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Abstract

Monte Carlo integration is a powerful technique for the evaluation
of difficult integrals. Applications in rendering include distribution
ray tracing, Monte Carlo path tracing, and form-factor computation
for radiosity methods. In these cases variance can often be signifi-
cantly reduced by drawing samples from several distributions, each
designed to sample well some difficult aspect of the integrand. Nor-
mally this is done by explicitly partitioning the integration domain
into regions that are sampled differently. We present a power-
ful alternative for constructing robust Monte Carlo estimators, by
combining samples from several distributions in a way that is prov-
ably good. These estimators are unbiased, and can reduce variance
significantly at little additional cost. We present experiments and
measurements from several areas in rendering: calculation of glossy
highlights from area light sources, the “final gather” pass of some
radiosity algorithms, and direct solution of the rendering equation
using bidirectional path tracing.

CR Categories: I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism; I.3.3 [Computer Graphics]: Picture/Image
Generation; G.1.9 [Numerical Analysis]: Integral Equations—
Fredholm equations.

Additional Keywords: Monte Carlo, variance reduction, render-
ing, distribution ray tracing, global illumination, lighting simulation.

1 Introduction

Technically, rendering is all about clever ways to approximate in-
tegrals. For example, the pixel values in an “ideal” image usu-
ally involve integration over the image plane, lens position, and so
on. Furthermore, the quality of a rendering algorithm is frequently
measured by the accuracy and efficiency with which these integrals
are approximated. In this paper, we focus on Monte Carlo (MC)
methods for evaluating such integrals. These methods use random
sampling to simplify the integration problem, by expressing the
integral as the expected value of a random variable. The major
drawback of MC integration is that the resulting estimates can have
high variance; this is perceived as noise in a rendered image.
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Unfortunately, the functions that we needto integrate in computer
graphics are often ill-behaved. They are almost always discontin-
uous, and often have singularities or very large values over small
portions of their domain. Because of this, we often need more than
one sampling technique to estimate an integral with low variance.
Normally this is accomplished by explicitly partitioning the domain
of integration into several regions, and designing a sampling tech-
nique for each region. For example, a simple distribution ray tracer
may use one technique to evaluate direct lighting, another to esti-
mate glossy reflections, and a third for ideal specular contributions.

In this paper, we explore the generalproblem of constructing low-
variance estimators by combining samples from several techniques.
We do not construct new sampling methods—all the samples we
use come from one of the given distributions. Instead, we look for
better ways to combine the samples; in particular, strategies that
compute weighted combinations. We show that there is a large
class of unbiased estimators of this type, parameterized by a set
of weighting functions. We then seek weighting functions within
this class that minimize variance. In a sense, we are asking the
inverse problem: given several sampling techniques, how should
the domain be partitioned among them? (Or more generally, how
should the samples be weighted?)

A good solution to this problem turns out to be surprisingly
simple. We show how to combine samples from several distributions
in a way that is provably good, both theoretically and practically.
This allows us to construct MC estimators that have low variance
for a broad class of integrands—we call such estimators robust.
The significance of our methods is not that we can take several bad
sampling techniques and concoct a good one out of them, but rather
that we can take several potentially good techniques and combine
them so that the strengths of each are preserved.

In Sec. 2, we review the fundamentals of MC integration for
rendering, and give an example to motivate our variance reduction
framework. Sec. 3 explains our ideas on combining samples from
several distributions, and gives theoretical justification under several
models (proofs can be found in App. A). In Sec.4 we present
computed images and numerical results for several application areas:
glossy highlights from area light sources, the “final gather” pass
of some radiosity algorithms, and direct solution of the rendering
equation using bidirectional path tracing. Finally, Sec.5 discusses
of a number of tradeoffs and open issues related to our work.

2 Monte Carlo rendering

2.1 Integrals for radiance

We have chosen two basic problems in rendering to illustrate our
techniques: evaluation of the radiance leaving a surface given a
description of the incoming illumination (as in distribution ray trac-
ing or some “final gather” approaches), and direct solution of the
rendering equation[5]. For further details and background see [3].

Given the incident radiance distribution Li(x0; ~!0i ) at a point x0 ,
9
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Figure 1: Geometry for the reflectance equation.

the reflected radianceLr(x0; ~!0r) is given by the reflectanceequation

Lr(x
0

; ~!
0

r) =

Z
S
2

fr(x
0

; ~!
0

i$~!
0

r)Li(x; ~!
0

i)

��cos(�0i)�� d�(~!0i) (1)

where fr is the bidirectional reflectance distribution function
(BRDF), S2 is the set of all unit direction vectors, � is the usual
solid angle measure, and �0i is the angle between ~!0i and the surface
normal at x0 (see Fig. 1). We allow fr to model transmission as well
(in this case fr is the bidirectional scattering distribution function).

Sometimes it is preferable to express the reflectance equation as
an integral over the domain M of scene surfaces (e.g. for direct
lighting calculations). This form is given by

Lr(x
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M

fr(x$x
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0
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where G(x$x
0

) = V (x$x
0

) �
cos(�r) cos(�

0

i)

kx� x
0k2

:

Here A is the usual measure of surface area, �r and �
0

i measure
the angle between x$ x

0 and the surface normals at x and x
0

respectively, while V (x$x
0
) is 1 if x and x0 are mutually visible

and 0 otherwise. The term G(x$x
0
) measures the differential

throughput of a beam[3] from x to x0 .
Often the incident radiance distribution is unknown, and we must

solve for it. This leads to the global illumination problem: given
an emitted radiance distribution Le, find the equilibrium radiance
distribution L satisfying

L(x
0
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00

) = Le(x
0

!x
00

) (3)

+

Z
M

fr(x$x
0

$x
00

)G(x$x
0

)L(x!x
0

)dA(x):

This is known as the three-point rendering or light transport equa-
tion[5]. Equation (3) can be written concisely in operator form as
L = Le + T L, where T is the light transport operator. Under
weak assumptions, the solution is given formally by the Neumann
series

L =

1X
i=0

T
i
Le : (4)

This says that the equilibrium radianceL is the sum of emitted light,
plus light that bounces once, twice, etc.

Our goal is to compute a finite set of measurements that approx-
imately representL. Each measurement Ip is expressed as an inner
product or “weighted average” of the radiance distribution L, as
modeled by the measurement equation:

Ip = hWp; Li =

Z
M�M

Wp(x!x
0

)L(x!x
0

)G(x$x
0

)dA(x) dA(x
0

)

(5)
where Wp(x!x

0
) is the weighting function corresponding to a

particular measurement Ip.
For example, the value of each pixel p in an image can be ex-

pressed in the form (5), using a weighting function Wp that is
non-zero on the set of rays mapped to pixel p by the virtual lens.
Wp can model arbitrary lens systems used to form the image, as
well as any linear filters used for anti-aliasing.
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2.2 Monte Carlo integration

We review the basic principle of MC integration, and establish some
notation for the following sections. Our goal is to estimate

F =

Z



f(x)d�(x)

where f : 
! R and � is a measure function.
We define a sampling technique as an algorithm for choosing

random points in the domain 
. Let p(x) d�(x) be the probability
distribution of the points generated. The idea of MC integration is
to generate a sampleX , and then use f(X)=p(X) as an estimate of
F . As long as the sample value f(X)=p(X) is finite for all samples
X , it is easy to show that this estimate is unbiased:

E

�
f(X)

p(X)

�
=

Z



f(x)

p(x)
p(x) d�(x) =

Z



f(x)d�(x) = F (6)

where E[Z] denotes the expected value of Z . In practice, we esti-
mateF by taking several samplesX1; : : : ;Xn distributed according
to p, and computing

F �
1

n

nX
i=1

f(Xi)

p(Xi)
: (7)

MC integration has one inherent drawback,which manifests itself
as a tradeoff between variance and running time. Letting F be the
sample value f(X)=p(X), the variance of F is

V [F ] = E[F
2
]�E[F ]

2
=

Z



f
2
(x)

p(x)
d�(x)�F

2
: (8)

If we take n independent samples according to (7), variance is
reduced by a factor of n, while running time is increased by a factor
of n. This tradeoff is summarized by the efficiency [1, 6] of a Monte
Carlo estimator,

�[F ] =
1

V [F ] � T [F ]

whereT [F ] is the time required to take a sample fromF . The higher
the efficiency, the less time required to achieve a given variance.
The design of efficient estimators, often simply called variance
reduction, is a fundamental goal of MC research.

Notice that the variance in (8) is strongly affected by the sampling
distribution p—e.g. if p is proportional to f (assuming f � 0), the
variance V [F ] is zero. Unfortunately the normalization p = f=F

requires knowledge of F , so this is not practical. However, by
choosing a distribution p whose shape is similar to f , variance can
be reduced. This idea is known as importance sampling[6].

On the other hand, suppose that we sample f inadequately in
some region U where its value is large (i.e. p � f=F ). By (8)
we see that samples from U can make a large contribution to the
variance, even if U is relatively small. This effect is a major cause
of noise in Monte Carlo images. Our primary goal is to show how
this problem may be avoided, by combining samples from several
distributions designed to sample well each significant region of f .

2.3 An example: glossy highlights

Consider how a distribution ray tracer might render the highlight
produced by an area light source S on a nearby glossy surface (see
Fig. 2). Given a viewing ray that strikes the glossy surface, there are
two obvious strategies for MC evaluation of the reflected radiance,
corresponding to forms (1) and (2) of the reflectance equation.

With area sampling, we randomly sample points onS to evaluate
the integral (2). To compute the estimate (7), we must know the
distribution p(x) dA(x) of the samples—for example, they may be
chosenuniformly onS with respect to surface area or emitted power.
Since there is considerable freedom in choosing p, area sampling
20



(a) Sampling the light sources (b) Sampling the BRDF

(c) A combination of samples from (a) and (b).

Figure 2: Sampling of glossy highlights from area light sources
(Sec. 2.3, 4.1). There are four spherical light sources of varying radii
and color, plus a spotlight overhead. All spherical light sources emit
the same total power. There are also four shiny rectangular plates of
varying surface roughness, each one tilted so that we see the reflected
light sources.

Given a viewing ray that strikes a glossy surface, images (a), (b),
(c) use different techniques for the highlight calculation. All images
are 500 by 450 pixels.

(a) A sample direction ~!0
i

is chosen uniformly (with respect to
solid angle) within the cone of directions subtended by each light
source, using n1=4 samples per pixel.

(b) ~!0
i

is chosen with probability proportional to the BRDF
fr(x

0; ~!0
i
$~!0r)d�(~!

0

i
), using n2=4 samples per pixel.

(c) A weighted combination of the samples from (a) and (b) is
computed, using the power heuristic with �=2.

The glossy BRDF is a symmetric, energy-conserving variation of
the Phong model. The Phong exponent is n = 1=r� 1, where r is
a surface roughness parameter, 0<r<1. The glossy surfaces also
have a small diffuse component. Similar results could be obtained
with other glossy BRDF’s.
is really a family of techniques. The glossy highlights in Fig. 2(a)
were computed with an area sampling strategy.

With directional sampling,we estimate the integral (1) by random
sampling of the incident direction ~!

0

i . Evaluation of Li requires
casting a ray; only the rays that strike S contribute to the highlight
calculation. Typically the distribution p(~!

0

i )d�(~!
0

i ) is chosen to
be proportional to fr(x

0
; ~!
0

i$~!
0

r) or to fr(x
0
; ~!
0

i$~!
0

r)j cos(�
0

i)j.
Fig. 2(b) was computed with a directional sampling strategy.

One of these strategies can have a much lower variance than the
other (see Fig. 2). For example, if the light source is very small,
we are unlikely to hit it with rays chosen by randomly sampling
the BRDF. On the other hand, if the BRDF is nearly specular, ran-
domly chosenpoints on the light source will probably not contribute
significantly to the radiance reflected along the viewing ray.

In both these cases,noise is causedby inadequatesampling where
the integrand is large. To understand this, notice that the integrand
in the reflectance equation (2) is the product of various unrelated
factors—the BRDF, the emitted radianceLe, and several geometric
quantities. However, the area sampling distribution used in Fig. 2(a)
does not take into account the BRDF for example, while the direc-
tional sampling in Fig. 2(b) does not dependon the emitted radiance.
When an unconsidered factor is dominant (e.g. a small bright light,
or a shiny surface), that sampling technique will do poorly.

It is important to realize that both strategies are importance sam-
pling techniques aimed at generating sample points on the same
4

domain (in this case, the light source S). Area sampling chooses a
point x 2 S directly, while directional sampling choosesx by cast-
ing a ray in the chosen direction ~!0i . Given a directional distribution
p(~!

0

i) d�(~!
0

i), the corresponding area distribution p(x) dA(x) is

p(x) = p(~!
0

i ) �
d�(~!

0

i)

dA(x)
= p(~!

0

i ) �
cos(�r)

kx� x
0k2

: (9)

(see Fig. 1)1 . This lets us compute the probability densities assigned
by area and directional methods to the same point x.

2.4 Our framework for variance reduction

When choosing a Monte Carlo sampling technique, we rarely know
exactly what the integrand is. Instead, we have some model for
the integrand, defined by a set of parameters (e.g. the BRDF, the
scene geometry, etc). Given several sampling techniques to choose
from, the variance of each one can change dramatically as these
parameters vary.

Our main goal is to show how Monte Carlo integration can be
made more robust, by constructing estimators that have low variance
for a broad class of integrands. To achieve this, we must avoid

1One could argue that V (x$x
0
) should appear in (9). But if V (x$

x
0
)=0, the integrand (2) is also zero, which makes p(x) irrelevant.
21



insufficient sampling of each candidate integrand f where its value
is large. Our approach to this problem has three steps.

First, we design a set of importance sampling distributions
p1; : : : ; pn. For each region where f has the potential to be large,
we try to construct a sampling distribution that approximatesf well
over that portion of the domain. An excellent source of these distri-
butions is the situation in the example above, where f is a product
of several unrelated functions, and each pi is proportional to the
product of a subset of these.

Next, we determine how many samples to take from eachpi . We
assume this is fixed in advance, based on knowledge of f and pi .

Finally, the integral is estimated as a weighted combination of all
the sample values. The main subject of this paper is how to do this,
such that the estimate is unbiased and has low variance.

3 Combining sampling techniques

We are given an integrand f : 
 ! R, and several impor-
tance sampling distributions p1; : : : ; pn. Our goal is to estimateR


f(x)d�(x). We assume that only two operations are available:

we can take a sample from any of the distributions pi , and we can
evaluate f(x), and pi(x) for any x 2 
. Each sample is assumed
to be independent, i.e. we generate new random bits to control its
selection.

As mentioned above, we must also decide how many samples to
take from each pi . We define ci as the relative number of samples
taken from pi , where

P
i
ci = 1. In this paper, we assume that

the ci are fixed in advance, i.e. before any samples are taken. The
choice of the ci is an interesting problem that we discuss further in
Sec. 5.2.

The key ideas in this section are simple. First, notice that by
drawing a fraction ci of the samples from each pi, the resulting group
of samples has the distribution p(x) =

P
i
cipi(x). We propose

that the natural way to combine importance sampling techniques is
to consider this combined sample distribution when computing the
unbiased estimate f(X)=p(X).

Second, we show that this method of combining samples is prov-
ably good (compared to partitioning, simple weighted combinations,
etc). To justify this claim, we explore a much larger class of un-
biased combination strategies, parameterized by a set of weighting
functions. We then look for weighting functions that minimize the
variance of the combined estimator, and show that the combination
strategy above is close to optimal. This gives us confidence that our
methods compare favorably with other possible techniques.

Third, we use our framework of unbiased estimators to reduce
variance further in an important special case. Specifically, it is
common in practice that for the particular integrand f we are given,
one of the given sampling distributions is far superior to the rest
(e.g. a small bright light or shiny surface in Fig. 2). We study two
families of weighting functions that perform significantly better in
this situation, while retaining provably good behavior in general.

3.1 The combined sample distribution

Suppose that ni = ciN independent samples Xi;j are taken from
distribution pi, for a total of N samples. As a group, the samples
have the distribution

p(x) =

nX
i=1

cipi(x) :

More precisely, p(x) is the distribution of a random variable X

which is equal to each Xi;j with probability 1=N . We call this the
combined sample distribution. From this point of view, the standard
estimator (7) gives

F =
1

N

nX
i=1

niX
j=1

f(Xi;j)

p(Xi;j)
: (10)
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As we will show, this is a provably good way to combine samples
from several distributions. Within the framework described below,
this strategy is called the balance heuristic (Sec. 3.3).

3.2 The multi-sample model

In this section we considerunbiased estimators that allow samples to
be weighted differently, dependingon which underlying distribution
pi they were chosen from. Each estimator is parameterized by a set
of weighting functions w1; : : : ; wn, where wi(x) gives the weight
associated with a sample x drawn from pi. The combined estimator
is given by

F =

nX
i=1

1

ni

niX
j=1

wi(Xi;j)
f(Xi;j)

pi(Xi;j)
(11)

where the Xi;j are independent samples from distribution pi ,
as before. For this estimator to be unbiased, we require thatP

i
wi(x) = 1 for all x, since this gives

E[F ] =

nX
i=1

1

ni
ni

Z



wi(x)f(x)

pi(x)
pi(x)d�(x) =

Z



f(x)d�(x) :

Think of this as a weighted sum of the estimators f(Xi;j)=pi(Xi;j).
The weights are allowed to vary with position, but must always sum
to one. For example, if at every point x all but one of the wi are
zero, we get a simple partitioning of the domain into n regions. This
represents a heuristic such as dividing the visible hemisphere into
light source regions and non-light-source regions, which are then
sampled using different methods.

3.3 The balance heuristic

We now have a large parameter space over which to optimize (the
space of allowable weighting functionswi). Our goal is to minimize
the variance of F by choosing the wi appropriately. Consider the
weighting functions

ŵi(x) =
cipi(x)P
j
cjpj(x)

: (12)

These ŵi have the unique property that the sample value
fŵi(x)f(x)g=fnipi(x)g from (11) does not depend on i. Because
the sample value at a particular x is the same for all underlying dis-
tributions, we call this strategy the balance heuristic. Substituting
ŵi into (11), this is simply a reformulation of the estimator (10) we
obtained using the combined probability distribution.

The following theorem gives evidence that these weighting func-
tions are good:

Theorem 1. Let w1; : : : ; wn be any non-negative functions withP
i
wi = 1, and let ŵ1; : : : ; ŵn be the weighting functions above

(the balance heuristic). LetF and F̂ be the corresponding combined
estimators (11). Then

V [F̂ ] � V [F ] +

�
1

mini ni
�

1P
i
ni

�
F
2
:

See App. A for a proof. This theorem says that no choice of the
wi can improve upon the variance of the balance heuristic by more
than (1=mini ni � 1=N)F

2 (recall that F is the quantity we are
trying to estimate). This “variance gap” is very small relative to
the variance caused by a poorly chosen sampling distribution, as we
saw in Fig. 2. Also, the variance gap goes to zero as the number of
samples increases (assuming all ni are increased).

Furthermore, these weighting functions are practical to evaluate.
The key requirement is that given a sample Xi from pi, we must
be able to evaluate pj(Xi) for all j. Any unbiased Monte Carlo
algorithm must be able to evaluate pi(Xi), so this is often just
a matter of reorganizing the routines that compute probabilities.
The time to evaluate these probabilities is generally insignificant
compared to other rendering calculations, as we show in Sec.4.
2
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Figure 3: Two distributions for sampling the integrand.

3.4 Other weighting heuristics

Theorem 1 implies that although the balance heuristic is good, there
is still room for improvement. In this section we discuss two families
of heuristics that in practice often have lower variance than the
balance heuristic. These heuristics satisfy

P
i
wi(x) = 1 and thus

give unbiased estimates.
We are motivated by the common situation where one of the pi is

an almost perfect match for f (e.g. BRDF sampling with the mirror-
like surface in Fig. 2). To develop our ideas, consider the situation
in Fig. 3, where f is a very peaked distribution, p1 is proportional to
f , and p2 is the uniform distribution. Assume that we take an equal
number of samples from both pi, and form a weighted combination
using the multi-sample model (11).

Since p1 is a zero-variance importance sampling distribution
(f(X1)=p1(X1) = F is constant), the optimal weighting func-
tions are obviously w1(x) � 1, w2(x) � 0. We cannot expect to
guess this using only pointwise evaluation of the pi and f ; however,
we would like to get as close to this ideal as possible.

How well does the balance heuristic perform in this situation,
and how can we improve it? Consider the contributions of samples
from p1 and p2 separately. Most samples from p1 occur near the
peak, where the weighted sample value (see (12)) is approximately
equal to F . Similarly, most samples from p2 occur away from the
peak, where their sample value is zero (because f is zero there).

So far, this is very close to optimal. However there are two
effects that lead to additional variance. Occasionally a sample from
p1 occurs away from the peak (i.e. where p1 � p2 does not hold).
In this case the weightp1=(p1+p2) produces a sample value smaller
thanF ; in an image, this shows up as dark spots. On the other hand,
sometimes a sample X2 from p2 occurs near the peak of f . These
have a weighted sample value slightly smaller thanF (see Sec. 3.3).
In an image, this shows up as occasional bright spots. However,
these “spikes” are relatively small in magnitude, because a sample
from p2 contributes the same as an equivalent sample from p1 .

We present two families of heuristics that reduce variance in
this important limiting case. They are variations on the balance
heuristic, where the weighting functions have been “sharpened” by
making large weights closer to one and small weights closer to zero.
This is effective at reducing both types of noise above.

The cutoff heuristic modifies the weighting functions by discard-
ing samples with low weight:2

wi =

8<
:

0 if pi < �pmax

piP
j
fpj j pj � �pmaxg

otherwise (13)

where pmax = maxj pj . The constant � determines how small pi
must be compared to pmax before we assign it a zero weight.

The power heuristic raises all weights to a power �, and then
normalizes:

wi =
p
�
iP
j
p
�
j

: (14)

2All pi and wi are implicitly functions of x. For simplicity we have
assumed all ni are equal; otherwise replace pi by nipi everywhere.
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Notice that when �= 0 or �=1, we get the balance heuristic.
When �=1 or �=1, we get the maximum heuristic:

wi =

�
1 if pi = pmax

0 otherwise : (15)

This heuristic simply partitions the domain according to which dis-
tribution pi generates samples there with the highest probability.

The advantage of these heuristics is reduced variance when one
of the pi is much better than the rest. Their performance is otherwise
similar to the balance heuristic; it is possible to show they are never
much worse (we give bounds in App. A, measurements in Sec. 4.1).

3.5 The one-sample model: optimality

In this section, we consider a sampling model where we our com-
bination methods are optimal. Under this one-sample model, each
sample is taken from a randomly selected distribution pi . Distri-
bution pi is chosen with probability ci. This idea is used in path
tracing for example, where at each bounce we choose randomly
between the diffuse, specular, or transmitted distributions.

Again, each estimator is parameterized by a set of weighting
functions fwi(x)g. The process of choosing a distribution, taking
a sample, and computing the weighted sample value is described
mathematically by the combined estimator

F =
wI(XI)f(XI)

cIpI(XI)
; where I = minfi j U <

iX
j=1

cjg : (16)

HereU is a uniformly distributed random variable on [0; 1), I is the
index of the randomly chosen distribution, andXI is a sample from
distribution I . This estimator is unbiased as long as

P
i
wi = 1.

In this case, the balance weighting strategy is optimal:

Theorem 2. Let w1; : : : ; wn be any non-negative functions withP
i
wi = 1, and let ŵ1; : : : ; ŵn be the weighting functions (12).

Let F and F̂ be the corresponding combined estimators (16). Then
V [F̂ ] � V [F ].

4 Experiments

4.1 Distribution ray tracing

Our first test is the computation of glossy highlights from area
light sources (see also Sec. 2.3 and Fig. 2). The area sampling
technique3 used in Fig. 2(a) works well for small light sources and
rough surfaces. The directional sampling technique in (b) does
well for large light sources and smooth surfaces. In (c), the power
heuristic with �=2 is used to combine both kinds of samples. This
method works very well for all light source/surface combinations.

We have also measured variance numerically as a function of
roughness. Fig. 4 shows the test setup, and the results are sum-
marized in Fig. 5. Notice that all four weighting heuristics yield a
variance that is close (on an absolute scale) to the minimum vari-
ance when either sampling technique is used alone. In particular,
Thm. 1 guarantees that the variance �2 of the balance heuristic is
within �

2
=2 of the best input technique. The plots in Fig. 5(a) are

well within that bound.
At the extremes of the roughness axis there are significant dif-

ferences among the heuristics. As expected, the balance heuristic
(a) performs worst at the extremes, since the other heuristics were
specifically designed for the case when one sampling technique is
much better than the rest. The power heuristic (c) with �=2 works
especially well over the whole range of roughness values.

3Direction ~!0
i

is used to compute a point x on the light source directly,
rather than casting a ray to find the first visible point. Thus form (2) of the
reflectance equation is used, making this an area sampling technique.
3
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Figure 5: Variance measurements for the test case in Fig. 4. Each graph plots �=� vs. surface roughness, where �2 is the variance of a single sample
and � is the mean. Three curves are shown, corresponding to the area sampling technique from Fig. 2(a), the directional sampling technique from
Fig. 2(b), and a weighted combination of both sample types using the (a) balance, (b) cutoff, (c) power, and (d) maximum heuristics. The images above
each graph are computed with the corresponding heuristic, for the three roughness values circled (one sample per pixel, box filter). The center pixel of
these images corresponds to the viewing ray used for the variance measurements.
light

glossy surface

spherical

source

Figure 4: A scale diagram of the setup used to measure the variance
of the highlight calculation. The light source occupies a solid angle of
0.063 radians. The variance for each roughness value was measured
by taking 100,000 samples using the viewing ray shown.

Above the graphs we show how the variance of each method
appears in an image, for three circled roughness values. Notice how
the cutoff, power, and maximum heuristics reduce the “bright spot”
and “dark spot” noise (Sec. 3.4) at the extremes.

Recall that to evaluate the weights at a point x, we must com-
pute the probabilities with which both methods generate x. For
example, if x is a point on the light source generated by (a), we
find the probability p2(~!0i)d�(~!

0

i ) that (b) generates the direction
~!
0

i pointing toward x, and convert this probability to the measure
p2(x)dA(x) using (9). The total time spent evaluating probabilities
and weighting functions in our tests was less than 5%.
4

4.2 Final gather

In this section we consider a simple test case motivated by multi-
pass global illumination algorithms. These algorithms typically
compute an approximate solution using the finite element method,
followed by one or more ray tracing passes to replace parts of the so-
lution that are poorly approximated or missing. For example, some
radiosity algorithms use a local pass or final gather to recompute
certain coefficients more accurately.

We examine a variation called per-pixel final gather. The idea
is to compute an approximate radiosity solution, and then use it
to illuminate the visible surfaces during a ray tracing pass[11, 2].
Essentially, this type of final gather is equivalent to ray tracing with
many area light sources (one for each patch, or one for each link
in a hierarchical solution). As with the glossy highlight example,
there are two common sampling techniques. The brightest patches
are classified as “light sources”[2], and are handled with an area
sampling technique (e.g. samples are distributed on the light sources
according to emitted power). The remaining patches are sampled by
casting rays randomly into the scene (i.e. directional sampling from
the point intersected by the viewing ray). If one of these rays hits a
light source patch, the sample value is zero (to avoid counting those
patches twice). Within our framework for combining sampling
techniques, this is clearly a partitioning of the integration domain
into two regions.

Given some classification of patches into light sources and non-
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Figure 6: A simple test scene consisting of one area light source (i.e. a bright patch) and an adjacent diffuse surface. The images were computed by
(a) sampling the light source according to emitted power, with n1=3 samples per pixel, (b) sampling the hemisphere according to the projected solid
angle[3] cos(�0

i
) d�(~!0

i
) (see Fig. 1), with n2 = 6 samples per pixel, and (c) a weighted combination of samples from (a) and (b) using the power

heuristic with �=2. (d) A plot of �=� (standard deviation divided by mean) as a function of distance from the light source, for n1=1 and n2=2.
light sources, we consider alternative ways of combining the two
types of samples. To test our weighting strategies, we used the
extremely simple test sceneshown in Fig. 6. Twice as many samples
are taken in (b) than (a); in practice this ratio would be substantially
higher (i.e. the number of directional samples vs. the number of
samples for any one light source).

Notice that Fig. 6(a) does poorly for points near the light source,
because the sample distribution does not take into account the 1=r2

distance term of the reflectance equation (2). On the other hand (b)
does poorly far away from the light source, when the light subtends a
small solid angle. In Fig. 6(c), the power heuristic is used to combine
samples from (a) and (b). As expected, this method performs well
at all distances. Although (c) uses more samples (the sum of (a)
and (b)), this is a valid comparison with the partitioning approach
(which also uses both kinds of samples). Variance measurements
are plotted in Fig. 6(d).

4.3 Bidirectional path tracing

The basic goal of Monte Carlo path tracing is to estimate the value
of each pixel in an image by direct sampling of the rendering and
measurement equations (Sec. 2.1). In this section, we show that by
combining samples from several importance sampling techniques,
this process can be made more efficient. As a source of sampling
distributions, we use bidirectional path tracing (introduced inde-
pendently in [14] and [8, 9]). We briefly overview the theory below.

To apply our methods, we must first express the value Ip of a
pixel p in the standard form

R


f(x)d�(x). To do this, we write

out equations (3), (4), and (5) explicitly:

Ip = hWp; Li = hWp;
P

i
T
i
Lei (17)

=

Z
M

2

Le(x0!x1)G(x0$x1)Wp(x0!x1) dA(x0)dA(x1)

+

Z
M

3

Le(x0!x1)G(x0$x1)fr(x0$x1$x2)

G(x1$x2)Wp(x1!x2)dA(x0)dA(x1)dA(x2)

+ � � �

To write this as a single integral
R


f(x)d�(x), let 
 be the set of

transport paths of all lengths. Each transport path � of length k is a
sequencex0x1 : : :xk of points xi 2M. The measure d�(�) on 

is defined by d�(�) = dA(x0) : : : dA(xk).4 Finally, the integrand
f(�) is simply the appropriate term from the expansion above, for
example f(x0x1) = Le(x0!x1)G(x0$x1)Wp(x0!x1).

Path tracing algorithms can be interpreted as methods for sam-
pling this integral directly, by generating transport paths� randomly
and using the standard estimate f(�)=p(�). Observe that paths
where f(�) is large satisfy two conditions: they carry a relatively

4d�(�) = dA(x0)G(x0$x1)dA(x1) : : : G(xk�1$xk)dA(xk) is
another possibility—this measures the differential throughput of a path.
4

x0

x3

x2

x1

x4

Figure 7: A transport path from a light source to the camera lens,
created by concatenating two separately generated pieces.

(a)
m=0

(b)
m=1

(c)
m=2

(d)
m=3

Figure 8: The four bidirectional sampling strategies for paths of
length two (direct lighting). Intuitively, they can be described as (a)
Monte Carlo path tracing with no special handling of light sources,
(b) standard MC path tracing with direct lighting, (c) depositing
(splatting) light on the image when a “photon” hits a visible surface,
and (d) depositing light when a photon hits the camera lens.

large amount of light, and they have a relatively large weight in the
measurement process that generates the final image. Bidirectional
path tracing uses this idea to construct a family of importance-
sampling techniques that trade off one property against the other.

Unlike standard path tracing, which generates transport paths
by starting from the eye and following random bounces backward
to the light sources, the bidirectional approach builds a path by
connecting two independently generated pieces, one starting from
the light sources and the other from the eye. For example, in Fig. 7
the light subpath x0x1 is constructed by choosing a random point
x0 on a light source (area sampling), followed by casting a random
ray (directional sampling) to find x1. The eye subpath x2x3x4

is constructed by a similar process starting from a random point
x4 on the camera lens. A complete transport path is formed by
concatenating these two pieces. (This path may carry no light, for
example if x1 and x2 are not mutually visible.)

This idea leads to a set of sampling techniques for transport paths.
Each technique generates paths of a specific length k, by randomly
generating a light subpath with m vertices, randomly generating an
eye subpath with k+1�m vertices, and concatenating them. In total
there are k+2 distinct bidirectional sampling techniques for paths
of length k (letting m = 0; : : : ; k+1, see Fig. 8). Each of these
is really a framework for sampling rather than a specific technique,
25



(a) The weighted contribution that each bidirectional sampling technique makes to image (b)

(b) Combines samples from all the bidirectional techniques (c) Standard path tracing using the same amount of work

Figure 9: The scene contains a spot light, a floor lamp, a table, and a big glass egg. Image (b) uses the power heuristic (with �=2) to combine samples from a
family of bidirectional path tracing techniques, whose weighted contributions are shown in (a). Row i shows techniques that sample transport paths of length
i+1; the m-th image uses the distribution pi+1;m (see Sec. 4.3). Images in row i have been over-exposed by i f-stops so that details can be seen.
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since the paths generated depend on the distributions used to choose
each vertex (area sampling for the first vertex of each subpath,
usually directional sampling for the rest). These methods can be
very diverse, e.g. sophisticated direct lighting techniques can be
used to choose the first vertex of the light subpath.

Each technique defines a probability distribution pk;m(�) d�(�)

on paths of length k. We can compute pk;m(�) explicitly by mul-
tiplying the probabilities p(xi)dA(xi) with which the individual
vertices were generated. Vertices that were chosen using a direc-
tional distribution p(~!)d�(~!) can be converted to the area measure
using (9). To see why these distributions are good candidates for
importance sampling, consider the integrand (17) for paths of length
k. It is a product of many unrelated functions: Le, Wp , k different
G factors, and k�1 different fr factors. Each bidirectional tech-
nique includes a different subset of these factors in its sampling
distribution; among them, we are more likely to generate paths that
contribute significantly to the image.

We now have all the tools to combine samples from these tech-
niques using the methods of Sec.3: we can take a sample from any
of the distributions pk;m , and given any path � of length k we can
evaluate f(�) and pk;m(�).

Fig. 9 shows a scene that we used to test these ideas. Diffuse,
glossy, and pure specular surfaces are present. Transport paths of
lengths up to k=5 were sampled using the bidirectional distribu-
tions pk;m described above. For efficiency, we randomly generate
maximum-length eye and light subpaths in pairs. We then take sam-
ples from all pk;m by joining each prefix of the light subpath to each
suffix of the eye subpath. For example, to sample p2;1 we concate-
nate the first vertex of the light subpath and the last two vertices of
the eye subpath. Each such group of samples is dependent, but this
does not appear to significantly affect our results. Another impor-
tant optimization reduces the number of visibility tests between the
eye and light subpaths, by using Russian roulette [6] to randomly
suppress small potential contributions without adding bias.

The final image in Fig. 9(b) was created by combining samples
from all distributions using the power heuristic (with �= 2). The
image is 500 by 500 with 25 samples per pixel. The weighted con-
tribution from each technique is shown in the pyramid in Fig. 9(a).
The pyramid does not show the complete set of sampling techniques;
paths of length one are not shown because the light sources are not
directly visible, and one column has been stripped from the left and
right sides of each row because these images are virtually black
(i.e. the weighted contributions are very small).

Observe the caustics on the table, both directly from the spot-
light and indirectly from reflected light on the ceiling. The unusual
caustic pattern to the left is caused by the square shape of the spot-
light’s emitting surface. Notice that some effects, such as caustics
and specular reflections, get their contributions almost entirely from
one sampling technique. This says that the other techniques are very
poor estimators of these contributions.

For comparison, Fig. 9(c) shows standard MC path tracing with
56 samples per pixel (the same computation time as Fig. 9(b)). Di-
rect lighting was used on all paths except for caustics, which were
rendered by following paths right back to the light sources (the
caustics would otherwise not be visible).

5 Discussion

5.1 Conclusions

As we have shown, our methods for combining sampling techniques
can substantially reduce the variance of Monte Carlo rendering
calculations. These techniques are practical, and the additional cost
is small—less than 10% of the time in our tests was spent evaluating
probabilities and weighting functions. We also have strong bounds
on their performance relative to other combination strategies.
42
Overall, we found that the power heuristic (with � = 2) gave
the best results. It is similar to the balance heuristic in general,
but has significantly lower variance when one of the pi is a good
match for f . When none of the given sampling distributions is a
good match for f (e.g. Fig. 6), the differences among the various
weighting strategies are small.

5.2 Choosing the number of samples

First, observe that no strategy is greatly superior to that of simply
setting all ci equal. If we are allocating N samples among n

sampling techniques, it is easy to show that

V [F̂ ] � nV [F ] +
n� 1

N
F
2

where F̂ uses the balance heuristic with all ci equal, and F uses
any unbiased weighting functions and ci (satisfying

P
i
wi = 1

and wi � 0 if ci = 0). Thus, changing the ci can improve the
variance by at most a factor of n, plus a small additive term. On the
other hand, a poor choice of the wi (e.g. a poor partitioning of the
integration domain) can increase variance by an arbitrary amount.

Also, there are situations where the ci are naturally constrained.
For example, in bidirectional path tracing it is more efficient to take
one sample from all distributions at once (Sec. 4.3). In the glossy
highlights example, the ci are constrained because the samples are
used for other purposes (direct lighting samples for the diffuse com-
ponent, and directional samples for glossy reflections of objects
other than light sources). Often these other purposes will dictate
the number of samples taken. In this case, by taking a weighted
combination of both types of samples we can reduce the variance of
the highlight calculation essentially for free.

5.3 Comments on direct lighting

The examples of Sec. 4.1, 4.2 are essentially direct lighting prob-
lems. They differ only in the terms of the reflectance equation
that cause high variance—the BRDF, the 1=r2 distance term, or the
emitted radiance distribution Le.

In Sec.4.2, we used a simple light source sampling tech-
nique. Although there are more sophisticated techniques for direct
lighting[13], it can still be useful to combine several kinds of sam-
ples. Observe that any strategy for sampling a group of patches
as light sources induces some probability distribution on the patch
surfaces. Since these strategies are always approximations, some
factors of the reflectance equation (2) will not be approximated well.
In parts of the scene where these omitted factors become dominant,
simple directional sampling can be more efficient. By combining
both kinds of samples, we can make such strategies more robust.

Shirley and Wang[12] also compare directional and area sampling
techniques for glossy highlights (Sec. 4.1). They analyze a specific
Phong-like BRDF and light source sampling method, and derive an
expression for when to switch from one to the other (as a function
of surface roughness and light source solid angle). In contrast, our
methods work for general BRDF’s and sampling techniques, and
can combine samples from any number of distributions.

5.4 Approximating the weighting functions

The models in Sec. 3 assume that given a sampleXi from distribu-
tion pi , we can compute pj(x) exactly for all other j. Sometimes
this is problematic—e.g. pj(x) may be expensive or complicated
to evaluate. More difficulties arise when a sampling technique pj
uses random numbers that cannot be determined from the resulting
sample point x. For example, some direct lighting strategies[13]
generate several candidate sample points xi, and then choose one
randomly. Given an arbitrary point x, it is difficult to evaluate
7



pj(x) because this probability depends on information other than
the sample location x itself.

The easiest way to handle these problems is to recall that the
results are unbiased as long as

P
i
wi(x) = 1. When computing

the wi, it is perfectly reasonable to use an approximation p0j of the
true probabilities pj . This will give unbiased results even if the
approximations p0j are poor, as long as they are consistently used
(i.e. p0j(Xi) does not depend on i). Of course, poor approximations
may lead to increased variance. Note that pi(Xi) must always be
evaluated exactly in (11) to avoid bias; however this is required of
any unbiased Monte Carlo algorithm.

5.5 Future work

We would like to explore other applications where it makes sense
to use several sampling distributions. Even within the framework
of global illumination, there are many such problems. For example,
bidirectional path tracing can be used to estimate the coefficients of
basis functions defined on scene surfaces (let Wp in (5) be the dual
basis function). This is an unexplored alternative to particle tracing
models for Monte Carlo radiosity, and may be an effective solution
to the problem of patches that do not receive enough particles.

We think that there is great potential for designing better sampling
distributions—we hope that the existence of good methods to com-
bine the samples will spur further work in this area. Again, global
illumination provides a rich framework, because of the complexity
of the domain and the integrand.

Another interesting problem is how to choose the ci. One re-
search area is the derivation of a priori rules for specific applications
(similar to [12]). Another goal is to find strategies for the general
case; adaptive methods seem promising here. Note that adaptive
methods can introduce bias, unless two-stage sampling is used [7].
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Appendix A Proofs
Proof of Thm. 1: The variance is

V [F ] = V

"
nX
i=1

1

ni

niX
j=1

Fi;j

#
where Fi;j =

wi(Xi;j)f(Xi;j)

pi(Xi;j)

=

nX
i=1

1

n2i

niX
j=1

E[F 2
i;j ]�

nX
i=1

1

n2i

niX
j=1

E[Fi;j ]
2

where the covariance terms are zero because theXi;j are sampled indepen-
dently. We bound the two terms separately. For the first term, we get

nX
i=1

1

n2i

niX
j=1

E[F 2
i;j] =

Z



nX
i=1

w2
i (x)f

2
(x)

nipi(x)
d�(x) :

Using the method of Lagrange multipliers, we minimize the integrand inde-
pendently at each point x subject to the condition

P
i
wi = 1. Noting that

f2(x) is a constant and dropping x from our notation, we must minimize

X
i

w2
i

nipi
+ �

 X
i

wi � 1

!
:

Setting all n+1 partial derivatives to zero, we obtain wi = ŵi (12). Thus
no other weighting strategy can reduce this term further.

The second term makes a negative contribution to the variance, so we
will prove an upper bound F2=mini ni for the wi and a lower bound
F2=
P

i
ni for the ŵi. Letting �i = E[Fi;j] (this is independentof j), for

the upper bound we have
nX
i=1

1

n2i

niX
j=1

�2i =

nX
i=1

1

ni
�2i �

1

mini ni

nX
i=1

�2i :

Since
P

i
�i = F , we have maxi �i � F , and thus

P
i
�2i � F

2 which

proves the upper bound. The lower bound
P

i
�̂2i =ni � F

2=
P

i
ni is

easily proven with Lagrange multipliers.

Proof of Thm. 2: Because F2 is fixed in (8), it is enough to minimize
the second momentE[F 2

]. We have

E[F 2
] =

Z



nX
i=1

w2
i (x)f

2(x)

cipi(x)
d�(x) ;

which is virtually identical to the second moment term that we minimized
in the proof of Thm. 1.

We also present worst-case bounds for the weighting heuristics from
Sec. 3.4. The bounds have the form

V [F̂ ] � cV [F �] +

�
1

mini ni
�

1P
i
ni

�
F2 ;

where F̂ uses the indicated heuristic, and F � uses the (unknown) optimal
weighting functions. For the cutoff heuristic, we can showc = 1+�(n�1),
while for the power heuristic we can show

c = 1+
1

�
((n� 1)(�� 1))

1�1=� :

When �=2, we can prove the stronger bound c = 1

2
(1 +

p
n).
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