Piecewise Smooth Surface Reconstruction Hugues Hoppe et al.

Loop’s Subdivision Scheme

- A mesh M is iteratively refined into smoother meshes M^{r}
- Each vertex in M^{r+1} is a weighted average of "nearby" vertices in M^{r}
- Weights are given by masks

Subdivision masks

$$
\begin{gathered}
v^{r+1}=\left(\alpha(n) v^{r}+v_{1}^{r}+\right. \\
\left.\ldots+v_{n}^{r}\right) /(\alpha(n)+n)
\end{gathered}
$$

Subdivision masks

Subdivision masks

Limits of the surface

- It turns out that we can calculate exactly the "eventual" position v^{∞} of v using eigenanalysis (yay math!)
- We can also get exact normal vectors (e.g., for Phong shading)

Creases

- This paper modifies Loop surfaces so you can mark edges as "creases"
- Only difference is that masks are different for points and edges on creases
- Vertices on one side of a crease cannot affect vertices on the other side

Crease edge mask

$$
v_{i}^{r+1}=\left(v^{r}+v_{i}^{r}\right) / 2
$$

Crease vertices similarly "ignore" non-

crease vertices

The Problem

- Given a set V of vertices, find a mesh M which, when used as a Loop surface:
- is concise (few control vertices)
- has few crease edges
- minimizes the "distance" from V to M^{∞}

Energy function

- $E(M, V)=E_{\text {dist }}(M, V)+c_{\text {rep }} m+c_{\text {sharp }} e$
- m is number of vertices in M
- e is number of crease edges in M

Mesh Optimization

- If we keep the connectivity of the mesh constant and move the vertices, it turns out to be an iterative least-squares problem

Mesh Optimization

Mesh Optimization

Pretty Pictures

