
1

Programmable GPUS

Last Time:

• Graphics Pipeline
• Clipping
• Rasterization

Modeling
Transformations

Illumination
(Shading)

Viewing Transformation
(Perspective / Orthographic)

Clipping

Projection
(to Screen Space)

Scan Conversion
(Rasterization)

Visibility / Display
(x1, y1)

(x2, y2)

Today
• Modern Graphics Hardware
• Cg Programming Language
• Gouraud Shading vs. Phong Normal

Interpolation
• Bump, Displacement, & Environment Mapping
• Cg Examples

Modern Graphics Hardware
• High performance through

– Parallelism
– Specialization
– No data dependency
– Efficient pre-fetching

G

R

T

F

D

G

R

T

F

D

G

R

T

F

D

G

R

T

F

D

task
parallelism

data parallelism

Programmable Graphics Hardware
• Geometry and pixel (fragment) stage

become programmable
– Elaborate appearance
– More and more general-purpose

computation (GPU hacking)

G
P

R

T

F
P

D

Modern Graphics Hardware
• 2005

– About 4-6 geometry units
– About 16 fragment units
– Deep pipeline (~800 stages)
– 600 million vertices/second
– 6 billion texels/second

• NVIDIA GeForce 9 (Feb 2008)
– ~1 TFLOPS
– 32/64 stream processors
– 512 MB/1GB memory

• ATI Radeon R700 (2008?)
– 480 stream processing units

2

Today
• Modern Graphics Hardware
• Cg Programming Language
• Gouraud Shading vs. Phong Normal

Interpolation
• Bump, Displacement, & Environment Mapping
• Cg Examples

Emerging Languages
• RTSL (real-time shading language)
• NVIDIA - Cg (C for graphics)
• 3Dlabs - 3DLSL
• OpenGL ARB - GLSL (OpenGL 2.0)
• Microsoft - HLSL

Cg Design Goals
• Ease of programming
• Portability
• Complete support for hardware functionality
• Performance
• Minimal interference with application data
• Ease of adoption
• Extensibility for future hardware
• Support for non-shading uses of the GPU

“Cg: A system for programming graphics
hardware in a C-like language”

Mark et al. SIGGRAPH 2003

Cg Design
• Cg was designed as a “hardware-focused

general-purpose language rather than a domain-
specific shading language”

• Multi-program model for Cg
to match hardware:

“Cg: A system for programming graphics
hardware in a C-like language”

Mark et al. SIGGRAPH 2003

Cg Design
• Hardware is changing rapidly…

no single standard
• Specify “profile” for each hardware

– May omit support of some language capabilities
(e.g., texture lookup in vertex processor)

• Use hardware virtualization or emulation?
– “Performance would be so poor it would

be worthless for most applications”
– Well, it might be ok for general purpose

programming (not real-time graphics)

Cg compiler vs. GPU assembly
• Can inspect the assembly language produced by

Cg compiler and perform additional
optimizations by hand
– Generally once development is complete

(& output is correct)
– Using Cg is easier than writing GPU

assembly from scratch

3

(Typical) Language Design Issues
• Parameter binding
• Call by reference vs. call by value
• Data types: 32 bit float, 16 bit float, 12 bit fixed

& type-promotion (aim for performance)
• Specialized arrays or general-purpose arrays

– float4 x vs. float x[4]
• Indirect addressing/pointers (not allowed…)
• Recursion (not allowed…)

Data flow in Cg
input/output through

vertex position & texture
coordinates

infrequently
changing
state variables

• Sample vertex program:

Today
• Modern Graphics Hardware
• Cg Programming Language
• Gouraud Shading vs. Phong Normal

Interpolation
• Bump, Displacement, & Environment Mapping
• Cg Examples

Remember Gouraud Shading?
• Instead of shading with the normal of the triangle,

shade the vertices with the average normal and
interpolate the color across each face

Illusion of a smooth
surface with smoothly

varying normals

Phong Normal Interpolation
• Interpolate the average vertex normals across

the face and compute per-pixel shading

(Not Phong Shading)

Must be
renormalized

Bump Mapping
• Use textures to alter the surface normal

– Does not change the actual shape of the surface
– Just shaded as if it were a different shape

Sphere w/Diffuse Texture Swirly Bump Map Sphere w/Diffuse Texture & Bump Map

4

Bump Mapping
• Treat the texture as a single-valued height function
• Compute the normal from the partial derivatives in the

texture

Another Bump Map Example

Cylinder w/Diffuse Texture Map

Bump Map

Cylinder w/Texture Map & Bump Map

What's Missing?
• There are no bumps on

the silhouette of a
bump-mapped object

• Bump maps
don’t allow
self-occlusion
or self-shadowing

Displacement Mapping
• Use the texture map to actually move the surface point
• The geometry must be displaced before visibility is determined

Displacement Mapping

Image from:

Geometry Caching for
Ray-Tracing Displacement Maps

EGRW 1996
Matt Pharr and Pat Hanrahan

note the detailed shadows
cast by the stones

Ken Musgrave

Displacement Mapping

5

Environment Maps
• We can simulate reflections by using the direction of the reflected

ray to index a spherical texture map at "infinity".
• Assumes that all reflected rays

begin from the same point.

What's the Best Chart?

Environment Mapping Example

Terminator II

Texture Maps for Illumination

Quake

• Also called "Light Maps"

Questions?

Image by Henrik Wann Jensen
Environment map by Paul Debevec

Today
• Modern Graphics Hardware
• Cg Programming Language
• Gouraud Shading vs. Phong Normal

Interpolation
• Bump, Displacement, & Environment Mapping
• Cg Examples

6

• “MoXi: Real-Time Ink Dispersion in Absorbent Paper”,
Chu & Tai, SIGGRAPH 2005

Reading for Today:

Post a comment or question on the LMS
discussion by 10am on Friday 3/21

Reading for Tuesday (3/25)

Naïve sampling strategy Optimal sampling strategy

Veach & Guibas "Optimally Combining Sampling
Techniques for Monte Carlo Rendering" SIGGRAPH 95

