Voxels & Collisions

Last Time?

- Spring-Mass Systems
- Numerical Integration (Euler, Midpoint, Runge-Kutta)
- Modeling string, hair, & cloth

Today

- More on Cloth!
 - Taylor Series Analysis
 - Stiffness
 - Implicit Integration
- Implicit Surfaces
- Voxels
- Collisions
- Untangling Cloth

Analysis using Taylor Series

- Expand exact solution \(X(t) \)
 \[X(t+h) = X(t) + h(\frac{d}{dt}X(t)) + \frac{h^2}{2!} \frac{d^2}{dt^2}X(t) + \frac{h^3}{3!} \frac{d^3}{dt^3}X(t) + \cdots \]

- Euler’s method:
 \[X(t+h) = X(t) + h f(t, X(t)) \]
 \[h \rightarrow h/2 \Rightarrow \text{error} \rightarrow \text{error}/4 \text{ per step} \times \text{twice as many steps} \rightarrow \text{error}/2 \]

- First-order method: Accuracy varies with \(h \)
 - To get 100x better accuracy need 100x more steps

The Stiffness Issue

- What relative stiffness do we want for the different springs in the network?
- Cloth is barely elastic, shouldn’t stretch so much!
- Inverse relationship between stiffness & \(\Delta t \)
- We really want a constraints (not springs)
- Many numerical solutions
 - reduce \(\Delta t \)
 - use constraints
 - implicit integration
 - …

How would you simulate a string?

- Springs link the particles. Problems?
 - Stretch, actual length will be greater than rest length
 - Numerical oscillation

- Rigid, fixed-length bars link the particles
 - Dynamics & Constraints
 - (must be solved simultaneously)
The Discretization Problem

- What happens if we discretize our cloth more finely, or with a different mesh structure?

- Do we get the same behavior?
 - Usually not! It takes a lot of effort to design a scheme that does not depend on the discretization.
- Using (explicit) Euler, how many timesteps before a force propagates across the mesh?

Explicit vs. Implicit Integration

- With an explicit/forward integration scheme:
 \[y_{k+1} = y_k + h \cdot g(y_k) \]
 we must use a very small timestep to simulate stable, stiff cloth.
- Alternatively we can use an implicit/backwards scheme:
 \[y_{k+1} = y_k + h \cdot g(y_{k+1}) \]
 \[y_k = y_{k+1} - h \cdot g(y_{k+1}) \]
 Solving one step is much more expensive (Newton’s Method, Conjugate Gradients, …) but overall faster than the thousands of explicit timesteps required for very stiff springs.

Questions?

- Dynamic motion driven by animation

Today

- More on Cloth!
 - Taylor Series Analysis
 - Stiffness
 - Implicit Integration
- Implicit Surfaces
- Voxels
- Collisions
- Untangling Cloth

Implicit Surfaces

- For a sphere:
 \[H(x,y,z) = x^2 + y^2 + z^2 - r^2 \]
 - If \(H(x,y,z) = 0 \), on surface
 - If \(H(x,y,z) > 0 \), outside surface
 - If \(H(x,y,z) < 0 \), inside surface

Level Sets

- Efficient method for computing signed distance field

 \[\text{Level Set Methods and Fast Marching Methods, Sethian, 1999} \]

 naive approach
 using level sets
Marching Cubes

- Polygonization: extract triangle mesh from signed distance field

Marching Tetrahedra

"Marching Tetrahedra"

"When the Blobs Go Marching Two by Two", Jeff Lander, Gamasutra

"Interval volume tetrahedrization"

Visualization '97

Nielson & Sung

Marching Tetrahedra

Similarly, we can create volumetric models:

Today

- More on Cloth!
 - Taylor Series Analysis
 - Stiffness
 - Implicit Integration
- Implicit Surfaces
- Voxels
- Collisions
- Untangling Cloth

Collisions

- Detection
- Response
- Overshooting problem (when we enter the solid)

Detecting Collisions

- Easy with implicit equations of surfaces
- $H(x,y,z)=0$ at surface
- $H(x,y,z)<0$ inside surface
- So just compute H and you know that you’re inside if it’s negative

- More complex with other surface definitions
Collision Response

- tangential velocity v_t unchanged
- normal velocity v_n reflects:
 $$v = v_t + v_n$$
 $$v \leftarrow v_t - \varepsilon v_n$$
- coefficient of restitution
 (1 for elastic, 0 for plastic)
- change of velocity $= - (1 + \varepsilon) v$
- change of momentum $\text{Impulse} = - m (1 + \varepsilon) v$

Collisions - Overshooting

- Usually, we detect collision when it’s too late: we’re already inside
- Solutions: back up
 - Compute intersection point
 - Compute response there
 - Advance for remaining fractional time step
- Other solution:
 Quick and dirty fixup
 - Just project back to object closest point

Collision Detection for Solids

- How to detect collision between 2 polyhedra?
- Need an inside/outside test
- Test if a vertex is inside the other polyhedron
- But treat also edge-edge intersection

Cost of Detection?

- Test each edge with each face?
 - $O(N^2)$
- How would you detect collision between two bunnies?
 - $O(N^2)$ is too expensive!
 - Use spatial hierarchy

Conservative Bounding Region

- First check for an intersection with a conservative bounding region
- Early reject

Conservative Bounding Regions

- tight → avoid false positives
- fast to intersect
Overlap test

- Overlap between two axis-aligned boxes?
 - Check if the intervals along the 3 dimensions overlap
- Overlap test between two spheres?
 - $D(\text{center}_1, \text{center}_2) < r_1 + r_2$

General Collision Detection

- Put a hierarchy around your objects
- Use the fast overlap test recursively
- Handle exact case at the leaves (when necessary)
- More difficult for self-collision (e.g. cloth)
 - Because there is more overlap

Reduced Deformation

- Collisions are expensive
- Deformation is expensive
- This is a lot of geometry!
- Simplify the simulation model

Cloth Collision

- A cloth has many points of contact
- Stays in contact
- Requires
 - Efficient collision detection
 - Efficient numerical treatment (stability)

Today

- More on Cloth!
 - Taylor Series Analysis
 - Stiffness
 - Implicit Integration
- Implicit Surfaces
- Voxels
- Collisions
- Untangling Cloth

Reading for Today:

- Baraff, Witkin & Kass, Untangling Cloth, SIGGRAPH 2003
Reading for Friday 2/8:

- “Realistic Animation of Liquids”, Foster & Metaxas, 1996

- Post a comment or question on the LMS discussion by 10am on Friday 2/8

Reading for Tuesday 2/12:

- Post a comment or question on the LMS discussion by 10am on Tuesday 2/12