
An Improved Illumination Model
for Shaded Display & Distributed

Ray Tracing
Published 1980 and 1984,

respectively

Overview of Improved
Illumination

• Previous shading models used local
aggregate data rather than global data

• New shading model uses global data to
calculate intensities

• Can be extended to assist in ray tracing

Previous work, in increasing order
of complexity

• Lambert’s cosine law

• Phong model
• Blinn and Newell
• Kay (refraction model)

Improved Model
• Use classical optics to calculate reflection

and diffusion

• Ideally, ks and kt would be functions of
Fresnel reflection law

• Here they are used as coefficients. If ks is
smaller and kt larger, surface is glossy

• Random perturbations added to simulate
roughened surface

Improved Model
• Simulate reflections from multiple surface

by building a tree, recursively follow all
branches, applying surface shading
algorithm, for all rays

• Can be used to find which areas are in
h d

Visible Surface Processor

• Used for ray tracing, sends rays from
viewer rather than from light source

• When a ray hits an object, new rays are
created by diffusion towards light source

• Cannot clip background objects – might be
caught in a reflection (use bounding box)

Visible Surface Processor

• Use spherical bounding boxes in a hierarchy

• Low-pass filter regions in danger of aliasing

• Pixel described by four point square

• Get intensity by either interpolation, or, for
large differences, subdivision into more
squares

Results

44 minutes on VAX-11/780
(Runs at 1 MIPS, 1977 model)

Time not given

Future Work

• Diffuse reflection from distributed light
sources

• Better handling of specular reflections

• Overall, rather inefficient

Overview of Distributed Ray
Tracing

• Ray tracing is limited to sharp images

• Distributing rays is an easy way to get
fuzzy images

• Effects such as motion blur become
possible

Previous Work

• Fuzzy samples would have previously
required a great deal of oversampling for
each ray

• Ray tracing was limited to sharp images
and shadows

New Model

• Distribute rays rather than add more

• Makes heavy use of antialiasing; this
makes it possible to sample motion and
shading

• Shading with rays distributed according to
formula (with some simplifications):

New Model

• Gloss (blurred reflections) created by
distributing new rays caused by reflections

• Translucency much in the same way, but
with transmittance

• Penumbras (caused by partially obscured
light sources) by distributing rays traced
from surface to light source

New Model
• For depth of field (objects out of focus),

distribute initial rays from a single point to
being across the “lens”

• For motion blur, distribute the rays being
traced across discrete time steps as an
object moves through the scene

• Use antialiasing to prevent strobing of motion
blurred objects

Algorithm
• 1. Choose time for ray, move objects in

scene
• 2. Make ray from lens to screen, and from

ray to focal point of lens, find what is
visible

• 3. Trace ray from point on light source to
visible point

2 3

• 4. For reflection, distribute around mirror
reflection, trace ray from that point to
visible point. # rays ~ amount of light from
that direction

• 5. Same for transmitted light

Algorithm

5

4

Results

Reflection, Shading, and Penumbra (scanline)

Depth of Field (35mm, f2.8, ray tracing)

Results

Motion Blur (ray traced)

Questions Posed w.r.t. Improved
Illumination

• How are S, T in Eq. 2 determined? Does
a ray need to intersect a light source to
transmit?

• Does use of bounding sphere create
problems for higher resolutions/smaller
objects?

• Why draw rays from viewer/objects to
light?

• Why do we still use Phong if Blinn is
better? Is something wrong with refraction
in Fig 7?

Questions Posed w.r.t Distributed
Ray Tracing

• What are diffraction effects in DOF? Is
there a better method for using it for ray
tracing?

• Do real-time applications currently use this
kind of DOF algorithm?

• Is treating anti-aliasing as a black box the
best we can do? Or can we adaptively
change sample rate?

