to the appropriate peer
or backbone router. Although asymptotically the same, this
technique provides a space and computational complexity
improvement over the popular adjacency list data structure,

while providing the same routes.

4 Population Model

As previously mentioned, the backbone portion of the
connectivity model has identified ISPs by location. Us-
ing our current population statistics of the given designated
market areas [14], we can generate realistic neighborhood-
level networks. For example, if a city has 1-Million cable
Internet subscribers, it is unrealistic to generate 5-Million
such nodes within the neighborhood-level networks of that
city. In terms of abstraction, the population data for specific
cities allows us to take into consideration time zones and the
targeting of certain populations. Since we are mostly con-
cerned with media distribution, which may include stream-
ing, this level of fidelity is required to give realistic simula-
tion results.

5 Delay Model

Our Internet connectivity model (discussed in Section 3)
provides our simulations with realistic hop counts. As pre-
viously mentioned, we are simulating Internet content dis-
tribution, thus, we must measure time in order for our exper-
iments to be useful for analysis. Therefore, we must have
appropriate delay and bandwidth models. In this section,
we describe our delay model.

Research has shown that compared to the delay at the
first and last links on a packet’s course, the delay through
the Internet’s core is negligible [27]. Because of this, we
can use estimates of the core delays without significantly
impacting our results. Our estimates come from live mea-
surements. Figure 4 shows the average delay experienced
at each of the first 18 hops along a packet’s trajectory for
roughly 100,000 performed traces. The curve suggests
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Figure 3. This figure is the connectivity graph resulting fro m one set of traces to a popular cable ISP.

that even though many factors, both predictable and unpre-
dictable, contribute to delay, it generally increases at later
hops (and decreases closer to the destination). Because of
this, we believe that using average delays and distributions
around core hops is realistic. Further, the traces were per-
formed on the live Internet over several days. Thus, the
averages inherently capture the effects of background traf-
fic, while reducing computational costs and data-gathering
needs. For the first and last links, the delays and available
bandwidths are specified by the technology model.

6 Technology Model

The technology model describes what type of device a
home user uses to connect to the Internet. Research has
shown that long delays exists at the first and last links along
a packet’s path. Thus, the technology model affects the
delay model. According to [20], depending on the DSL
provider, service levels can range from 128 Kbps to 7 Mbps
downstream from the Internet to the user while upstream
service levels from the user to the Internet can range from
128 Kbps to 1 Mbps. Cable service levels can range from
400 Kbps to 10 Mbps downstream and 128 Kbps to 10
Mbps upstream. Service levels depend on service agree-
ments offered by each cable system operator per market,

and depend on whether the access is for residential or com-
mercial use. But typically, cable (hybrid-fiber coax) has
more bandwidth available than DSL.

Since we are interested in simulating cable and DSL
users, we will generate the nodes in our connectivity model
according to the national percentages of home users that
connect using the two technologies. The delay model can
therefore include the delays at the first and last links based
on the device being used. These delays have been observed
in our traces. Figure 5 shows the national averages of cable
and DSL users from 2003 and 2006 [6].

Depending on the simulation needs, more devices can
be used in the technology model, and the other topology
components should be updated appropriately.

7 Bandwidth Model

The last major component of our topology model is the
bandwidth model. Equation 1 [10] provides an upper bound
estimate on the bandwidth for delivering a 16 KB block.
In Equation 1,BW is the bandwidth;MSS is the max-
imum segment size (which is 1,460 bytes in default TCP,
and 1,380 bytes in BitTorrent);RTT is the round trip time;
andp is the probability of packet loss.

To calculate the delay of a path, we apply a truncated
(values below zero are not used) normal distribution to the
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Figure 4. This figure shows the average delays experienced at each of the first 18 links along a
packet’s path from our traces.

Figure 5. This figure shows the national technology distribu tion for home high-speed Internet con-
nections for March of 2003 and March of 2006.

observed average delay. We use this distribution because we
observed a Gaussian curve in the real trace delays similar to
Figure 2. From here,RTT is set to twice the sum of the
overall path delay (accounting for the path and the return
path).

The probability of packet loss is set to 0.05, which is
based on the loss rates of the ISPs we observed. The final
bandwidth is rate-shaped based on the available bandwidth
remaining along the pipe.

BW <
MSS

RTT

1
√

p
(1)

8 Results

In this section, we provide experimental results that de-
fend our topology model design. In Table 1, we compare
the amount of memory required by our connectivity model
versus a model with all real nodes stored in an adjacency
matrix, for several simulation runs with a varying number
of nodes. The results are based on a memory footprint of
67 KB per peer (which has been achieved in [31]). It is ob-
vious that the savings are drastic, and it is not shown, but

Simulated Memory Required Memory Required

Peers (MB) (MB) With Matrix

10,000 654 1,035
20,000 1,308 2,833
50,000 3,270 12,806
100,000 6,540 44,686

Table 1. Approximate memory required for
simulation runs.

the memory accesses may also increase the simulation time
significantly for the adjacency matrix model.

In Table 2, we revisit some simulation runs published
in [31]. In particular, we look at a swarm of 1,000 peers,
and files with the following number of 256 KB pieces: 128,
256, 512, and 1,024. We compare the number of events
processed in each simulation to a lower bound estimate of
the number of events required in the equivalent packet-level
simulations. The lower bound takes into consideration the
actual data broken up into packets and the TCP acknowl-
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edgments. TCP control messages are ignored, and Bit-
Torrent protocol messages are not broken up (both would
increase the number of events further for the packet-level
simulator). For each transmission mentioned, an event is
created at each hop through the network. As shown, the
number of events increases by a factor of 34 to 41 for the
given simulation runs. Note that this event increase signifi-
cantly increases the execution time of the simulations, as the
event-rate is likely to remain roughly the same, hence, our
simulations experience a tremendous speedup as a result of
the reduced number of events processed.

Pieces Piece-Level Packet-Level

Events Events

128 19M 650M
256 36M 1.3B
512 66M 2.56B

1,024 122M 5B

Table 2. Number of events generated in
the piece-level simulations and lower bound
on the number of events generated in the
packet-level simulations.

Figure 6 shows the download completion times across all
peers for a modified version of the INRIA/PlanetLab test-
bed scenario [8]. Here, 40 peers are divided into 2 groups,
fast peers and slow peers. The fast peers have a 200 KBps
upload capacity while the slow peers have only a 20 KBps
upload capacity. The download capacity is set in our simu-
lation to 100 MBps. The primordial seeder has the same up-
load capacity as a fast peer. There are a few key differences
between our scenario and the INRIA/PlanetLab scenario.
First, the PlanetLab network topology is less complex than
our topology. Our 40 peer scenario is distributed across a
network that spans the top 31 television markets in the U.S.
Next, because our model is currently only able to support
cable and DSL devices, we only have two speed classes of
users at this time. Lastly, because of the radically differ-
ent random number generation seed-sets used across the 10
experiments, our range of different peer-sets and piece se-
lection is much greater. However, despite these differences,
we observe that our download completion times, in terms
of shape, are similar to what they report – i.e., the conical
S-shape. This shape has also been reported by [3] in their
emulation of BitTorrent for a 700 peer scenario. This result
provides confidence that both our network and BitTorrent
models are behaving as expected.

9 Conclusion

We have created an Internet topology model that pre-
serves the Internet’s structure, and provides a reasonable
traffic model for our simulation studies of P2P file distribu-
tion strategies. Our piece-level model can achieve the same
accuracy as a packet-level model while requiring 40 times
fewer events to be processed. Because of the components
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Figure 6. This figure shows the down-
load completion times of the modified IN-
RIA/PlanetLab scenario taken from [8]. In our
case, we varied the random number seed-
sets across 10 separate runs of the 40 peer, 1
seeder scenario. Thus providing us with 400
peer data points.

and levels of abstraction used, the model can easily adapt
to accept changes. As the model is compact, we have been
able to simulate swarms of over 200,000 peers. This paper
describes how an acceptable model can be created that does
not waste precious time and resources by including details
that are not required for analysis of the P2P protocol under-
study.
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