The Rendering Equation & Radiosity II

An early application of radiative heat transfer in stables.

Last Time?
- Local Illumination
 - BRDF
 - Ideal Diffuse Reflectance
 - Ideal Specular Reflectance
 - The Phong Model
- Radiosity Equation/Matrix
- Calculating the Form Factors

Today
- The Rendering Equation
- Radiosity Equation/Matrix
- Advanced Radiosity
 - Progressive Radiosity
 - Adaptive Subdivision
 - Discontinuity Meshing
 - Hierarchical Radiosity

The Rendering Equation

\[L(x', \omega') = E(x', \omega') + \int \rho_{\omega, \omega'}(x, x') L(x, \omega) G(x, x') V(x, x') \, dA \]

- \(E(x', \omega') \) is the emitted radiance from a point: \(E \) is non-zero only if \(x' \) is emissive (a light source)
- Sum the contribution from all of the other surfaces in the scene
The Rendering Equation

For each \(x \), compute \(L(x, \omega) \), the radiance at point \(x \) in the direction \(\omega \) (from \(x \) to \(x' \))

\[
L(x', \omega') = E(x', \omega') + \int \rho_{x'}(\omega, \omega')L(x, \omega)G(x, x')V(x, x') \, dA
\]

For each \(x \), compute \(L(x, \omega) \), the radiance at point \(x \) in the direction \(\omega \) (from \(x \) to \(x' \))

scale the contribution by \(\rho_{x'}(\omega, \omega') \), the reflectivity (BRDF) of the surface at \(x' \)

The Rendering Equation

For each \(x \), compute \(V(x, x') \), the visibility between \(x \) and \(x' \): 1 when the surfaces are unobstructed along the direction \(\omega \), 0 otherwise

\[
L(x', \omega') = E(x', \omega') + \int \rho_{x'}(\omega, \omega')L(x, \omega)G(x, x')V(x, x') \, dA
\]

For each \(x \), compute \(V(x, x') \), the visibility between \(x \) and \(x' \): 1 when the surfaces are unobstructed along the direction \(\omega \), 0 otherwise

Intuition about \(G(x, x') \)?

- Which arrangement of two surfaces will yield the greatest transfer of light energy? Why?

Questions?

- Lightscape: http://www.lightscape.com
Today

- The Rendering Equation
- Radiosity Equation/Matrix
- Advanced Radiosity
 - Progressive Radiosity
 - Adaptive Subdivision
 - Discontinuity Meshing
 - Hierarchical Radiosity

Radiosity Equation

\[L(\mathbf{x}', \omega') = E(\mathbf{x}', \omega') + \int \rho_x(\mathbf{x}, \omega', \omega) L(\mathbf{x}, \omega) G(\mathbf{x}, \mathbf{x}') V(\mathbf{x}, \mathbf{x}') \, dA \]

\[B_{\mathbf{x}'} = E_{\mathbf{x}'} + \rho_{\mathbf{x}'} \int B_{\mathbf{x}} G(\mathbf{x}, \mathbf{x}') V(\mathbf{x}, \mathbf{x}') \]

Radiosity assumption: perfectly diffuse surfaces (not directional)

Solving the Radiosity Matrix

The radiosity of a single patch \(\mathbf{i} \) is updated for each iteration by gathering radiosities from all other patches:

This method is fundamentally a Gauss-Seidel relaxation

Stages in a Radiosity Solution

Progressive Refinement

- Goal: Provide frequent and timely updates to the user during computation
- Key Idea: Update the entire image at every iteration, rather than a single patch
- How?: Instead of summing the light received by one patch, distribute the radiance of the patch with the most undistributed radiance.
Reordering the Solution for PR

Shooting: the radiosity of all patches is updated for each iteration:

\[
\begin{bmatrix}
B_1 & B_2 & \cdots & \rho F_1 & \cdots \\
B_2 & B_1 & \cdots & \rho F_2 & \cdots \\
\vdots & \vdots & \ddots & \vdots & \ddots \\
B_n & B_1 & \cdots & \rho F_n & \cdots \\
\end{bmatrix}
\]

This method is fundamentally a Southwell relaxation

Progressive Refinement with Ambient Term

Questions?

Lightscape http://www.lightscape.com

Today

- The Rendering Equation
- Radiosity Equation/Matrix
- Advanced Radiosity
 - Progressive Radiosity
 - Adaptive Subdivision
 - Discontinuity Meshing
 - Hierarchical Radiosity

Increasing the Accuracy of the Solution

What’s wrong with this picture?

- Image quality is a function of patch size
- Compute a solution on a uniform initial mesh, then refine the mesh in areas that exceed some error tolerance:
 - shadow boundaries
 - other areas with a high radiosity gradient
Adaptive Subdivision of Patches

Coarse patch solution (145 patches)
Improved solution (1021 subpatches)
Adaptive subdivision (1306 subpatches)

Discontinuity Meshing

- Limits of umbra and penumbra
 - Captures nice shadow boundaries
 - Complex geometric computation to construct mesh

Discontinuity Meshing

“Fast and Accurate Hierarchical Radiosity Using Global Visibility”
Durand, Drettakis, & Puech 1999

Hierarchical Radiosity

- Group elements when the light exchange is not important
 - Breaks the quadratic complexity
 - Control non trivial, memory cost

Practical Problems with Radiosity

- Meshing
 - memory
 - robustness
- Form factors
 - computation
- Diffuse limitation
 - extension to specular takes too much memory

Questions?

Lightscape http://www.lightscape.com
Reading for Today:

- **Optional Reading:** “The Rendering Equation” Kajiya, SIGGRAPH 1986

Reading for Friday 3/4:

Post a comment or question on the LMS discussion by 10am on Friday 3/4