Modeling the Interaction Between Diffuse Surfaces

Some Definitions

- Solid Angle: The surface area of the unit sphere covered by the projection of the angle from the center of the sphere.

- Isolux: A curve or surface connecting points at which light intensity is the same.
- Form Factor: The fraction of radiant light leaving one surface which strikes second surface

Some Math (cont)

Final radiosity equation
$b_{j}=e_{j}+\rho_{j} \sum_{i=1}^{N} b_{j} F_{i j}$

Some Math

$B_{j}=E_{j}+\rho_{j} H_{j}$
Where: $\mathrm{B}_{\mathrm{j}}=$ radiosity of the surface j
$\mathrm{E}_{\mathrm{i}}=$ rate of direct energy emission from
$\rho_{j}=$ reflectivity of surface j (fraction of incident light
reflected back)

$H_{j}=\sum_{i=1}^{N} B_{i} F_{i j}$
Where: $\mathrm{B}_{\mathrm{j}}=$ radiosity of the surface i
$\mathrm{F}_{\mathrm{ij}}=$ form factor

Some Math (cont)
Final radiosity equation
$b_{j}=e_{j}+\rho_{j} \sum_{i=1}^{N} b_{j} F_{i j}$

Form Factors

The form factor between the finite surfaces, $A(i)$ and $A(j)$, is defined as the area average of the equation:

$$
F_{A_{i}-A_{j}}=F_{i j}=\frac{1}{A_{i}} \int_{A_{i} A_{j}} \frac{\cos \phi_{i} \cos \phi_{j} d A_{i} d A_{j}}{\pi r^{2}}
$$

Or more efficiently as:
$F_{i j}=\frac{1}{2 \pi \mathrm{~A}_{i}} \oint_{C_{j} C_{i}} \oint_{C_{i}}\left[\ln (r) d x_{i} d x_{j}+\ln (r) d y_{i} d y_{j}+\ln (r) d z_{i} d z_{j}\right]$
Why? Stokes' theorem?

And Now Some Matrixes

The final system to solve:

$$
\left[\begin{array}{cccc}
1-\rho_{1} F_{1,1} & -\rho_{1} F_{1,2} & \ldots & -\rho_{1} F_{1, N} \\
-\rho_{2} F_{2,1} & 1-\rho_{1} F_{2,2} & \ldots & -\rho_{2} F_{2, N} \\
\ldots & \ldots & \ldots & \ldots \\
-\rho_{N} F_{N, 1} & -\rho_{N} F_{N, 2} & \ldots & 1-\rho_{N} F_{N, N}
\end{array}\right]\left[\begin{array}{c}
b_{1} \\
b_{2} \\
\ldots \\
b_{N}
\end{array}\right]=\left[\begin{array}{c}
e_{1} \\
e_{2} \\
\ldots \\
e_{N}
\end{array}\right]
$$

