Mass-Spring Systems

Last Time?
- Subdivision Surfaces
 - Catmull Clark
 - Semi-sharp creases
 - Texture Interpolation
- Interpolation vs. Approximation

Today
- Particle Systems
 - Equations of Motion (Physics)
 - Numerical Integration (Euler, Midpoint, etc.)
 - Forces: Gravity, Spatial, Damping
- Mass Spring System Examples
 - String, Hair, Cloth
 - Stiffness
 - Discretization

Types of Dynamics
- Point
- Rigid body
- Deformable body
 (include clothes, fluids, smoke, etc.)

What is a Particle System?
- Collection of many small simple particles that maintain state (position, velocity, color, etc.)
- Particle motion influenced by external force fields
- Integrate the laws of mechanics (ODE Solvers)
- To model: sand, dust, smoke, sparks, flame, water, etc.

Particle Motion
- mass \(m \), position \(x \), velocity \(v \)
- equations of motion:
 \[
 \frac{d}{dt} x(t) = v(t)
 \]
 \[
 \frac{d}{dt} v(t) = \frac{1}{m} F(x, v, t)
 \]
- Analytic solutions can be found for some classes of differential equations, but most can’t be solved analytically
- Instead, we will numerically approximate a solution to our initial value problem
Path Through a Field

- \(f(X, t) \) is a vector field defined everywhere
 - E.g. a velocity field which may change over time
- \(X(t) \) is a path through the field

Higher Order ODEs

- Basic mechanics is a 2nd order ODE:
 \[
 \frac{d^2}{dt^2} X = \frac{1}{m} F
 \]
- Express as 1st order ODE by defining \(v(t) \):
 \[
 \frac{dx}{dt} = v(t) \\
 \frac{dv}{dt} = \frac{1}{m} F(x, v, t)
 \]
 \[
 X = \begin{pmatrix}
 x \\
 v
 \end{pmatrix}
 \]
 \[
 f(X, t) = \begin{pmatrix}
 v \\
 \frac{1}{m} F(x, v, t)
 \end{pmatrix}
 \]

For a Collection of 3D particles...

\[
X = \begin{pmatrix}
 p^{(1)}_x \\
 p^{(1)}_y \\
 p^{(1)}_z \\
 v^{(1)}_x \\
 v^{(1)}_y \\
 v^{(1)}_z \\
 p^{(2)}_x \\
 p^{(2)}_y \\
 p^{(2)}_z \\
 v^{(2)}_x \\
 v^{(2)}_y \\
 v^{(2)}_z \\
 \vdots \\
 p^{(n)}_x \\
 p^{(n)}_y \\
 p^{(n)}_z \\
 v^{(n)}_x \\
 v^{(n)}_y \\
 v^{(n)}_z
\end{pmatrix}
\]

\[
f(X, t) = \begin{pmatrix}
 v^{(1)}_x \\
 v^{(1)}_y \\
 v^{(1)}_z \\
 \vdots \\
 v^{(n)}_x \\
 v^{(n)}_y \\
 v^{(n)}_z
\end{pmatrix}
\]

Today

- Particle Systems
 - Equations of Motion (Physics)
 - Numerical Integration (Euler, Midpoint, etc.)
 - Forces: Gravity, Spatial, Damping
- Mass Spring System Examples
 - String, Hair, Cloth
- Stiffness
- Discretization

Euler’s Method

- Examine \(f(X, t) \) at (or near) current state
- Take a step of size \(h \) to new value of \(X \):
 \[
 t_1 = t_0 + h \\
 X_1 = X_0 + h f(X_0, t_0)
 \]
- Piecewise-linear approximation to the curve

Effect of Step Size

- Step size controls accuracy
- Smaller steps more closely follow curve
- For animation, we may want to take many small steps per frame
Euler’s Method: Inaccurate

- Moves along tangent & can leave curve, e.g.:
 \[f(\mathbf{X},t) = \begin{pmatrix} -y \\ x \end{pmatrix} \]
- Exact solution is circle:
 \[\mathbf{X}(t) = \begin{pmatrix} \cos(\omega t) \\ \sin(\omega t) \end{pmatrix} \]
- Euler’s spirals outward no matter how small \(h \) is

Euler’s Method: Unstable

- Problem: \(f(x,t) = -kx \)
- Solution: \(x(t) = x_0 e^{-kt} \)
- Limited step size:
 \[x_i = x_0 (1 - bk) \]
 \[h \leq 1/k \quad \text{ok} \]
 \[h > 1/k \quad \text{oscillates} \]
 \[h > 2/k \quad \text{explodes} \]
- If \(k \) is big, \(h \) must be small

Analysis using Taylor Series

- Expand exact solution \(\mathbf{X}(t) \)
 \[\mathbf{X}(t+h) = \mathbf{X}(t) + h\frac{d}{dt}\mathbf{X}(t) + \frac{h^2}{2!}\frac{d^2}{dt^2}\mathbf{X}(t) + \cdots \]
- Euler’s method:
 \[\mathbf{X}(t+h) = \mathbf{X}(t) + hf(\mathbf{X}(t),t) \]
 \[h \to h/2 \Rightarrow error \to error/4 \text{ per step } \times \text{ twice as many steps} \]
- First-order method: Accuracy varies with \(h \)
 - To get 100x better accuracy need 100x more steps

Can we do better than Euler’s Method?

- Problem: \(f \) has varied along the step
- Idea: look at \(f \) at the arrival of the step and compensate for variation

2nd-Order Methods

- Midpoint:
 - \(\frac{1}{2} \) Euler step
 - evaluate \(f_{\frac{1}{2}} \)
 - full step using \(f_{\frac{1}{2}} \)
- Trapezoid:
 - Euler step (a)
 - evaluate \(f_1 \)
 - full step using \(f_1 \) (b)
 - average (a) and (b)
- Not exactly same result
- Same order of accuracy

Comparison: Euler, Midpoint, Runge-Kutta

- initial position: \((1,0,0) \)
- initial velocity: \((0,5,0) \)
- force field: pulls particles to origin with magnitude proportional to distance from origin
- correct answer: circle

Euler will always diverge (even with small \(dt \))
Comparison: **Euler, Midpoint, Runge-Kutta**

- **initial position**: (0, -2, 0)
- **initial velocity**: (1, 0, 0)
- **force field**: pulls particles to line y=0 with magnitude proportional to distance from line
- **correct answer**: sine wave

Decreasing the timestep \(dt \) improves the accuracy

Today

- **Particle Systems**
 - Equations of Motion (Physics)
 - Numerical Integration (Euler, Midpoint, etc.)
 - **Forces: Gravity, Spatial, Damping**
- **Mass Spring System Examples**
 - String, Hair, Cloth
- **Stiffness**
- **Discretization**

Forces: Gravity

For smoke, flame: make gravity point up!

- **Simple gravity**: depends only on particle mass
- **N-body problem**: depends on all other particles
 - Magnitude inversely proportional to square distance
 - \(F = \frac{GM_i m_j}{r^2} \)

Forces: Spatial Fields

- **Force on particle** \(i \) depends only on position of \(i \)
 - wind
 - attractors
 - repulsers
 - vortices
- **Can depend on time**
- **Note**: these add energy, may need damping too

Forces: Damping

\[
f^{(i)} = -dy^{(i)}
\]

- Force on particle \(i \) depends only on velocity of \(i \)
- Force opposes motion
- Removes energy, so system can settle
- Small amount of damping can stabilize solver
- Too much damping makes motion too glue-like

Questions?

Image by Baraff, Witkin, Kass
Today

- Particle Systems
 - Equations of Motion (Physics)
 - Numerical Integration (Euler, Midpoint, etc.)
 - Forces: Gravity, Spatial, Damping
- Mass Spring System Examples
 - String, Hair, Cloth
- Stiffness
- Discretization

How would you simulate a string?

- Each particle is linked to two particles
- Forces try to keep the distance between particles constant
- What force?

Spring Forces

- Force in the direction of the spring and proportional to difference with rest length \(L_0\)
 \[F(P_i, P_j) = K(L_0 - ||P_i - P_j||) \frac{P_i - P_j}{||P_i - P_j||} \]
- \(K\) is the stiffness of the spring
 - When \(K\) gets bigger, the spring really wants to keep its rest length

How would you simulate hair?

- Similar to string…
- Deformation forces proportional to the angle between segments

Reading for Today

Cloth Modeled with Mass-Spring

- Network of masses and springs
- Structural springs:
 - link \((i, j)\) & \((i+1, j)\)
 - and \((i, j)\) & \((i, j+1)\)
- Shear springs
 - link \((i, j)\) & \((i+1, j+1)\)
 - and \((i+1, j)\) & \((i, j+1)\)
- Flexion (Bend) springs
 - link \((i, j)\) & \((i+2, j)\)
 - and \((i, j)\) & \((i, j+2)\)

From Lander

The Stiffness Issue

- What relative stiffness do we want for the different springs in the network?
- Cloth is barely elastic, shouldn’t stretch so much!
- Inverse relationship between stiffness & \(\Delta t\)
- We really want a constraints (not springs)
- Many numerical solutions
 - reduce \(\Delta t\)
 - use constraints
 - implicit integration
 - …

The Discretization Problem

- What happens if we discretize our cloth more finely, or with a different mesh structure?
- Do we get the same behavior?
- Usually not! It takes a lot of effort to design a scheme that does not depend on the discretization.

Questions?

Interactive Animation of Structured Deformable Objects
Desbrun, Schröder, & Barr 1999

Reading for Tuesday (2/5)

- Baraff, Witkin & Kass
 Untangling Cloth, SIGGRAPH 2003

 - Post a comment or question on the LMS discussion by 10am on Tuesday 2/5