Luxo Jr.

- Pixar Animation Studios, 1986
- Director: John Lasseter

Plan

- Introduction
- Overview of the Semester
- Administrivia
- Iterated Function Systems (Fractals)

Introductions

- Barb Cutler
 cutler@cs.rpi.edu
 http://www.cs.rpi.edu/~cutler/
 http://www.cs.rpi.edu/~cutler/classes/advancedgraphics/F05/info.html

- Who are you?
 Name, year/degree, graphics background (if any), research interests, & something fun, interesting or unusual about yourself

Why Computer Graphics?

- Movies
- Games
- Simulation
- CAD-CAM
- Architecture
- Virtual Reality
- Visualization
- Medical Imaging

Movies
Games

Simulation

CAD-CAM & Design

Architecture

Virtual Reality

Visualization
Medical Imaging

What we will learn in CSCI-6962

- Advanced topics computer graphics algorithms
- How to tackle the challenges in many of the applications just shown

What we will NOT cover

- Software packages
 - CAD-CAM
 - Photoshop and other painting tools
- Artistic skills
- Game design
- Graphics API
 - Although you will be exposed to OpenGL

Questions?

Overview of the Semester

- advanced ray tracing: global illumination, photon mapping, subsurface scattering
- mesh generation and simplification
- subdivision surfaces
- appearance models
- volumetric modeling
- procedural modeling
- weathering
- simulation: particle systems, FEM, cloth
- texture synthesis
- & more …

Plan

- Introduction
- Overview of the Semester
- Administrivia
- Iterated Function Systems (Fractals)
Mesh Simplification

Mesh Generation & Volumetric Modeling

Modeling – Subdivision Surfaces

http://grail.cs.washington.edu/projects/subdivision/

Particle system (PDE)

Physical Simulation

• Rigid Body Dynamics
• Collision Detection
• Fracture
• Deformation

Ray Casting

• For every pixel
 construct a ray from the eye
 – For every object in the scene
 • Find intersection with the ray
 • Keep if closest
Ray Tracing
- Shade (interaction of light and material)
- Secondary rays (shadows, reflection, refraction)

Traditional Ray Tracing

Ray Tracing + Soft Shadows

Ray Tracing + Caustics

Global Illumination

Appearance Models
Subsurface Scattering

Questions?

Plan

• Introduction

• Overview of the Semester

• Administrivia

• Iterated Function Systems (Fractals)

Prerequisites

• Not enforced
• Linear Algebra
 – vectors, matrices, basis, solving systems of equations
• Algorithms
 – Orders of growth, bounds, sorting, trees
• All assignments are in C++
• Previous coursework or experience in Computer Graphics an asset

Grading Policy

• Assignments: 40%
 – 4 programming assignments
 – Must be completed individually
• Final Project: 30%
• Quizzes: 15%
 – Tuesday, Oct 18th & Tuesday, Nov 17th (in class)
• Participation & Presentation: 15%
 – Lead discussion of one paper during the semester
 – Present your final project on Friday Dec 9th (in class)

Assignments

• Turn in code and executable (Linux or Windows...)
• Coding style important
 – Be concise & efficient, and comment your code
• Collaboration policy:
 – You can chat, but code on your own
 – Acknowledge your collaborators!
• Late policy:
 – Due Thursdays @ 11:59pm
 – Penalized 25% per day late
 – Extensions considered only if requested >1 week before due date
Final Project

• ~ 1 month effort
• Significant extension of previous assignment OR Exploration of other topic discussed in class
• Can be a component of a research project outside of class
• Suggestions throughout the semester
• I'll review your proposal to make sure the scope is appropriate

Office Hours

• Tuesdays & Fridays @ 1:30 (after lecture)
• Send email to make an appointment for some other time

Questions

Plan

• Introduction
• Overview of the Semester
• Administrivia
• Iterated Function Systems (Fractals)

Iterated Function Systems (IFS)

• Capture self-similarity
• Contraction (reduce distances)
• An attractor is a fixed point
 \[A = \bigcup f_i(A) \]

Example: Sierpinski Triangle

• Described by a set of \(n \) affine transformations
• In this case, \(n = 3 \)
 \begin{itemize}
 \item translate & scale by \(0.5 \)
 \end{itemize}
Example: Sierpinski Triangle

for "lots" of random input points \((x_0, y_0)\)

for \(j=0\) to \(\text{num_iters}\)

randomly pick transformation \(i\)

\((x_{k+1}, y_{k+1}) = f_i (x_k, y_k)\)

display \((x_k, y_k)\)
Example: Sierpinski Triangle

for "lots" of random input points \((x_0, y_0)\)
for \(j=0\) to \(\text{num_iters}\)
 randomly pick transformation \(i\)
 \((x_{k+1}, y_{k+1}) = f_i(x_k, y_k)\)
 display \((x_k, y_k)\)

Another IFS: The Dragon

3D IFS in OpenGL

GL_POINTS

GL_QUADS

Application: Fractal Compression

• Exploit the self-similarity in an image

Compressed using Fractal Photo Lab
<table>
<thead>
<tr>
<th>Assignment 1: OpenGL Warmup</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Get familiar with:</td>
</tr>
<tr>
<td>– C++ environment</td>
</tr>
<tr>
<td>– OpenGL</td>
</tr>
<tr>
<td>– Transformations</td>
</tr>
<tr>
<td>– simple Vector, Matrix & Image classes</td>
</tr>
<tr>
<td>• Have Fun!</td>
</tr>
<tr>
<td>• Due Thursday Sept 8th at 11:59pm</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Questions?</th>
</tr>
</thead>
</table>