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Figure 1 - Test Scene with Wind Blowing Left to Right 

 
 
 
 
 
 
 
 
 



 
 

Abstract 
Falling snow is a major part of many 
weather patterns, and its accumulation on 
the ground can greatly change the layout of 
a given scene.  We present an algorithm 
which simulates snowfall under the 
influence of wind, as well as the 
accumulation of snow on the ground.  We 
also simulate the redistribution of snow, 
both locally and from objects at different 
heights.  The algorithm runs in interactive 
time. 
 

1.  Introduction 
Snowy scenes are a common sight in reality, 
but instances of computer-generated snow 
are somewhat rarer.  Of the instances in 
which falling snow is generated, many 
simply use “billboard” effects.  These give a 
somewhat convincing snowfall pattern and 
avoid rendering snowflake objects in a 3D 
space.   Accumulation of snow is even less 
well represented; most snowy scenes are 
simply static artist-created meshes which 
do not change with time. 
 
Our project has been to develop an 
algorithm which can render convincing 
snow in a 3D space, and to simulate snow 
accumulation on objects in a fairly realistic 
manner.  This is done by assigning physical 
properties to snowflakes (mass, forces 
applied, etc.), allowing them to be affected 
by gravity and wind, and creating a method 
by which they can impact the ground and 
other objects and be “converted” from a 
free-falling flake into snow on the ground.  
Ground-cover snow is represented by a 
height field (or, in the case of objects in the 
scene, multiple height fields). 
 

The ground-cover snow also has physically-
based behavior – if any part of the height 
field becomes too high in relation to its 
neighbors, it will redistribute its mass to its 
neighbors.  If the height field is on an 
object, and snow is transferred off the side 
of said object, the algorithm can 
redistribute this snow to height fields below 
it.  Overall, we have found that this 
algorithm is a fairly convincing simulation of 
snowfall and accumulation, and runs well 
on our computers. 
 

2. Related Work 

Perhaps the most advanced work on 
physically based wind-driven snowfall and 
its attendant accumulation has been by 
Ingar Saltvik in his Master’s thesis, “Parallel 
Methods for Real-Time Visualization of 
Snow” [1].  His work defines snowflakes in 
great detail, including an aerodynamic 
model.  Wind is maintained with 
incompressible Navier-Stokes, while 
accumulation occurs as a result of the 
rendered snowflakes.  The algorithm does 
not, however, provide for local 
redistribution of snow on the ground, which 
can lead to “spikes” of snow and other 
discontinuities. 
 
Moeslund, et al’s “Modeling Falling and 
Accumulating Snow” [2] takes a different 
approach, rendering snowflakes as small 
randomized agglomerations of triangular 
polygons, with the polygon count 
determined by the consistency of the snow 
(i.e. wet and dry).  The shape of the created 
snowflakes is taken into account in the 
interaction of these snowflakes with wind; 
the result is snowflakes that move and 
tumble quite differently from one another 



based on shape.  The authors also model 
accumulation, but have chosen to keep the 
snowflake and accumulation models 
separate; this allows for the generation of 
snow-covered scenes of any depth very 
rapidly.  While the paths snowflakes would 
take are calculated quickly and this model 
used to generate the ground cover, 
rendered snowflakes are not used as the 
mechanism of snow accumulation. 
 
Haglund et al’s “Snow accumulation in real-
time” [3], while it does not render 
snowflakes, focuses on a different but 
important aspect of accumulated snow – its 
realistic appearance.  The authors took note 
of patterns in their “randomized” 
accumulation algorithm and showed a 
method for correcting this.  The paper also 
devoted much time to rendering physically 
correct (or at least visually appealing) snow 
cover “edges” (i.e. the edge of a snowbank 
on top of an object). 
 
Our algorithm seeks to combine three of 
what we feel are the most important 
aspects of a rendered snowfall scene – 
physically based wind-driven snowfall, 
accumulation of snow based on the 
rendered snowflakes and their attendant 
properties, and the redistribution of snow 
on the ground to produce a fairly 
convincing, realistic covering of snow on a 
landscape.  While the other mentioned 
algorithm have superior implementations of 
some portion of these, none we have found 
has implemented all three together, and so 
we feel a contribution can be made. 
 

3. Theory 
A number of the parameters in our 
algorithm are physically based or inspired, 
notably the mass of snowflakes, effect of 

wind and drag, and redistribution of snow 
on the ground to maintain a smooth 
surface. 
 
From [4], it can be found that snowflakes 
can range in diameter from .001m to 
.0762m, with a common value of .0254m (it 
should be noted that the .0762m snowflake 
was the largest ever recorded, and should 
be statistically ignored).  From [5], 
snowflakes have a density between .005 
and .2 grams per meter-squared, based on 
formation and temperature.  The result is a 
snowflake mass between .000005g and 
88.5g, with a common mass of about 1.64g.  
In our algorithm, we decided to generate 
snowflake masses between .005g and 5g, a 
weighting which is well within the 
established range of masses, and which 
produces a visually appealing effect. 
 
Once the weight of the snowflake is 
established, we simulate its motion through 
solution of the force equation 
 

 
 
through simple Euler integration, where g is 
the vector representing gravity and k is a 
drag coefficient (which can be calculated 
using the Reynolds number of air and the 
radius and drag of snowflakes, but in 
practice was tweaked by hand). We 
considered further randomizing the motion 
of a snowflake by perturbing its position 
according to a random walk at each 
timestep, but we found that the random 
mass and initial position assigned to each 
snowflake was sufficient to give the 
aggregate snowfall a random appearance. 
 
In order to enforce non-spikiness on the 
height fields, we enforce an upper limit on 



the absolute value of the Laplacian of the 
snow surface, defined by 
 

 

 
where h is the height of the snow at a given 
point and x and y are the local coordinates 
of the height field. The Laplacian in our case 
is approximated by considering a point on 
the lattice and its four neighbors, and 
approximating it as 
 
   

 

 
If the Laplacian is found to exceed the limit, 
the snow in that neighborhood is 
redistributed so that the limit is again 
obeyed, at least locally. 
 
If too much snow accumulates on the edge 
of a height field (i.e., the height of the 
height field at that point exceeds a 
programmed-in limit), snow is emitted into 
the scene according to how much snow falls 
off the edge, and the height of the snow at 
that point is decreased accordingly. 
 

4. Algorithm 

The algorithm for simulating snow 
accumulation may be summarized in three 
steps which occur in an infinite loop: 
 

 For each snowflake: if it's active, 
increment its position according to 
the physical model described above; 
if it's inactive, make it active with 
some low probability. 

 Deactivate snowflakes which have 
fallen outside the world's bounds. 

 Detect collisions between every 
possible snowflake-object pair, 
possibly altering the object or 
deactivating the snowflake. 

 Redistribute/spill the snow in the 
height fields. 

 
The action of each object upon detecting a 
flake collision is different: 

 If a collision with a height field is 
detected, the height field is 
incremented at the point of the 
collision by an amount determined 
by the sampling frequency of the 
height field, the mass of the 
snowflake, and the density of the 
snow. 

 If the collision with a box is 
detected, the snowflake is relocated 
to the nearest point on the outside 
of the box. This has the effect that 
snowflakes that run into boxes have 
the appearance of sliding down the 
side of the box; this is handy in that 
it naturally creates snowdrifts at the 
base of windward sides of boxes on 
the groun.d 

 If the collision with a sphere is 
detected, the snowflake is simply 
eliminated; however, there's no 
reason we couldn't do the same sort 
of treatment as with the box. 
However, in our simulation, the only 
object that used spheres (the 
snowman) served as a useful gauge 
of how deep the snow was at that 
point, and it would have been 
detrimental if it accumulated snow 
as well. 

 



The redistribution/spill step is only carried 
out once for each iteration of the model, 
but the redistribution step seems to suffer 
from instability if the amount of snow that 
falls onto a particular area of the height 
field exceeds the ability for the Laplacian 
cap to curb spikiness at that point, and the 
simulation blows up. We may benefit from 
running multiple smoothing steps per single 
time step, but we have not yet tried this. 
 

5. Results 
All pictures for this report were generated 
on an IBM Thinkpad T43p with 2G of RAM, 
a 2GHz Pentium M processor, and an ATI 
MOBILITY FireGL V3200 video card.  Most 
simulations were run on a Apple MacBook 
running Mac OS X, with a  2.16Ghz Intel 
Core 2 Duo Processor and 2G of RAM, and 
an Intel GMA 950 graphics card with 64M of 
VRAM.  Code was developed for cross-
platform compatibility.  Figure 2 shows the 
test scene we have developed for our 
algorithm to run on.  Note the locations of 
the three light sources – white above the 
house, blue closer to the camera from that, 
and yellow on the right.  Figure 3 shows the 
effect of the redistribution algorithm on the 
smoothness of the ground-covering snow.  
Figure 5 is a larger version of Figure 1, and 
shows the effects of wind.  Snowflakes are 
generated on the sides of the bounding box.  
Note how snow has accumulated on the 
roof of the house and garage, but that the 
accumulation is less on the left side of the 
garage, as snow is blowing from left to right 
across the scene.  Figure 6 shows the result 
of a particularly heavy snowfall using only 
the scene’s inherent wind; note the local 
variations in snow height due to building 
location and random generation of flakes in 
the algorithm. 
 

The algorithm runs in interactive time on 
the laptop computers mentioned above.  
This has been found to be true for scenes 
including as many as 50,000 separate 
snowflakes; the program can probably run 
at interactive rates for many more 
snowflakes, though this has not been 
tested. 
 

6. Discussion 
While our algorithm does a good job of 
simulating snowfall, accumulation, and 
redistribution, it is not as complete or 
robust as the algorithms cited above ([1], 
[2], [3]).  The wind simulation we use is a 
simple global vector which is allowed to 
change by small random amounts.  It is not 
a Navier-Stokes solution to wind; for 
example, buildings do not block wind 
movement, so snowflakes will never move 
upwards after being carried on wind that 
has hit a building.  Height fields are not 
affected by wind, and so a strong wind 
cannot blow snow off of an object. 
 
Currently, snow only accumulates on flat 
surfaces (the snowman, being made of 
spheres, never accumulates any extra 
snow).  While we feel it is possible to 
extend our height field implementation to 
curved surfaces, it would be somewhat 
difficult, and require dense fields on these 
surfaces, leading to a slowdown of the 
algorithm.   
 
The height fields in our algorithm have an 
“apron” of quads which keeps the viewer 
from seeing beneath the height field (A 
close look at the right image of Figure 3 
shows what our algorithm look like without 
the apron).  This is wholly unrealistic, and 
was implemented more for the visual effect 
than for any real basis in reality.  A 



implementation as in [3] would solve this 
problem. 
 
Our algorithm, while it works well for 
snowflakes of appropriate size, fails (quite 
spectacularly, see Figure 4) if the 
snowflakes are too massive, or if there is a 
huge concentration of flakes hitting the 
same area of a height field in quick 
succession.  This is essentially a problem 
with the redistribution taking place over 
multiple time steps; it is possible for a field 
to grow quickly enough that it consumes 
additional snowflakes, causing a runaway 
growth.  This could be fixed by allowing the 
redistribution subroutine to be called 
multiple times per timestep. 
 
Finally, the flakes themselves are 
represented as points and their masses as 
point masses.  While a decent enough 
approximation, it is not realistic.  With 
enough time, an implementation as per [2], 
or better yet, [1] (if combined with a 
Navier-Stokes wind representation) would 
yield physically realistic snowflakes, or at 
least be closer to this ideal. 
 

7. Conclusions 
We have presented an algorithm for wind-
driven snowfall which accumulates based 
on the rendered snowflakes, and which 
allows redistribution of fallen snow to 
maintain smoothness.  Our algorithm runs 
in interactive time, and produces fairly 
convincing renderings of snowfall and 
accumulation.  The algorithm also includes 
lighting and material properties for objects 
in the scene, giving a framework for 
potential expansion of the algorithm to 
larger test scenes.  Overall, we are quite 
pleased with the results, particularly given 

the time constraints under which the 
project was completed. 
 

8. Future Work 
There are many directions in which this 
project could be taken. In particular, there 
are some goals that we had for the project 
that had to be abandoned due to time 
constraints, including: 
 

 localized wind, including solution of 
the Navier-Stokes equations 

 wind affecting snow drifts directly 
(carving out channels, blowing over 
drifts) 

 moving objects 

 adding temperature to affect the 
wetness of snow or melting of snow 
on differently heated surfaces 

 extension of snow accumulation to 
non-flat objects 

 optimizing the algorithm for real-
time performance 

 snow sticking to surfaces with non-
vertical normals (i.e., not facing up) 

 
In particular, there is quite a bit of 
infrastructure in the code for optimizing 
object-flake collision, in the form of dividing 
the simulation environment into several 
cells which index the space, and calculating 
in which cells the flakes and objects lie. 
 
We also considered generalizing snow 
accumulation to arbitrary meshes instead of 
height fields; the idea is that if a snow 
particle lands on an arbitrary mesh, the 
mesh is made to bulge slightly in the 
direction of the normal at that point on the 
surface, and over-stretched triangles in the 
mesh are subdivided as appropriate. This 
could be extended even further to create a 



sort of "snow gun," which could be used to 
model round-edged objects. However, 
again, we ran out of time for this idea. 
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Figure 2 - Our Test Scene 



 
Figure 3 - Our Algorithm Without and With Redistribution 

 

Figure 4 - Increasing Instability for Unrealistically Large Snowflakes 

 

 

 

 

 



 

Figure 5 - Larger Version of Figure 1 



 

Figure 6 - The Results of a Particularly Heavy Snowfall 

 

 

 

 

 

  



Additional Considerations as Part of Advanced Computer Graphics Class 
(i.e. not part of the actual paper proper) 

 
Work Distribution 
Chris Willmore 
Randomized Snowfall 
Height Field Representation 
Snow Redistribution 
Subversion Server Know-How 
Code Optimization 
Debugging 
 
Scott Fermeglia 
Wind 
Lighting 
Material Properties 
Creation of Test Scene 
This Presentation 
 

Distribution of Time Spent 
Meeting 1: Basic Setup……………………………………………………………………………………. 4 hours 
Meeting 2: Wind, Objects……………………………………………………………………………….. 4 hours 
Meeting 3: Lighting, Material Properties…………………………………………………………. 5 hours 
Meeting 4: New Test Scene, Accumulation via Height Fields…………………………… 6 hours 
Meeting 5: Height Fields on Objects, Randomized Wind, Code Optimization….. 7 hours 
Meeting 6: Writing Presentation, Final Code Tweaks………………………………………. 4 hours 
Meeting 7: Writing Final Report……………………………………………………………………… 3 hours 
 
Other Time Spent:………………………………………………………………………………………….. 2 hours each 
 
Subversion Server at Revision:………………………………………………………………………… 102 
 
Lines of Code:…………………………………………………………………………………………………. 2850 


