
Interactive Weathering of Materials
Timothy Hoff April 26, 2007

1 Introduction

Texture mapping, the use of two-dimensional images

to alter the materials of 3D models, is widely used in

real-time computer graphics today. Texture mapping

techniques such as specular, normal[1], and ambient

occlusion[2], add a great deal of realism to 3D models

and are viable for real-time applications. It is not

commonly considered, however, how the material

should be affected by the environment. Some

modern video games use scripted changes in

materials to simulate these effects. For example,

Tomb Raider: Legend[3] makes the main character’s

clothes look soggy whenever it gets out of water, and

the Colin McRae Rally games[4] show dirt

accumulation on the bodies of cars as they drive off-

road. While the images produced were high quality,

they were not very realistic or interactive because

they would look the same every time. This technique

seeks to introduce a technique that combines the

simulation of environmental effects such as rain,

snow, and dirt with the real-time rendering of texture

maps to simulate realistic weathering of materials.

2 Technique

The technique developed can be broken down into

two main components: environmental effect

simulation and material weathering.

2.1 Environmental Effect Simulation

The simulation of environmental effects (such as rain

and dust) in this technique is accomplished using

particle systems[5]. The particles are treated as points

in space and are drawn using textures maps. The

particles are emitted into the scene at a certain rate

and persist until they either hit a model or grow older

than their specified lifetime. Various forces can be

applied to the particles as long as the position of each

is known.

2.2 Material Weathering

The weathering of the material on each model in the

scene can be broken down into two processes:

collision detection and overlay rendering.

2.2.1 Collision Detection

The process of detecting a collision between a

particle and the model incurs the majority of the cost

of this technique. In the worst case, the collision

detection algorithm runs in O(mvp) time where m is

the number of models in the scene, v is the number of

vertices in the current model, and p is the number of

particles in the scene.

 The following pseudo-code describes the

collision detection algorithm:

For each model M in the scene

{

 Initialize a list of collision texture coordinates LC

 For each particle P in the scene

 {

 If P is outside the bounding box of M, continue

 For each vertex VI in M

 If VI is the closest vertex to P, store it as V

 If V is outside of M, continue

 Initialize a list of triangles LT

 For each triangle T in M

 If T contains V, add it to LT

 For each triangle T in LT
 {

 Cast a ray from V in the normal direction to T

 If ray intersects T at barycentric coordinates CB

 {

 Using CB, interpolate the texture coordinates

 of T and add the result to LC
 Remove P from the scene

 }

 }

 }

}
(Figure 1 – collision detection algorithm)

 Once the lists of collision texture

coordinates are generated, they are used to render the

texture overlays.

2.2.2 Overlay Rendering

To help describe the overlay rendering process, the

weathering material that is applied to the models in

the scene must be defined. Six texture maps

comprise the weathering material. The first two,

diffuse and diffuse overlay, define the colors of the

material. The next two, specular and specular

overlay, define the regions that are shiny or matte.

The last two, normal and normal overlay, perturb the

normals of the model in certain regions to give the

illusion of the extra geometry. The overlay textures

are initialized to be completely transparent at the

beginning of the simulation and further drawn upon.

During the rendering process, the overlays are

layered on top of their corresponding texture map to

imitate weathering of the material. This material can

be implemented using vertex and pixel shaders for

real-time applications.

- 2 -

 Along with the texture maps required by the

material, three more are necessary for each type of

environmental effect. These textures are prepared

beforehand and will be drawn on the corresponding

overlays of the material. As such, diffuse, specular,

and normal texture maps are required for each type of

environmental effect in the scene.

 Given the texture coordinates output by the

collision detection algorithm, the model painted with

the material described above, and the environmental

effect texture maps, the process of overlay rendering

begins. Rendering each overlay proceeds in the same

fashion. First, the overlay texture is set as the render

target. Second, the environmental effect texture map

corresponding to the current overlay is drawn,

centered about each texture coordinate. At the user’s

request, if a texture is partially drawn out of bounds,

it is drawn a second time wrapped around to the other

side of the overlay. This ensures that the material is

seamless when it is wrapped around a model.

Finally, the render target is reset and the overlay is

sent to the material.

3 Results

The simulation was written in C# using Microsoft’s

XNA Framework 1.0, and the material was written in

HLSL. The results are based on the application

running on a Pentium D PC running at 3.0 GHz with

2 GB of RAM and a GeForce 7900 GT GPU.

 The models used in the test scenes have the

following complexity:

Model Vertices Triangles

Ground 926 1584

Sphere 539 936

Bunny 1585 1000

Vase 5883 11008
(Figure 2 – model complexity)

 The first test scene (shown in Figure 4)

contained the ground, sphere, and bunny models

(totaling 3,050 vertices) and a hose particle system

spraying particles across the scene. The second scene

(shown in Figure 5) contained the ground and vase

models (totaling 6,809 vertices) and the same hose

particle system as the first scene. The performance

of both scenes at varying particle emission rates (in

particles introduced per second) is shown below:

Scene/Particles 100 250 500 1000

1 (3,050 vert.) 427 402 4 2

2 (6,809 vert.) 442 47 2 1
(Figure 3 – simulation performance in frames per second at

varying particle emission rates)

4 Conclusion

With the results of the performance of this technique

in mind, it is safe to say that it is not ready for use in

a real-time application with even a moderately high

geometric complexity. The collision detection

algorithm must be dramatically optimized for any

large-scale scenes to be viable. Visually, however,

the technique produces good results. The realism,

however, is directly related to the quality of the

environmental effect textures. Those produced for

this implementation need more detail. Another

limiting factor of this technique is the requirement

that textures cannot be tiled. The UV coordinates of

each vertex must be in the range [0..1]. This

increases the memory requirement of the application

in most cases. With some optimizations and added

flexibility, however, this technique could become

practical for video games and simulations in the near

future. Even if this is not possible, it would be a step

in the right direction for realism in interactive 3D

graphics.

5 References
[1] "Normal mapping." Wikipedia, The Free Encyclopedia. 23 Apr

2007, 05:04 UTC. Wikimedia Foundation, Inc. 25 Apr 2007

<http://en.wikipedia.org/w/index.php?title=Normal_mapping&oldi
d=125074453>.

[2] "Ambient occlusion." Wikipedia, The Free Encyclopedia. 9 Jan

2007, 22:09 UTC. Wikimedia Foundation, Inc. 25 Apr 2007
<http://en.wikipedia.org/w/index.php?title=Ambient_occlusion&ol

did=99632736>.

[3] "Lara Croft Tomb Raider: Legend." Wikipedia, The Free
Encyclopedia. 23 Apr 2007, 18:56 UTC. Wikimedia Foundation,

Inc. 25 Apr 2007

<http://en.wikipedia.org/w/index.php?title=Lara_Croft_Tomb_Rai
der:_Legend&oldid=125252015>.

[4] "Colin McRae Rally." Wikipedia, The Free Encyclopedia. 19

Apr 2007, 15:05 UTC. Wikimedia Foundation, Inc. 25 Apr 2007
<http://en.wikipedia.org/w/index.php?title=Colin_McRae_Rally&

oldid=124097599>.

[5] "Particle system." Wikipedia, The Free Encyclopedia. 18 Apr
2007, 03:00 UTC. Wikimedia Foundation, Inc. 25 Apr 2007

<http://en.wikipedia.org/w/index.php?title=Particle_system&oldid

=123711893>.

- 3 -

6 Screenshots

(Figure 4 – the hose scene)

(Figure 5 – the vase scene)

(Figure 6 – the rain scene)

(Figure 7 – the dust scene)

