Subsurface Scattering

Last Time?
- Bi-Directional Path Tracing
- Irradiance Caching
- Photon Mapping
- Ray Grammar

Today
- Measuring BRDFs
- 3D Digitizing & Scattering
- Fresnel Reflection
- Importance of Participating Media
- BSSRDFs
- Other Complex Materials

BRDFs in the Movie Industry
- Agent Smith’s clothes are CG, with measured BRDF

How Do We Obtain BRDFs?
- Gonioreflectometer
 - 4 degrees of freedom

Source: Greg Ward

BRDFs in the Movie Industry

BRDFs in the Movie Industry

Not just a BRDF…

Materials – BRDF & BTDF

Measuring Materials

Today

- Measuring BRDFs
- 3D Digitizing & Scattering
- Fresnel Reflection
- Importance of Participating Media
- BSSRDFs
- Other Complex Materials

3D Digitizing

The Digital Michelangelo Project: 3D Scanning of Large Statues, Levoy et al., SIGGRAPH 2000
Scattering & Scanning

![Image: Diffusion in a sample of Carrara Statuario marble.](image)

Today

- Measuring BRDFs
- 3D Digitizing & Scattering
- Fresnel Reflection
- Importance of Participating Media
- BSSRDFs
- Other Complex Materials

Amount of Reflection

- Traditional ray tracing (hack)
 - Constant reflectionColor
- More realistic:
 - Fresnel reflection term (more reflection at grazing angle)
 - Schlick’s approximation: \(R(\theta) = R_0 + (1-R_0)(1-\cos \theta)^5 \)

Dusty Surfaces & Retro-Reflection

- Viewed perpendicular to the surface, there is little scattering off dust
- At grazing angles, there is increased scattering with the dust making the surface appear brighter
- Similarly, the earth viewed from space appears brighter near the edges, because of increased scattering of the atmosphere.

Light Rays in a Dusty Room

![Image: Light rays in a dusty room.](image)

Annie Ding, MIT 6.837 Final Project December, 2004

Participating Media

![Image: Participating media.](image)

Image by Henrik Wann Jensen
Today

• Measuring BRDFs
• 3D Digitizing & Scattering
• Fresnel Reflection
• Importance of Participating Media
• BSSRDFs
• Other Complex Materials

Reading for Today:

• “A Practical Model for Subsurface Light Transport”, Jensen, Marschner, Levoy, & Hanrahan, SIGGRAPH 2001

BRDF vs. BSSRDF

Images from "A Practical Model for Subsurface Light Transport" Jensen, Marschner, Levoy, & Hanrahan SIGGRAPH 2001

Subsurface Scattering Variables

<table>
<thead>
<tr>
<th>Name</th>
<th>Symbol</th>
<th>Units</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scattering Coeff.</td>
<td>σ_s</td>
<td>(length)$^{-1}$</td>
<td>Probability of scattering per unit length</td>
</tr>
<tr>
<td>Absorption Coeff.</td>
<td>σ_a</td>
<td>(length)$^{-1}$</td>
<td>Probability of absorption per unit length</td>
</tr>
<tr>
<td>Phase Function</td>
<td>$p(x,\theta_{\text{r}})$</td>
<td></td>
<td>Angular distribution of scattering</td>
</tr>
<tr>
<td>Extinction Coeff.</td>
<td>σ_e</td>
<td>(length)$^{-1}$</td>
<td>$\sigma_a + \sigma_s$</td>
</tr>
<tr>
<td>(Scattering) Albedo</td>
<td>ρ</td>
<td></td>
<td>$\rho = \frac{\sigma_s}{\sigma_e}$</td>
</tr>
<tr>
<td>Optical Depth</td>
<td>$\tau(0,\theta)$</td>
<td></td>
<td>$\int_{0}^{\tau} \rho \text{d}x$</td>
</tr>
<tr>
<td>Transmission</td>
<td>$\tau(0,\theta)$</td>
<td></td>
<td>$e^{-\tau(0,\theta)}$</td>
</tr>
</tbody>
</table>

- Albedo: first approximation of BRDF, % of light reflected off the surface
 - When the albedo = 1, no absorption occurs and light is only transmitted or scattered. This is an ok approximation for snow or clouds.

Sampling a BSSRDF

Figure 7: (a) Sampling a BRDF (traditional sampling), (b) sampling a BSSRDF (the sample points are distributed both over the surface as well as the light).

Images from "A Practical Model for Subsurface Light Transport" Jensen, Marschner, Levoy, & Hanrahan SIGGRAPH 2001

BSSRDF Measurement

Images from "A Practical Model for Subsurface Light Transport" Jensen, Marschner, Levoy, & Hanrahan SIGGRAPH 2001
Today

- Measuring BRDFs
- 3D Digitizing & Scattering
- Fresnel Reflection
- Importance of Participating Media
- BSSRDFs
- Other Complex Materials

Measuring BSSRDF by Dilution

"Acquiring Scattering Properties of Participating Media by Dilution" Narasimhan et al. SIGGRAPH 2006

Measuring Hair

"Light Scattering from Human Hair Fibers" Marschner et al., SIGGRAPH 2003
Rendering Hair

<table>
<thead>
<tr>
<th>Old Method</th>
<th>New Method</th>
<th>Photo</th>
</tr>
</thead>
<tbody>
<tr>
<td>![Old Method Image]</td>
<td>![New Method Image]</td>
<td>![Photo Image]</td>
</tr>
</tbody>
</table>

Figure 12: A comparison of Kirkup and Kim’s model (left) to our single generated model (center) with the same lighting and the hair from the photograph (right). The hair in our model differs somewhat in detail and appearance, but the remainder highlights our model’s capability to capture the colored shading of the real hair.

“Light Scattering from Human Hair Fibers”
Marschner et al., SIGGRAPH 2003

Readings for Friday 4/11:

Choose one:
- “Estimating the Location of a Camera with Respect to a 3D Model”, Yang, Becker, & Stewart, 3DIM 2007
- “Procedural Modeling of Buildings”
Mueller, Wonka, Haegler, Ulmer & Van Gool, SIGGRAPH 2006