
Snow Accumulation in Interactive Time
Chris Willmore Scott Fermeglia

Advanced Computer Graphics

Rensselaer Polytechnic Institute

Figure 1 - Test Scene with Wind Blowing Left to Right

Abstract
Falling snow is a major part of many
weather patterns, and its accumulation on
the ground can greatly change the layout of
a given scene. We present an algorithm
which simulates snowfall under the
influence of wind, as well as the
accumulation of snow on the ground. We
also simulate the redistribution of snow,
both locally and from objects at different
heights. The algorithm runs in interactive
time.

1. Introduction
Snowy scenes are a common sight in reality,
but instances of computer-generated snow
are somewhat rarer. Of the instances in
which falling snow is generated, many
simply use “billboard” effects. These give a
somewhat convincing snowfall pattern and
avoid rendering snowflake objects in a 3D
space. Accumulation of snow is even less
well represented; most snowy scenes are
simply static artist-created meshes which
do not change with time.

Our project has been to develop an
algorithm which can render convincing
snow in a 3D space, and to simulate snow
accumulation on objects in a fairly realistic
manner. This is done by assigning physical
properties to snowflakes (mass, forces
applied, etc.), allowing them to be affected
by gravity and wind, and creating a method
by which they can impact the ground and
other objects and be “converted” from a
free-falling flake into snow on the ground.
Ground-cover snow is represented by a
height field (or, in the case of objects in the
scene, multiple height fields).

The ground-cover snow also has physically-
based behavior – if any part of the height
field becomes too high in relation to its
neighbors, it will redistribute its mass to its
neighbors. If the height field is on an
object, and snow is transferred off the side
of said object, the algorithm can
redistribute this snow to height fields below
it. Overall, we have found that this
algorithm is a fairly convincing simulation of
snowfall and accumulation, and runs well
on our computers.

2. Related Work

Perhaps the most advanced work on
physically based wind-driven snowfall and
its attendant accumulation has been by
Ingar Saltvik in his Master’s thesis, “Parallel
Methods for Real-Time Visualization of
Snow” [1]. His work defines snowflakes in
great detail, including an aerodynamic
model. Wind is maintained with
incompressible Navier-Stokes, while
accumulation occurs as a result of the
rendered snowflakes. The algorithm does
not, however, provide for local
redistribution of snow on the ground, which
can lead to “spikes” of snow and other
discontinuities.

Moeslund, et al’s “Modeling Falling and
Accumulating Snow” [2] takes a different
approach, rendering snowflakes as small
randomized agglomerations of triangular
polygons, with the polygon count
determined by the consistency of the snow
(i.e. wet and dry). The shape of the created
snowflakes is taken into account in the
interaction of these snowflakes with wind;
the result is snowflakes that move and
tumble quite differently from one another

based on shape. The authors also model
accumulation, but have chosen to keep the
snowflake and accumulation models
separate; this allows for the generation of
snow-covered scenes of any depth very
rapidly. While the paths snowflakes would
take are calculated quickly and this model
used to generate the ground cover,
rendered snowflakes are not used as the
mechanism of snow accumulation.

Haglund et al’s “Snow accumulation in real-
time” [3], while it does not render
snowflakes, focuses on a different but
important aspect of accumulated snow – its
realistic appearance. The authors took note
of patterns in their “randomized”
accumulation algorithm and showed a
method for correcting this. The paper also
devoted much time to rendering physically
correct (or at least visually appealing) snow
cover “edges” (i.e. the edge of a snowbank
on top of an object).

Our algorithm seeks to combine three of
what we feel are the most important
aspects of a rendered snowfall scene –
physically based wind-driven snowfall,
accumulation of snow based on the
rendered snowflakes and their attendant
properties, and the redistribution of snow
on the ground to produce a fairly
convincing, realistic covering of snow on a
landscape. While the other mentioned
algorithm have superior implementations of
some portion of these, none we have found
has implemented all three together, and so
we feel a contribution can be made.

3. Theory
A number of the parameters in our
algorithm are physically based or inspired,
notably the mass of snowflakes, effect of

wind and drag, and redistribution of snow
on the ground to maintain a smooth
surface.

From [4], it can be found that snowflakes
can range in diameter from .001m to
.0762m, with a common value of .0254m (it
should be noted that the .0762m snowflake
was the largest ever recorded, and should
be statistically ignored). From [5],
snowflakes have a density between .005
and .2 grams per meter-squared, based on
formation and temperature. The result is a
snowflake mass between .000005g and
88.5g, with a common mass of about 1.64g.
In our algorithm, we decided to generate
snowflake masses between .005g and 5g, a
weighting which is well within the
established range of masses, and which
produces a visually appealing effect.

Once the weight of the snowflake is
established, we simulate its motion through
solution of the force equation

through simple Euler integration, where g is
the vector representing gravity and k is a
drag coefficient (which can be calculated
using the Reynolds number of air and the
radius and drag of snowflakes, but in
practice was tweaked by hand). We
considered further randomizing the motion
of a snowflake by perturbing its position
according to a random walk at each
timestep, but we found that the random
mass and initial position assigned to each
snowflake was sufficient to give the
aggregate snowfall a random appearance.

In order to enforce non-spikiness on the
height fields, we enforce an upper limit on

the absolute value of the Laplacian of the
snow surface, defined by

where h is the height of the snow at a given
point and x and y are the local coordinates
of the height field. The Laplacian in our case
is approximated by considering a point on
the lattice and its four neighbors, and
approximating it as

If the Laplacian is found to exceed the limit,
the snow in that neighborhood is
redistributed so that the limit is again
obeyed, at least locally.

If too much snow accumulates on the edge
of a height field (i.e., the height of the
height field at that point exceeds a
programmed-in limit), snow is emitted into
the scene according to how much snow falls
off the edge, and the height of the snow at
that point is decreased accordingly.

4. Algorithm

The algorithm for simulating snow
accumulation may be summarized in three
steps which occur in an infinite loop:

 For each snowflake: if it's active,
increment its position according to
the physical model described above;
if it's inactive, make it active with
some low probability.

 Deactivate snowflakes which have
fallen outside the world's bounds.

 Detect collisions between every
possible snowflake-object pair,
possibly altering the object or
deactivating the snowflake.

 Redistribute/spill the snow in the
height fields.

The action of each object upon detecting a
flake collision is different:

 If a collision with a height field is
detected, the height field is
incremented at the point of the
collision by an amount determined
by the sampling frequency of the
height field, the mass of the
snowflake, and the density of the
snow.

 If the collision with a box is
detected, the snowflake is relocated
to the nearest point on the outside
of the box. This has the effect that
snowflakes that run into boxes have
the appearance of sliding down the
side of the box; this is handy in that
it naturally creates snowdrifts at the
base of windward sides of boxes on
the groun.d

 If the collision with a sphere is
detected, the snowflake is simply
eliminated; however, there's no
reason we couldn't do the same sort
of treatment as with the box.
However, in our simulation, the only
object that used spheres (the
snowman) served as a useful gauge
of how deep the snow was at that
point, and it would have been
detrimental if it accumulated snow
as well.

The redistribution/spill step is only carried
out once for each iteration of the model,
but the redistribution step seems to suffer
from instability if the amount of snow that
falls onto a particular area of the height
field exceeds the ability for the Laplacian
cap to curb spikiness at that point, and the
simulation blows up. We may benefit from
running multiple smoothing steps per single
time step, but we have not yet tried this.

5. Results
All pictures for this report were generated
on an IBM Thinkpad T43p with 2G of RAM,
a 2GHz Pentium M processor, and an ATI
MOBILITY FireGL V3200 video card. Most
simulations were run on a Apple MacBook
running Mac OS X, with a 2.16Ghz Intel
Core 2 Duo Processor and 2G of RAM, and
an Intel GMA 950 graphics card with 64M of
VRAM. Code was developed for cross-
platform compatibility. Figure 2 shows the
test scene we have developed for our
algorithm to run on. Note the locations of
the three light sources – white above the
house, blue closer to the camera from that,
and yellow on the right. Figure 3 shows the
effect of the redistribution algorithm on the
smoothness of the ground-covering snow.
Figure 5 is a larger version of Figure 1, and
shows the effects of wind. Snowflakes are
generated on the sides of the bounding box.
Note how snow has accumulated on the
roof of the house and garage, but that the
accumulation is less on the left side of the
garage, as snow is blowing from left to right
across the scene. Figure 6 shows the result
of a particularly heavy snowfall using only
the scene’s inherent wind; note the local
variations in snow height due to building
location and random generation of flakes in
the algorithm.

The algorithm runs in interactive time on
the laptop computers mentioned above.
This has been found to be true for scenes
including as many as 50,000 separate
snowflakes; the program can probably run
at interactive rates for many more
snowflakes, though this has not been
tested.

6. Discussion
While our algorithm does a good job of
simulating snowfall, accumulation, and
redistribution, it is not as complete or
robust as the algorithms cited above ([1],
[2], [3]). The wind simulation we use is a
simple global vector which is allowed to
change by small random amounts. It is not
a Navier-Stokes solution to wind; for
example, buildings do not block wind
movement, so snowflakes will never move
upwards after being carried on wind that
has hit a building. Height fields are not
affected by wind, and so a strong wind
cannot blow snow off of an object.

Currently, snow only accumulates on flat
surfaces (the snowman, being made of
spheres, never accumulates any extra
snow). While we feel it is possible to
extend our height field implementation to
curved surfaces, it would be somewhat
difficult, and require dense fields on these
surfaces, leading to a slowdown of the
algorithm.

The height fields in our algorithm have an
“apron” of quads which keeps the viewer
from seeing beneath the height field (A
close look at the right image of Figure 3
shows what our algorithm look like without
the apron). This is wholly unrealistic, and
was implemented more for the visual effect
than for any real basis in reality. A

implementation as in [3] would solve this
problem.

Our algorithm, while it works well for
snowflakes of appropriate size, fails (quite
spectacularly, see Figure 4) if the
snowflakes are too massive, or if there is a
huge concentration of flakes hitting the
same area of a height field in quick
succession. This is essentially a problem
with the redistribution taking place over
multiple time steps; it is possible for a field
to grow quickly enough that it consumes
additional snowflakes, causing a runaway
growth. This could be fixed by allowing the
redistribution subroutine to be called
multiple times per timestep.

Finally, the flakes themselves are
represented as points and their masses as
point masses. While a decent enough
approximation, it is not realistic. With
enough time, an implementation as per [2],
or better yet, [1] (if combined with a
Navier-Stokes wind representation) would
yield physically realistic snowflakes, or at
least be closer to this ideal.

7. Conclusions
We have presented an algorithm for wind-
driven snowfall which accumulates based
on the rendered snowflakes, and which
allows redistribution of fallen snow to
maintain smoothness. Our algorithm runs
in interactive time, and produces fairly
convincing renderings of snowfall and
accumulation. The algorithm also includes
lighting and material properties for objects
in the scene, giving a framework for
potential expansion of the algorithm to
larger test scenes. Overall, we are quite
pleased with the results, particularly given

the time constraints under which the
project was completed.

8. Future Work
There are many directions in which this
project could be taken. In particular, there
are some goals that we had for the project
that had to be abandoned due to time
constraints, including:

 localized wind, including solution of
the Navier-Stokes equations

 wind affecting snow drifts directly
(carving out channels, blowing over
drifts)

 moving objects

 adding temperature to affect the
wetness of snow or melting of snow
on differently heated surfaces

 extension of snow accumulation to
non-flat objects

 optimizing the algorithm for real-
time performance

 snow sticking to surfaces with non-
vertical normals (i.e., not facing up)

In particular, there is quite a bit of
infrastructure in the code for optimizing
object-flake collision, in the form of dividing
the simulation environment into several
cells which index the space, and calculating
in which cells the flakes and objects lie.

We also considered generalizing snow
accumulation to arbitrary meshes instead of
height fields; the idea is that if a snow
particle lands on an arbitrary mesh, the
mesh is made to bulge slightly in the
direction of the normal at that point on the
surface, and over-stretched triangles in the
mesh are subdivided as appropriate. This
could be extended even further to create a

sort of "snow gun," which could be used to
model round-edged objects. However,
again, we ran out of time for this idea.

References

1. Ingar Saltvik. “Parallel Methods for Real-Time Visualization of Snow,” 2006. Master’s Thesis,
Norwegian University of Science and Technology, Department of Computer and Information
Science

2. T.B. Moeslund, C.B. Madsen, M. Aagaard, and D. LercheModelling. “Modeling Falling and
Accumulating Snow,” 2005. The Eurographics Association

3. Hakan Haglund, Mattias Andersson, and Anders Hast. “Snow accumulation in real-time.” In
SIGRAD2002, The Annual SIGRAD Conference. Special Theme – Special Effects and Rendering,
November 28–29, 2002, Norrkoping, Sweden, 2002

4.http://hypertextbook.com/facts/BrigidNaughton.shtml

5. Rasmussen, Roy M.; Vivekanandan, Jothiram; Cole, Jeffrey; Myers, Barry; Masters, Charles,
"The Estimation of Snowfall Rate Using Visibility", 1999, Journal of Applied Meteorology, vol.
38, Issue 10, pp.1542-1563

http://adsabs.harvard.edu/cgi-bin/author_form?author=Rasmussen,+R&fullauthor=Rasmussen,%20Roy%20M.&charset=UTF-8&db_key=PHY
http://adsabs.harvard.edu/cgi-bin/author_form?author=Vivekanandan,+J&fullauthor=Vivekanandan,%20Jothiram&charset=UTF-8&db_key=PHY
http://adsabs.harvard.edu/cgi-bin/author_form?author=Cole,+J&fullauthor=Cole,%20Jeffrey&charset=UTF-8&db_key=PHY
http://adsabs.harvard.edu/cgi-bin/author_form?author=Myers,+B&fullauthor=Myers,%20Barry&charset=UTF-8&db_key=PHY
http://adsabs.harvard.edu/cgi-bin/author_form?author=Masters,+C&fullauthor=Masters,%20Charles&charset=UTF-8&db_key=PHY

Figure 2 - Our Test Scene

Figure 3 - Our Algorithm Without and With Redistribution

Figure 4 - Increasing Instability for Unrealistically Large Snowflakes

Figure 5 - Larger Version of Figure 1

Figure 6 - The Results of a Particularly Heavy Snowfall

Additional Considerations as Part of Advanced Computer Graphics Class
(i.e. not part of the actual paper proper)

Work Distribution
Chris Willmore
Randomized Snowfall
Height Field Representation
Snow Redistribution
Subversion Server Know-How
Code Optimization
Debugging

Scott Fermeglia
Wind
Lighting
Material Properties
Creation of Test Scene
This Presentation

Distribution of Time Spent
Meeting 1: Basic Setup……………………………………………………………………………………. 4 hours
Meeting 2: Wind, Objects……………………………………………………………………………….. 4 hours
Meeting 3: Lighting, Material Properties…………………………………………………………. 5 hours
Meeting 4: New Test Scene, Accumulation via Height Fields…………………………… 6 hours
Meeting 5: Height Fields on Objects, Randomized Wind, Code Optimization….. 7 hours
Meeting 6: Writing Presentation, Final Code Tweaks………………………………………. 4 hours
Meeting 7: Writing Final Report……………………………………………………………………… 3 hours

Other Time Spent:………………………………………………………………………………………….. 2 hours each

Subversion Server at Revision:………………………………………………………………………… 102

Lines of Code:…………………………………………………………………………………………………. 2850

