
Ragdoll Physics

Gabe Mulley, Matt Bittarelli

April 25th, 2007

Abstract

The goal of this project was to create a real-time, in-
teractive, and above all, stable, ragdoll physics sim-
ulation. This simulation will allow the user to apply
arbitrary impulse forces to the ragdoll and observe
its reactions. Finally the system will be designed in
such a way that arbitrary dynamic systems can be
simulated by extending this framework.

1 Introduction

This paper presents an implementation of a con-
strained dynamics solution which is heavily based on
the work of Jakobsen [1]. The goal of solving the
constrained dynamics problem is to be able to de-
fine relationships between particles in a system, and
to ensure that those relationships are never violated.
These relationships are called constraints. The sim-
plest example of a constraint is a point that is fixed
in space, the constraint specifies that the point must
remain at a given position. Given that there may be
many constraints associated with a particle, it follows
that finding a particle configuration that does not vi-
olate any constraints is non-trivial. Using a system
capable of solving this problem, realistic animations
can be generated for various dynamic systems such
as articulated systems, cloth, and even rigid bodies
[1]. Specifically, this paper focuses on the ragdoll dy-
namics problem which attempts to model a limp hu-
man body using a system of particles and constraints.
This type of model is useful for animating the effects
of external forces on a human body which does not
actively resist the action of the force.

2 Background

2.1 Previous Work

Advanced Character Physics [1] was the primary re-
source for the implementation of this project. This
paper was written by a lead developer at IO Inter-
active Studios, makers of the “Hitman” game series.
Their implementation included a constraint solver us-
ing a relaxation method. Given system of particles
being used to model a dynamic system, each con-
straint specified in this system would be repeatedly
satisfied locally allowing the entire system to con-
verge to an approximate solution. Also, when col-
liding geometry was detected using this implementa-
tion, the offending geometrys position would simply
be moved (or projected) out of the intruded area.
This was the ideal paper to model our solution after
because it had already been implemented by a well-
respected game studio, and was described to be a
stable, computationally inexpensive, and easy to im-
plement. Although this paper was the optimal choice
for us to emulate, the main flaw was that while the
math was based on papers which provided a more ac-
curate solution, the solution described in [1] is merely
an approximation.

Witkin [2] presents a mathematical model and a
solution method for the constrained dynamics prob-
lem. A brief summary of the method presented in
his paper follows. First consider a vector q of length
3n where n is the number of particles in the system.
It contains all of the 3D positions of each particle
and is called the state vector. The implementation of
this method requires the definition of a vector func-
tion, C(q), which accept a vector of length 3n and
return a vector of length m, where m is the number of

1

constraints in the system. Each row of the resulting
vector is the result of passing q to a single constraint
function. Ċ(q) is defined as the first time-derivative
of C(q). To implement this system functions must
be written to evaluate C(q), and Ċ(q) for every con-
straint in the system. These functions should be
implicit functions for which C(q) = 0, Ċ(q) = 0,
and C̈(q) = 0 if the constraint is satisfied, and non-
zero otherwise. Also functions must be written to
evaluate the Jacobian, J, of C(q) with respect to q,
and J̇. This Jacobian matrix will have n rows and
m columns, and allow the evaluation of the partial
derivative of any constraint function with respect to
any member of the state vector.

J =

∂C1
∂q1

∂C2
∂q1

· · · ∂Cm

∂q1
∂C1
∂q2

∂C2
∂q2

· · · ∂Cm

∂q2
...

...
. . .

...
∂C1
∂qn

∂C2
∂qn

· · · ∂Cm

∂qn

Since most constraints will only actually make use of
a very small number of elements of the state vector,
the resulting J and J̇ matrices will be very sparse. For
this reason, Witkin recommends representing them
as sparse matrices. Once all of this has been estab-
lished some simple matrix arithmetic will produce a
matrix that can be inverted to solve for the Lagrange
multiplier vector, λ, which can, in turn, be used to
determine the constraint forces which must be ap-
plied to the particle in addition to the external forces
to result in all of the constraints being satisfied. The
advantage of this method is that the solution it pro-
vides is physically accurate. The disadvantage, how-
ever, is that it requires a great deal of computation
to compute the J, J̇ matrices and finally to invert
the sparse matrix to solve for λ. Disregarding the
efficiency of the sparse matrix inversion method, this
solution method is O(2m + 2mn), compared to the
solution presented by Jakobsen which runs in approx-
imately O(lm) where l is the number of relaxation
iterations as discussed in the following sections. It
is already obvious that it is not nearly as fast as the
Jakobsen method, which does not even depend on the
number of particles in the system, at least as far as
the constraint solver is concerned.

Although the Jakobsen and Witkin methods

both solve the same problem, they do so in two very
different ways, and end up producing different solu-
tions. The focus of the Jakobsen method is on pro-
ducing a stable, believable solution, while the Witkin
method attempts to produce a physically accurate so-
lution. Witkins solution ensures that all constraints
are satisfied after every timestep, while Jakobsens
makes no such guarantee. Jakobsen is willing to al-
low some constraints to remain unsatisfied as long as
they are close to being satisfied. This results in a sig-
nificant loss of accuracy, but still results in believable
motion. In addition, Jakobsen’s method also garan-
tees stability at the cost of accuracy. A situation that
would normally cause instability due to the timestep
being too large will instead simply cause further in-
accuracy, which is acceptable for a video game type
application.

2.2 Practical Use

Ragdoll physics are becoming more and more widely
used in commercial as well as proprietary video game
engines to simulate a wide variety of behaviors. These
can include rigid bodies, cloth, and of course, biolog-
ically based characters which have gone limp. As
mentioned previously, the developers of the Hitman
game series used this simulation to model dead or
dying characters in their games. However, other de-
velopers have extended this behavior in games such
as Ico where the avatar is leading a non-player char-
acter by the hand. This is an interesting situation be-
cause in this case, predefined animations are spliced
with the procedural rag doll animations to produce a
life-like animation sequence of a person being pulled
through an environment by their hand.

3 Implementation Details

The goal concerning the class and data structure or-
ganization was to make an expandable system which
would allow for easy code portability, and encapsu-
lation for extensions on our implementation. This
section will include an overview of the code structure
we used for our ragdoll system (not including envi-
ronment and user input code), and our constraint

2

algorithms.
Our base DynamicSystem class is responsible

for providing any behaviors that all kinds of dynamic
systems (which includes rag dolls, cloth, and rigid
bodies) could possibly share. This mainly included
parsing an input file to read in joints and constraints.
The DynamicSystem class is also responsible for stor-
ing an array of Constraint objects, and Joint objects.
Joint objects can be thought of as particles which
store a position, whose job is to approximate an ob-
ject, whether it is a 2D grid for a piece of cloth, or a
more complex shape to represent a humanoid skele-
ton.

The Constraint class is merely a pure virtual
class used to define a few functions which all inherit-
ing Constraint objects will be expected to implement
given each of their unique configurations. With this
object oriented approach, all inheriting Constraint
objects are able to satisfy their own local constraints
without affecting the global outcome. This is opti-
mal to produce a converging solution for the entire
system.

For the specific case we modeled with our imple-
mentation, we created a Skeleton class which derived
from the DynamicSystem class. The Skeleton object
has all the basic constraint information that every
other Dynamic System could have, except all Skele-
ton objects had a few additional features. In order
to visualize the entire skeleton model, each pair of
Joints is assigned to a Bone object which joins them.
A Bone object is used specifically to visualize the
skeleton hierarchy and the physical relationship be-
tween each joint and they are stored in an array used
by the Skeleton class. The Bone objects are also used
in procedurally generating a bounding box to encap-
sulate each Bone and giving the Skeleton some visual
mass. The Bounding Box objects are also used for
interaction between the user and the simulation for
the user-exerted impulse forces.

3.1 Solving the Constraint System

This paper makes use of the Jakobsen [1] method to
solve the constraint system. Basically this method
makes the following assumption which Jakobsen
claims is justifiable but does not justify it explicitly

in his publication. The assumption is that iterating
through all of the constraints in the system multi-
ple times will converge to a solution which approxi-
mately satisfies all of the constraints in the system.
That is, repeatedly satisfying each of the constraints
locally will result in a globally satisfied system given
the correct conditions. The number of iterations is
a parameter to our system, and affects both the ac-
curacy and speed of the model. Once a constraint
solution has been acquired, the system can then per-
form verlet integration to advance the particles in
preparation for the next timestep.

3.2 Verlet Integration

Constraints as defined in the Jakobsen paper enforce
position relationships, they are unconcerned with the
velocity and acceleration of the particles they ma-
nipulate. Because of this fact, particles are being
moved around quite frequently without any concern
for the present direction and magnitude of their ve-
locity vectors. Therefore, when attempting to inte-
grate, a method must be used to derive the particles
present velocity. To do so, the previous position, x0,
and the present position, x is stored on every parti-
cle. Thus we can approximate the particles present
velocity by (1).

v =
(x − x0)

dt
(1)

Given Euler integration:

v = v + a·dt (2)
x = x + v·dt (3)
x = x + v·dt + a·dt2 (4)

Now substituting (1) into (4)

x = 2x − x0 + a·dt2 (5)

Verlet integration is defined as (5). Therefore Verlet
integration is simply Euler integration with a velocity
approximation derived from the last position of the
particle. This integration method is crucial to the
constraint solution method used by this paper, as it
allows particles to be moved arbitrarily by the con-
straints. The Verlet integration itself does not appear

3

to improve the stability or speed of the constrained
dynamics solver, it does, however, enable the use of a
faster and more stable Jakobsen solver. Due to the in-
herent dependency of the solver on Verlet integration
it is impossible to directly compare its performance
with another integration technique.

3.3 Constraints

3.3.1 Fixed

The fixed constraint is created by specifying a given
joint. The fixed constraint stores the initial joint po-
sition as specified in the input file. The algorithm
used to enforce this constraint, is to check if the
joint’s position is ever different from its initial posi-
tion. If the position values were not equal, the fixed
constraint class would simply override the joint ob-
ject’s position value to its original value.

Figure 1: Length Constraint [1]

3.3.2 Length

The length constraint was derived by specifying two
joints, j1 and j2, in the input file. Our method
assumed that the “natural length”, which the con-
straint would look to enforce, would simply be: |j1 −
j2| from their starting positions specified in the input
file. In the future, it would be possible to extend this
to specify a specific length in the input file. If |j1−j2|
ever violates the length value derived from the “natu-
ral length”, the two joints will calculate their new po-
sitions depending on if their current length is greater

or less than the natural length. Figure 1 illustrates
this process.

3.3.3 Angular

The angular constraint takes three joints (j1, j2, j3),
a minimum angle (θmin), a maximum angle (θmax)
as parameters. It requires that the angle between
the vectors j1, j2 and j3, j2 is greater than θmin

and less than θmax. This constraint is enforced with
conditional length constraints. Given a θmin and a
θmax one can derive a Dmin and Dmax using the
law of cosines. Dmin, Dmax represent the mini-
mum and maximum distance between j3 and j1),
and can be used construct two length constraints,
MinLengthConstraint and MaxLengthConstraint. If
|j3 − j1| < Dmin then the rule for MinLengthCon-
straint is used and if |j3 − j1| > Dmax then the rule
for MaxLengthConstraint is used to ensure this con-
straint is satisfied. It does not have any concept of
positive and negative angles, this limitation is de-
scribed in more detail later in this paper.

3.3.4 Minimum Distance

The minimum distance constraint requires two joints
(j1, j2) and a minimum distance (Dmin). It can be
thought of as a conditional length constraint. It is
satisfied if and only if the distance between the two
joints is greater than the minimum distance. If it is
violated it simply uses the same rule as the length
constraint to ensure it is satisfied. It ensures that
|j2 − j1| > Dmin.

3.4 Bounding Box Generation

Bounding boxes are procedurally generated given a
bone and the two joints associated with each bone.
Bounding box objects are stored using two arrays of
length four. Each array represents four vertices of an
extruded square which encapsulates the entire bone
visualization.

To generate the position of each end of the
bounding box, a vector from j1 to j2 must be specified
by the following operations: Let u = j2 − j1. Sec-
ondly, we must find another vector v 90◦ from u by

4

solving:

u • v = 0 (6)
ux·vx + uy·vy + uz·vz = 0 (7)

vz =
−ux·vx − uy·vy

uz
(8)

Since we are already given the vector u, we can sub-
stitute arbitrary values for vx and vy and solve for
vz. Once vector v is solved for, the vector must be
normalized. Now w can be determined.

w = u⊗ v (9)

Having vectors v and w, they can be scaled by an ar-
bitrary size variable which indicates how far apart the
four vertices of a bounding box end will be. These
four vertices can be calculated by: v + w, v −w,
−v + w, and −v −w. These operations can be re-
peated a second time to calculate the other end of
the bounding box with u = j1 − j2. These operations
also must be done every frame to update the orienta-
tion and position of each bounding box in the system.
These operations would not be necessary for a pro-
duction system as bounding boxes would be derived
from the actual mesh.

3.5 Impulse Forces

In our implementation, the user is allowed to exert
impulse forces on the rag doll system by clicking the
right mouse button while the cursor is positioned over
a bounding box in the ragdoll system. The first ob-
stacle is to calculate which bounding box the user is
clicking on. This can be achieved by creating a vector
from the eye of the viewer (or in this case the Cam-
era objects position) to the users mouse cursor in 3D
world space and checking to see if it intersected with
any of the bounding boxes in the system. The po-
sition of the users mouse cursor was translated from
2D screen space to 3D world space using the gluUn-
Project function.

Once a valid intersection was found with the
impulse force vector and a bounding box, a linear in-
terpolation between the Joints associated with the
bounding boxs bone, will provide the appropriate
force acceleration to apply to each joint. Assuming

the point at which the user clicked in 3D world space
was called vector u and the impulse force is F, then

a1 = a1 +
|j1 − u|

|j1 − u| + |j2 − u|
· F (10)

a2 = a2 +
|j2 − u|

|j1 − u| + |j2 − u|
· F (11)

where a1,a2 are the new accelerations of joints one
and two. Once each joints acceleration values are
modified, the simulation will be sent to the Verlet
integration function to calculate the new positions of
each joint.

Figure 2: Back Vector Illustration from Maya

4 Limitations

In our implementation, one of our major limitations
can be found in enforcing the angular constraint in
a given system. This solution is time-step and iter-
ation sensitive, so the lower the time-step and the
more iterations given to the Verlet integration func-
tion, the more accurate the results will potentially
be. A common problem in this simulation is given

5

a joint configuration with a large maximum angular
constraint; the joint will be visually moving too fast
and violate its angle constraint. With this implemen-
tation, we do not differentiate between an angle of
170◦ and 190◦ (or -170◦). To enforce this constraint
in a more accurate way, a back vector would always
need to be calculated (such as done with the anima-
tion software Maya). As shown in Figure 2, the back
vector should always point in the direction of Joint2
to ensure that the angle between Joint1, Joint2, and
Joint3 can never be greater than 180◦ . Calculating
this back vector proved to be challenging and will re-
quire a further investigation.

Another limitation worth noting is that the sys-
tem described in this paper has no constraint to han-
dle axial rotation. Axial rotation is defined as rota-
tion of a bone about the axis that is collinear with
the vector that defines the bone. Rotation about
this axis causes the bounding box for the bone to
spin unnaturally, it also allows the ragdolls head to
spin a complete 360◦ around its neck. As the system
stands presently each joint is represented by a single
point, to be able to limit this type of motion the joint
would require additional information to be stored. In
addition, any additional vectors stored on each joint
would have to be modified and handled correctly by
all other constraints in the system.

5 Results

The simplest scene used to test this system was a
double pendulum (See Figure 3). When gravity is al-
lowed to act on the system, then it is expected to be-
have like a double pendulum. It demonstrates work-
ing length constraints, fixed constraints, and cor-
rect advancement of the physical simulation from one
timestep to the next.

The second demo (Figure 4 introduces an an-
gular constraint on the double pendulum example,
preventing the angle between the two pieces of the
double pendulum to exceed 90◦ . This was used to
test angular constraints.

The third demo (Figure 5) shows the same dou-
ble pendulum with another angular constraint for
which θmax is 170◦ . When simulating this scenario,

the angle between the bones does in fact exceed 170◦

, in fact it exceeds 180◦ , then when the pendulum re-
verses direction and the angle approaches 170◦ again,
this time it behaves correctly. This failure demon-
strates two limitations of our system. The first is
timestep sensitivity. Although the systems stability
is not sensitive to the timestep, its accuracy is, so
given high velocity motion the timestep must be suf-
ficiently small to prevent potentially significant losses
in accuracy. The second is the angular constraints
lack of knowledge about positive and negative an-
gles. If the desired behavior for this configuration
was for the angle to vary between 0 and 170◦ and
the assumption is that clockwise angles are positive,
then in this example the constraint would actually
have been enforced at -170◦ or 190◦ . This is because
the angular constraint is really just measuring the
angle between two vectors, and that angle can never
be greater than 180◦ .

The fourth demonstration (Figure 6) consists of
two bones which are connected and centrally fixed.
When their motion is simulated they should hit one
another and bounce off. They do not, and this sce-
nario was chosen specifically because it highlights this
lack of collision detection.

The fifth demonstration (Figure 7) is a very sim-
ilar setup as the fourth test, however a minimum dis-
tance constraint is put between the two joints that
are in motion. This simulates some very crude colli-
sion detection and prevention.

The final and most comprehensive demonstra-
tion is that of the entire ragdoll (Figure 8. The skele-
ton structure is derived directly from the one drawn
in [1]. This demonstration allows the user to click on
various parts of the ragdoll causing an impulse force
to be applied to it at that point. All of the limita-
tions listed above can be seen in this demonstration
if the user looks closely enough. In addition, it be-
comes easy to observe the need for an axial rotation
constraint, which is described in more detail below.
Most importantly, however, it looks believable, and
serves as a proof of concept.

6

6 Challenges

6.1 Failures

Throughout this project, we had various failed or un-
attempted features which could be implemented in
future work. These limitations of the project includes
the angular constraint problem, the axial rotational
constraint, and a more accurate Collision detection
algorithm between Bounding Boxes in the system.

Our method of solving the collision detection
problem was to place minimum distance constraints
between two specified joints. While this was satisfac-
tory for an approximation, a more realistic and accu-
rate solution can be derived by creating a hierarchy
of bounding boxes encapsulating the rag doll to pro-
vide areas of greater or less accuracy, and then testing
for an elongated cube intersection. If two elongated
cubes happened to collide with each other, the same
method that was used in [1] can be used, namely
by projecting the offending bounding box out of the
other bounding box by a distance proportional to how
much they had intersected.

In addition, a more advanced extension of this
implementation could provide a realistic character
mesh encapsulated by the bounding box approxima-
tions. Given the appropriate constraints and not ex-
plicitly drawing the bounding boxes, this will provide
for a much more realistic ragdoll and simulation. This
is similar to techniques used in many game engines.

6.2 Sucesses

During the course of this project, we faced many chal-
lenges that we were able to overcome. Specifically the
most challenging parts of the code were the definition
of the constraints, the generation of the bounding
boxes, and the correct handling of user input. The
constraints had to be defined carefully, or else the
system could produce results that looked very unre-
alistic, or worse, did not converge. We took great
care in defining all of the constraints that we did,
with the exception of the angular constraint, which
we believe could be handled better but the present
solution is functional. The philosophy taken in the
constraint implementation was that the constraints

should only modify the system in the least possible
way to move it to a state that satisfied the constraint.
The angular constraint is the only one which does
not necessarily follow this philosophy. Instead of its
present behavior, which alters the distances between
the joints involved, it really should only alter the an-
gle between the vectors connecting the joints.

Bounding box generation was also non-trivial. It
required a fair amount of thought as to how to first
find a vector that was perpendicular to the vector
connecting two joints, and then to find a third vector
perpendicular to the other two. The first problem
was solved by exploiting the fact that if two vectors
are perpendicular their dot product must be equal to
0. The second took advantage of the cross product.

The final significant challenge that the authors
had to overcome was that of allowing the user to exert
force on the body by clicking with the mouse. This
solution to this problem is described in more detail
above.

7 Conclusion

We estimate that this project took approximately 70
hours to complete, including design, coding, testing,
and finally preparation of presentation materials, in-
cluding this document. We decided to only use new
code or code we had personally written at some time
in the past on this project. This enables us to claim
full rights for the software, as well as enabling us to
use it for portfolios and other miscellaneous purposes.
In terms of the division of labor, there are comments
interspersed throughout the code which vaguely spec-
ifies which functions were written by and contributed
to by whom. As a general rule, however, almost all
of the core functionality of the system was worked
on by both of us at the same time. We worked very
closely in defining those problems, generating solu-
tions, and finally implementing them in the code.
The only parts of the code that were worked on by
only one of us or the other were relating to the setup
of the scene and the handling of lights, the camera,
and picking.

7

References

[1] Thomas Jakobsen. Advanced character physics.
Game Developers Conference, 2001.

[2] Andrew Witkin. Physically based modeling:
Principles and practice. Siggraph 1997 course
notes, 1997.

8

(a) Initial Configuration (b) Down Swing (c) Up Swing (d) Final Configuration

Figure 3: Double Pendulum

(a) Initial Configuration (b) Down Swing (c) Enforcing 90◦ Angular
Constraint

(d) Final Configuration

Figure 4: Double Pendulum with 90◦ Angular Constraint

(a) Initial Configuration (b) Violating 170◦ Angular
Constraint

(c) Enforcing -170◦ Angular
Constraint

(d) Final Configuration

Figure 5: Double Pendulum with 170◦ Angular Constraint

9

(a) Initial Configuration (b) Down Swing (c) Violated Collision (d) Final Configuration

Figure 6: Violated Collision

(a) Initial Configuration (b) Down Swing (c) Enforced Minimum Dis-
tance Constraint

(d) Final Configuration

Figure 7: Collision Enforced with Minimum Distance Constraint

(a) Initial Configuration (b) Relaxed Rag Doll (c) Impulse Force Applied to
the Dolls Right Shoulder

(d) Second Impulse Force
Applied to the Dolls Left
Foot

Figure 8: Collision Enforced with Minimum Distance Constraint

10

