
Creating a Foundation for a Snowboarding Video Game

Jared (Jake) Stookey

Abstract

In this paper, I describe a basic set of data struc-
tures and algorithms for creating a snowboarding
video game. I use a simple model for the ter-
rain and the snowboarder, and the physical laws
that govern the interactions between them. For
the terrain, I create a heightmap that is displayed.
The heightmap can report interpolated height val-
ues and normal values at any point on the map.
The snowboarder is defined by its mass, position,
and velocity. Gravity and ground forces are applied
to the snowboarder in such a way that results in
a fast, realistic, and fun snowboarding simulation.
The methods described here could be used in a wide
range of video games that involve objects interact-
ing with terrain including surfing games, marble
games, motorcycle games, and many others.

1 Introduction

1.1 Motivation

A model for a snowboarding game should model
the fun that is had while snowboarding. Explo-
ration and freedom to roam anywhere on a moun-
tain are what make snowboarding fun. Snowboard-
ing games often restrict that freedom to predefined
race courses. In this paper I explore ways to im-
prove upon existing models for making snowboard-
ing video games by giving the player more freedom.

1.2 Related Work

There are several snowboarding (and related)
games available. I played the games listed here
as an occasional reference while working on this
project. One problem with each of the games is
that a player does not have the freedom to explore
the mountain. Instead, the limits of each course
are strictly defined. This is one area that I would
like to improve upon in my project.

• 1080 on the Nintendo 64

• Tux Racer for Linux

• SSX for Playstation 2

Fishman and Schachter (1980) developed a
method for displaying heightmaps [4]. Coquillart
and Gangnet (1984) discuss techniques for surface
interpolation, clipping, and hidden-surface elimina-
tion of heightmaps [3]. Zhao and van de Panne de-
veloped a user interface for interactive control of
snowboarding and other characters [2].

2 Data Structures

2.1 Heightmap

Heightmaps were used to represent the terrain
in my simulation. The heightmap is a grayscale
image stored in the Portable Network Graphics
(PNG) format. White represents the highest possi-
ble point, and black represents the lowest possible
point, and shades of gray represent height values
in between. A heightmap can be displayed on the
screen, and it can also be queried for height val-
ues and normals at any point within the height
map. Even though the heightmap consists of a
grid of Width x Height integer height values, the
heightmap can be sampled at a greater resolution,
and a floating point height value can be interpo-
lated. This technique was used to create the illusion
that the surface was smooth and continuous, even
though the source PNG image is not smooth. As I
worked on the project, there was an obvious need
for interpolating the height value. Without inter-
polation, the snowboarder appears to be climbing
stairs when the heightmap below him is displaying
a much smoother slope. I had expected there to
be a need to interpolate normals in a similar fash-
ion, but I was pleasantly surprised to discover that
discontinuous normals had much less of an impact
on the smoothness of the snowboarder’s motion.
Therefore, I did not implement interpolation of the
normals, although it would be an easy addition to
make and should make for a more realistic simula-
tion.

1



2.2 Object Model

I used the .obj file format to create the snow-
boarder. The .obj file importer would be useful for
importing any 3d models into the game including
trees, buildings, and other features. The .obj file
format is very common and easy to understand.
Most modeling tools are able to import and export
the .obj format including Makehuman and Blender,
two tools that I used to make the game. I made
use of the .obj format’s vertices, texture coordi-
nates, and precomputed normals. The object can
be loaded and displayed. The caller is responsible
for orienting and sizing the model.

2.3 Snowboarder

The snowboarder primarily consists of a posi-
tion, a velocity vector, and a mass. The snow-
boarder also maintains a history of previous po-
sitions, which is used in orienting the camera.

3 Algorithms

3.1 Heightmap Interpolation

To interpolate the height, I take the average of
the 4 nearest PNG pixels weighted according to
the snowboarder’s relative proximity to each pixel.
This is the area weighting interpolation scheme
that was described in [1]. Figure 1 shows a picture
of the height interpolation. P1 through p4 repre-
sent the pixels that make up the heightmap PNG.
The point S represents the snowboarder’s position
in relation to the heightmap. The inner (lighter
colored) square is the same size as an image pixel.
It represents the total area. A1 through A4 rep-
resent the area of each pixel that is overlapped by
the “total area” square. To find the interpolated
height at S, I take the weighted average using the
following formula:

• (A1*H1 + A2*H2 + A3*H3 + A4*H4)/A;

Where H[n] represents the height at P[n], and A
represents the “total area”.

3.2 Snowboarder Physics

I use a simple, but effective physical model to
represent the snowboarder’s physics. All of the

Figure 1: Calculating the interpolated height

snowboarder’s movement is generated by the inter-
actions between the snowboarder (a moving point),
gravity, and the heightmap’s surface.

Here is the key for the formulas in this section:

p Position
v Velocity
F Net Force
wf Weight Force
nf Normal Force
a Acceleration
M Mass
t Time Increment

Here is the algorithm for the snowboarder’s
physics:

1. Update the snowboarder’s position

• p = p + v

2. If the snowboarder is below-ground

• Fix his height to match the heightmap

• Absorb his velocity along the normal

• Rotate the normal around the velocity if
the user steers left or right (see the User
Input section)

3. Calculate the Net Force (See Figure 2)

• F = wf + nf

4. Calculate the Acceleration

• a = F/M

5. Update the snowboarder’s velocity

• v = v + (a * t)



6. Rotate the model to point in velocity direction

7. Draw the snowboarder

Figure 2: Summing the forces

The most powerful part of the physics simula-
tion occurs in the step, “Absorb his velocity along
the normal”. This was added to the code to fix
a very small problem at a time when the physics
were not working very well, and it turned out to
fix most of the problems that my physics model
was having. Absorbing the velocity along the nor-
mal causes snowboarder to deflect off walls and lose
velocity when he hits a slope head-on, which em-
phasizes the effect that when he gradually touches
down he maintains almost all of his speed.

3.3 User Input

The user can steer the snowboarder left or right.
In order to approximate the complex physics in-
volved in the way a snowboarder actually turns,
I came up with a very basic model. If the snow-
boarder is touching the ground, then the snow-
boarder will accelerate in the downhill direction.
That direction is based on the normal of the slope
underneath her. During the act of carving, a snow-
boarder digs a side edge of the snowboard into the
snow in the forward direction, effectively altering
the normal of the slope below her. Using that rea-
soning, instead of using the normal of the face be-
low the snowboarder to calculate the forces applied
to her, I rotate that normal around her velocity,
which rotates the downhill direction to the left or

the right and causes her to smoothly turn in the
appropriate direction.

3.4 Camera Orientation

In order to ensure that the camera will usually
keep the snowboarder in view, I keep track of a se-
ries of the previous positions that the snowboarder
has been, and the camera follows along behind the
snowboarder, always pointing at the snowboarder.
That way, I can ensure that the camera will never
go through a wall, because the snowboarder can
never go through a wall. This can be done without
much calculation because I don’t need to do any
collision detection of ray tracing. There are still
situations when the camera could be obstructed for
a short while. Also, I actually position the camera
behind the snowboarder’s previous position in or-
der to avoid putting the camera inside of the snow-
boarder’s mesh, and that can result in the occa-
sional situation where the camera is obstructed.

4 Results

In order to test my snowboarding game, I cre-
ated an application using OpenGL for the 3D ren-
dering, and Simple Direct Media Layer(SDL) for
processing keyboard input and windowing. The
project took a total of 120 hours.

My method for creating a simple snowboard-
ing game resulted in a very satisfying simulation.
The snowboarder will meander through the scene,
following the path of least resistance, flying off
jumps, deflecting off walls, and zigzagging bumpily
through moguls. If he goes up a steep hill, he will
slow down, turn around, and come back down the
hill. The user can steer left and right, and the
movement is generally very natural looking (see be-
low for the special cases when it does not work
properly). The code runs fast, so it leaves a lot
of room for additional game content. The camera
angle works very well, and creates a smooth anima-
tion that is easy to follow. Figure 3 shows a series
of images taken while the program was running.

There are currently a few bugs, many of which
should be easily fixed:

• There is no friction, so the snowboarder can
accelerate to outrageous speeds.

• The snowboarder’s turning ability does not
work properly when he comes to a halt. The



snowboarder can spin in very fast circles. In-
stead, turning should be proportional to his
velocity, so it should stop when his velocity is
zero.

• The snowboarder does not like sharp creases
in the terrain. Sometimes when one is encoun-
tered, his velocity changes direction suddenly.

• Time is not correct, so the simulation runs a
different speeds on different machines.

• Vertical slopes cannot be represented directly
in my heightmap, so I am unable to create ter-
rain with a half-pipe that will allow the snow-
boarder go up a side, fly into the air, then
return into the half-pipe again. Instead, the
snowboarder will always fly out of the half-
pipe.

• If the snowboarder is flying through the air,
and the user is turns left or right when the
snowboarder hits the ground, the normal is af-
fected and the snowboarder can bounce in an
unnatural angle.

5 Future Work

There is plenty to be done to make this simple
game into a complete game. However, I will focus
on the work that would refine what has been done
in this project.

• Add friction.

• Add a shadow to give an indication of altitude
when the snowboarder is in the air.

• Add skeleton physics to make the snowboarder
respond to external influences.

• Add an adaptive time step so that the simula-
tion runs at the same speed on all computers.

• Tilemap the heightmaps, so that a continuous
varied terrain could be represented.

• Come up with a method for creating vertical
slopes, so that a half-pipe will work properly.

• Come up with a way of piecing together
the heightmaps in such a way that a large
mountain could be modelled. Currently, the
heightmaps lie on a single plane, so that only
a single face of a mountain is represented. It

would be much better if the heightmaps could
be shaped into a mountain, allowing the user
to explore all the mountain faces in a continu-
ous model.

References

[1] Foster, N. and Metaxas, D., “Realistic Anima-
tion of Liquids”, Submitted to GMIP, 1995.

[2] Zhao, P. and van de Panne, M., “User interfaces
for interactive control of physics-based 3D char-
acters”, Symposium on Interactive 3D Graphics
2005.

[3] Coquillart, S. Gangnet, M., “Shaded Display of
Digital Maps”, Computer Graphics and Appli-
cations, IEEE, 1984.

[4] Fishman, B. and Schachter, B. “Computer dis-
play of height fields”, Computers and Graphics
5 (1980), 53-60.



Figure 3: The program in action


