Monte Carlo Rendering

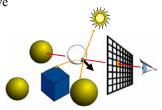
Last Time? • Modern Graphics Hardware • Cg Programming Language • Gouraud Shading vs. Phong Normal Interpolation • Bump, Displacement, & Environment Mapping • Cg Examples

Today

- Does Ray Tracing Simulate Physics?
- Monte-Carlo Integration
- Sampling
- Advanced Monte-Carlo Rendering

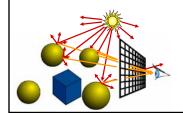
Does Ray Tracing Simulate Physics?

- No.... traditional ray tracing is also called "backward" ray tracing
- In reality, photons actually travel from the light to the eye



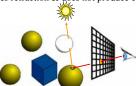
Forward Ray Tracing

- Start from the light source
 - But very, very low probability to reach the eye
- What can we do about it?
 - Always send a ray to the eye.... still not efficient



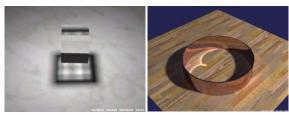
Transparent Shadows?

- What to do if the shadow ray sent to the light source intersects a transparent object?
 - Pretend it's opaque?
 - Multiply by transparency color?(ignores refraction & does not produce caustics)



• Unfortunately, ray tracing is full of dirty tricks

Is this Traditional Ray Tracing?



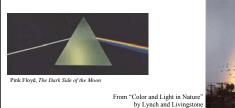
Images by Henrik Wann Jensen

 No, Refraction and complex reflection for illumination are not handled properly in traditional (backward) ray tracing

Refraction and the Lifeguard Problem Running is faster than swimming Lifeguard Water Beach Run Person in trouble Swim

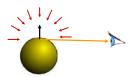
What makes a Rainbow?

- Refraction is wavelength-dependent
 - Refraction increases as the wavelength of light decreases
 - violet and blue experience more bending than orange and red
- Usually ignored in graphics
- Rainbow is caused by refraction + internal reflection + refraction



The Rendering Equation

- Clean mathematical framework for light-transport simulation
- At each point, outgoing light in one direction is the integral of incoming light in all directions multiplied by reflectance property



Today

- Does Ray Tracing Simulate Physics?
- Monte-Carlo Integration
 - Probabilities and Variance
 - Analysis of Monte-Carlo Integration
- Sampling
- Advanced Monte-Carlo Rendering

Monte-Carlo Computation of π

- Take a random point (x,y) in unit square
- Test if it is inside the 1/4 disc
 - $\text{ Is } x^2 + y^2 < 1?$
- Probability of being inside disc?
 - area of ¼ unit circle / area of unit square
 π /4

- $\pi \approx 4$ * number inside disc / total number
- The error depends on the number or trials

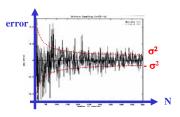
Convergence & Error

- Let's compute 0.5 by flipping a coin:
 - 1 flip: 0 or 1
 - \rightarrow average error = 0.5
 - -2 flips: 0, 0.5, 0.5 or 1
 - \rightarrow average error = 0. 25
 - 4 flips: 0 (*1),0.25 (*4), 0.5 (*6), 0.75(*4), 1(*1)
 - \rightarrow average error = 0.1875
- Unfortunately, doubling the number of samples does not double accuracy

Another Example:

$$I = \int_0^1 5x^4 dx$$

- We know it should be 1.0
- In practice with uniform samples:



Review of (Discrete) Probability

- Random variable can take discrete values x;
- Probability p; for each x;

$$0 < p_i < 1, \Sigma p_i = 1$$

• Expected value
$$E(x) = \sum_{i=1}^{n} p_i x_i$$

- Expected value of function of random variable
 - $f(x_i)$ is also a random variable

$$E[f(x)] = \sum_{i=1}^{n} p_i f(x_i)$$

Variance & Standard Deviation

- Variance σ^2 : deviation from expected value
- Expected value of square difference

$$\sigma^2 = E[(x - E[x])^2] = \sum_i (x_i - E[x])^2 p_i$$

• Also

$$\sigma^2 = E[x^2] - (E[x])^2$$

• Standard deviation σ: square root of variance (notion of error, RMS)

Monte Carlo Integration

- Turn integral into finite sum
- Use *n* random samples
- As *n* increases...
 - Expected value remains the same
 - Variance decreases by n
 - Standard deviation (error) decreases by $\frac{1}{\sqrt{n}}$
- Thus, converges with $\frac{1}{\sqrt{n}}$

Advantages of MC Integration

- · Few restrictions on the integrand
 - Doesn't need to be continuous, smooth, ...
 - Only need to be able to evaluate at a point
- Extends to high-dimensional problems
 - Same convergence
- · Conceptually straightforward
- Efficient for solving at just a few points

Disadvantages of MC Integration

- Noisy
- Slow convergence
- Good implementation is hard
 - Debugging code
 - Debugging math
 - Choosing appropriate techniques
- Punctual technique, no notion of smoothness of function (e.g., between neighboring pixels)

l glossy sample per pixel 256 glossy samples per pixel

Today

- Does Ray Tracing Simulate Physics?
- Monte-Carlo Integration
- Sampling
 - Stratified Sampling
 - Importance Sampling
- Advanced Monte-Carlo Rendering

Domains of Integration

- Pixel, lens (Euclidean 2D domain)
- Time (1D)
- Hemisphere
 - Work needed to ensure *uniform* probability

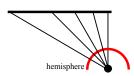
Example: Light Source

- We can integrate over surface or over angle
- But we must be careful to get probabilities and integration measure right!

Sampling the source uniformly

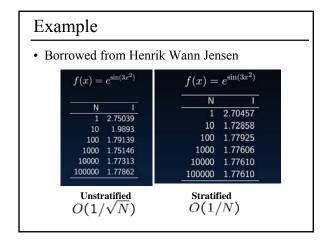
source

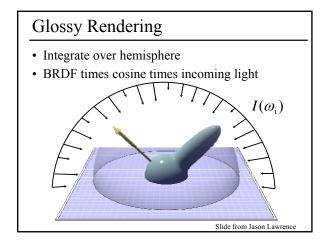
Sampling the hemisphere uniformly

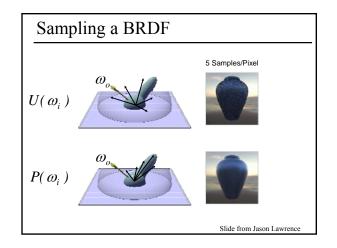


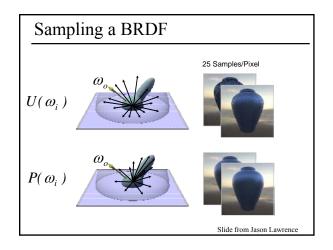
Stratified Sampling

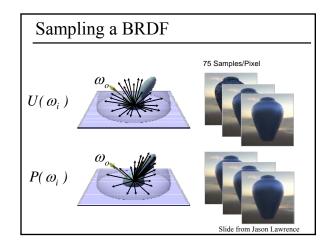
- With uniform sampling, we can get unlucky
 - E.g. all samples in a corner
- To prevent it, subdivide domain Ω into non-overlapping regions Ω_i
 - Each region is called a stratum
- Take one random samples per Ω_i

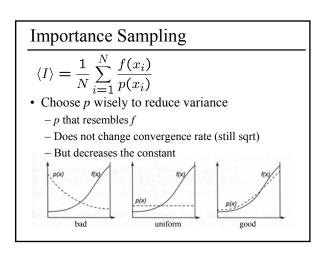


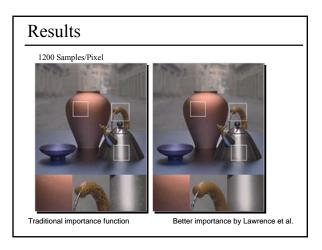






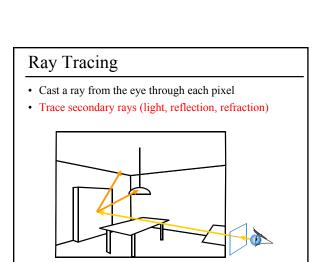






Ray Casting

• Cast a ray from the eye through each pixel



Today

• Sampling

• Does Ray Tracing Simulate Physics?

· Advanced Monte-Carlo Rendering

• Monte-Carlo Integration

