
Mesh Difference Visualization and Attribute Validation

David Doria Cody Phillips

Abstract

We propose a method for visualizing the differences between sur-
face normals produced by two surface normal estimation algo-
rithms. The two algorithms, Multi-Scale Tensor Voting (MSTV)
and Prioritized IRLS Normal Estimation (PINE), operate over
range images acquired by a ground-based single viewpoint LIDAR
scanner. Both algorithms generate additional surface attributes as
an intermediate step to computing surface normals. This inter-
mediate information is useful in exploring any differences in the
two technique’s results. We visualize such intermediate informa-
tion such that a direct comparison to areas of discord between the
two estimation methods can be made. In addition to examining the
relative error between the MSTV and PINE, we simulate the scan-
ning process on computer model with known normals so that the
performance of each method can be compared to a ground truth.

Keywords: Tensor Voting, Surface Reconstruction

1 Introduction

Modeling 3D objects and scenes from real world observations is
an important task for many fields. This is especially true in com-
puter vision, robotics and graphics, where many problems require
methods for acquiring and interpreting raw three dimensional data.
Most modeling techniques have been developed for use with small
static indoor scenes or individual objects. One such example is
Michelangelo’s statue of David, which was digitized with a custom
built Cyberware laser scanner as part of Standford University’s Dig-
ital Michelangelo project [Levoy and Fulk 2000]. Advances within
the last decade in active laser scanning equipment have enabled full
3D scans of outdoor environments to be acquired using a ground
based single viewpoint range scanner. However, outdoor environ-
ments pose significant challenges that limit the success of directly
applying previously existing techniques. Most of these challenges
stem from the fact that is not as easy to exercise control over a large
outdoor scene as it is with a small indoor object or scene . Several
techniques have been developed to address these problems, but little
research has been performed on comparing the results of such new
methods. It is specifically of interest to determine structural charac-
teristics that evade proper estimation, and the degree to which each
technique is able to cope with these problematic surface features.
To aid in this endeavor, we propose a method for visualizing the
differences between surface normals produced by two surface nor-
mal estimation algorithms, Multi-Scale Tensor Voting (MSTV) and
Prioritized IRLS Normal Estimation (PINE). Both algorithms oper-
ate over range images acquired by a ground-based single viewpoint
LIDAR scanner and generate additional surface attributes as an in-
termediate step to computing surface normals. Visualizing such in-
termediate information is useful in finding intuitive explanations of
areas of discord between the two estimation methods. In addition
to examining the relative error between the MSTV and PINE, it is
be fruitful to compare each algorithm’s normals against a ground
truth. The most accurate means of performing such a comparison
is to simulate the scanning process on computer model with known
normals, and run both methods on the simulated data. The main
goals of this paper are to

• Visualize differences between calculated surface normals

• Visualize surface attributes to help explain such differences

• Generate ground truth normals using a simulated scanning
process

2 Computing Normals

An example range image is shown in 1. The same range image with
annoted normals is shown in 2.

Figure 1: Stanford Bunny Model

Figure 2: Stanford Bunny with Normals

2.1 Tensor Voting

The Tensor Voting Framework, pioneered by Medioni et al.
[G. Medioni and Tang. 2000] [Guy and Medioni 1996], has been
applied to numerous computer vision problems [Tang 2003] [E.-
Y. Kang and Medioni 2002] [L. Reyes and Bayro 2007]. In its
most general formulation, it takes as input points belonging to some
N-dimensional space and encodes them as N-dimensional tensors.
The point and its tensor are collectively called a token. Tensor vot-
ing propagates the information of each tensor into its local neigh-
borhood by way of tensor voting, ultimately creating a dense tensor
field from the originally sparse input. Each tensor can be decom-
posed into features that have some geometric meaning, and each
feature has a corresponding saliency component.

In the 3-dimensional case, a tensor can be decomposed into three
geometrically meaningful terms, the stick, plate and ball features.



A token’s stick feature represents the surface normal at it’s loca-
tion while the plate feature represents a curve tangent vector. The
saliency of the ball feature represents the degree to which the point
appears to have no orientation, describing neither surface nor curve.
If the saliency of a token’s stick feature is sufficiently high, the point
is likely to lie on a surface with a normal described by the stick
direction. Surfaces and curves can be extracted from the tensor
saliency field using non-maximal suppression.

Mordohai introduced a simplified voting scheme that allowed ten-
sor voting to scale well to higher dimensions [Mordohai and
Medioni 2006]. Tong introduced a multi-scale formulation of ten-
sor voting that could automatically extract features across different
scales [Tong. 2004]. A multi-scale approach to feature extraction
is especially important when processing range data, as it inherently
possesses features with large scale variations. King expanding on
both the works of Mordohai and Tong creating a multi-scale ten-
sor voting (MSTV) approach designed for the extraction of fea-
tures from range data. He reduced the complexity of tensor voting
by introducing some algebraic simplifications as well as devising
smoother weighting profiles and a better curvature penalty [King
2008].

2.2 Prioritized IRLS Normal Estimation

The prioritized IRLS surface normal estimation (PINE) algorithm
[Phillips 2009a] calculates surface normal and scale estimates by a
robust fitting of local tangent planes to each point. The robust esti-
mation of the tangent plane τ is achieved by Iteratively Reweighted
Least Squares (IRLS) with an M-estimator using the Beaton-Tukey
biweight influence function ω.

For each estimation to succeed a sufficient number of inliers must
exist with respect to the estimated parameters θ̃, with intercept φ̃
and normal η̃.

The key aspect of PINE is the prioritization of the order in which
each point is estimated. Intuitively, relatively flat regions are likely
to produce stable estimations and are visited first. These estimates
are then used to improve the estimation of adjacent regions that may
contain discontinuities, noise or curved surfaces. The algorithm
performs three passes over the data in three separate phases. In the
first phase, points are assigned initial surface normal estimates if
possible. They are assigned a priority value

1.0/∇τθ̃ × I × ω(φ0 − φ̃, ρ) (1)

where φ0 is the measured distance and I is the fraction of inliers,
and are placed in a priority queue. The priority metric is designed
to capture the preference for stable flat regions when performing
early estimates. The inverse gradient magnitude is a ”flatness” term
while the inlier fraction and m-estimator weighting are essentially
stability terms.

During the prioritized estimation phase, points are estimated in the
order they exist in the priority queue. If IRLS succeeds is this phase
the point is classified as a either being an outlier or belonging to a
cloud, curve or surface. If the point is classified as a surface, and
therefore has a normal, its neighbors are re-evaluated as their pri-
orities may be improved by this new estimate. If their priorities do
improve, their estimated parameters are updated and their positions
the queue are improved. After all the points have been visited in
the prioritized estimation phase, a final pass over all the points is
performed to calculate the final classifications and surface normals.
For the final estimation the parameters are relaxed, and the neigh-
borhood of a point is slightly increased to give it larger influence.
Every point re-estimated is averaged with its neighbors weighted by
ω parametrized by how much their normals differed in proportion to

the estimated scale. If any point has failed all estimation attempts,
it is labeled an outlier. The algorithm continues as in the priori-
tized phase, performing IRLS, classifying the points and updating
the estimates of their neighbors.

3 Visualization

Eight different visualizations are implemented [Phillips 2009b], six
of which can be represented either the form of a 2D image or as
the color of a 3D mesh. The two that were not visualized on the
3D mesh are the RGB intensity image and scale estimates, as it was
deemed unnecessary.

3.1 RGB Intensity Image

Each point in the range image that has a laser return has associated
color data sampled from a color camera affixed to the scanner. An
easy way to visualize the structure of the 3D data is to extract this
color information and save it as a color image of the same dimen-
sions of the range image. An example of an RGB Intensity image
is shown in Figure 3.

Figure 3: Sample RGB Intensity Image

3.2 Normal Comparison

It is useful to have a visualization of both algorithm’s surface nor-
mals alone, as well as the difference between them.

We implemented the following visualizations:

• Normal Axis Colored (Figure 4)



Figure 4: Sample Axis Colored Images

• Normal/LOS Angle Colored (Figure 5)

Figure 5: Sample Dot Product Images

• PINE/MSTV Thresholded Angle Colored (Figure 6)

Figure 6: Sample Angle Differences Image

Two coloring methods were used to represent surface normals. The
first method is coloring by axis components, where (x,y,z) of the
normals correspond to (r,g,b). The second method is representing
the angle between the normal and the line of sight for each point.
The angle acts as a parameter to the hue component of the HSV
color scale (with fixed S and V). To visualize the discrepancies be-
tween normals, it was decided to threshold the colors to specific
ranges, as differences greater than a certain angle usually suggest
the normal is conceptually undefined at the point (such as along thin
structures like railings). For the angle difference, we used graded
colors shown in Table 1.

Range (degrees) Color
0 - 6 Blue
6 - 12 Green

12 - 18 Yellow
18 - 24 Red
> 24 White

Table 1: Table of Colors

3.3 Point Classifications

PINE produces 5 labelings, 4 of which are different types of non-
surface points.

These labelings are summarized in Table 2.

Type Color Description
Undersampled Yellow Surfaces scanned at oblique angles

Outliers Red Points that don’t appear to lie on the true
surface

Cloud Cyan Unresolvably fine structures such as fo-
liage/brush

Curve Magenta Very thin structures such as railings or
power lines

Surface Blue Points with statistically stable normals

Table 2: Classification Colors

An example of a point classifications image is shown in Figure 7.

Figure 7: Sample Point Classifications Image

3.4 Scale Estimation

PINE produces scale estimates, which are a measure of how rough
the surface is. Depth or angle discontinuities increase this value.
An example of a scale image is shown in Figure 8.



Figure 8: Sample Scale Image

3.5 Scale Normal Count

MSTV doesn’t analyze all points across all scales, as this is com-
putationally prohibitive. It instead selects points for each scale that
are deemed to suitably describe the underlying structure. There-
fore, some points are evaluated at multiple scales and are assigned
multiple normals. This is a visualization of the number of normals
assigned to each point. An example of a scale image is shown in
Figure 9.

Figure 9: Scale Normal Count Image

3.6 Estimation Order

The prioritized nature of PINE is captured by an estimation order
visualization. These visualizations show the order in which points
were given their final estimations. A blue to white color scale was
used, with blue points finishing first. An example image with points
colored by order is shown in Figure 10

Figure 10: Point Order Image

3.7 Side-By-Side Comparison

To demonstrate the effectiveness of the visualizations, we provide
a side-by-side comparison in Figure 11.

Figure 11: Side-By-Side Comparison

4 Iterative Development

Many challenges were encountered during the development of the
visualization code, and the overall design and functionality of the
code experienced many extreme alterations.

4.1 Non-STL Constructs

The base files for this project were imported from homework one.
They employed many non-STL objects that used programming
models that were slightly awkward in relation to the current Stan-
dard Template Library. For example, iteration through a collection
structure required iterators to be explicitly created and destroyed
by the collection class. The hash structures was replaced [Phillips
2009b] with STL sets or STL vectors, depending on their function.
STL sets do not perform as well on lookup, however it was easy
to create the required less-than operators to enable templated use, a
feature lacking from the previous hash structure.

4.2 File Formats

The surface normal estimation code bases all accepted and pro-
duced different outputs. Of course, none of them matched the sim-
plified obj file accepted by the homework one base files. The solu-
tion was to create a unified ModelFile class (Section 5) for handling
the file conversions [Doria 2009]. The VTP file format (Section 5.2)
was the common medium of exchange, as it is a very simple format
and easily visualized using Paraview, an open source scientific vi-
sualization software. The input file for PINE is a PTX file (Section
5.1), and its output is a binary RPRG file containing the surface
normals and many other surface attributes. Since the RPRG file is
so special purpose, an application was written to store all required
information in the ModelFile class for output to VTP as well as
generating the RGB Intensity and scale estimation images [Phillips
2009b].



4.3 Naive OpenGL

The original design plan called for an interactive viewer of the dif-
ferent visualizations, based solely off the OpenGL base code pro-
vided with the homeworks. The visualization modes would change
with a keypress. This design was successful for the initial visu-
alization tests with small test objects, such as the 100k Stanford
Bunny. However, this solution didn’t scale well and crawled to a
halt when the number of vertices increased to millions of points and
even more polygons. Additional problems existed with the default
camera setup. We needed to dynamically center the range scans,
adjust the clipping plane and view frustrum to fit the larger scale
building scans. [Doria 2009]. Ultimately, we decided to remove
all OpenGL aspects from the code. We instead rewrote the code to
create colored VTP files for visualization with Paraview. [Phillips
2009b]

4.4 Point Correspondences

It was originally thought to be a trivial task to take the difference
between the values stored in the points of two meshes. Each point
in the input data has a unique point location, which was going to be
used to identify it for differencing. PINE however, smooths the in-
put data, in doing so alters the point positions slightly. We needed to
find another mechanism of aligning the data. We briefly considered
implementing a nearest neighbor algorithm to establish correspon-
dences, but then remembered that each point also has a unique grid
index from the original range image. It was non-trivial to retain this
information between format conversions and algorithm runs. It re-
quired changes to both the MSTV base code [Phillips 2009b] and
the ModelFile class [Doria 2009].

4.5 Batch Visualizations

In order to fully understand the significance of the differences be-
tween the two methods results, many scans need to be examined.
In the original OpenGL formulation, we had implemented a save
buffer to file option to be used in connection with the auto center-
ing camera [Doria 2009]. After we switched to VTP output, the
coloring process could be scheduled in a batch, and the output vi-
sualized in Paraview later. Reviewing hundreds of 3D scans one
by one in Paraview is still a very time consuming process. With
the grid index information now in the code as a result of handling
the point correspondence problem, we were able to write out color
2D images that directly corresponded to the original PTX range im-
ages [Phillips 2009b]. They images could then be quickly loaded,
browsed and compared side-by-side using a standard image viewer.

4.6 Naive Ray Casting

The original Synthetic LIDAR range scanner (Section 6) was im-
plemented using a naive raycaster tested for intersection with every
triangle. This worked fine on the 100K Standford bunny, but could
take hours on mesh’s with millions of triangles. We implemented
an Octree (Section 6.1) spatial data structure to cut down the time
with dramatic effect [Doria 2009].

4.7 Normal Statistics

While visualizing the differences in normals is great for a qualita-
tive analysis of performance, we needed to gather some statistics to
make more quantitative claims. The visualize code was extended
to gather the mean and standard deviation of the angular difference
between the normals. We gathered histogram data for a finer repre-
sentation of the distribution of error. [Phillips 2009b]

4.8 Memory Constraints

After running a batch job of over a hundred images, it wasn’t un-
til combining data that we realized that some visualizations didn’t
successfully complete. Reviewing the logs and performing some
experiments revealed that the system was running out of memory
for some of the larger scans. The 32 bit architecture of the machine
used was only able to address between 3 and 4 GB of memory.
Eight scans were unable to be visualized, the largest of which con-
tained over 6 million points. After replacing the unused half edge
data structure with the vertex-list representation [Phillips 2009b],
only five scans were unable to be visualized.

5 ModelFile Class

We have developed a ModelFile class to easily work with several
input and output file types.

...

...

PTX OBJ VTP

PTX OBJ VTP

Model File

Input Formats

Output Formats

Figure 12: ModelFile Class Ideology

The class internally stores the points as a
vector<vgl_point_3d> Points. VGL is part
of the Vision X Library (VXL), and was used exten-
sively for geometric calculations. The triangles are via
list of triples indexing into the Points vector, that is,
vector<vector<unsigned int> > Triangles.
This provides a very simple framework for which there is a simple
mapping to many standard 3D model formats.

5.1 PTX File Format

PTX is the format in which the Leica LiDAR scanner stores the
range scans. It relies completely upon the inherent grid structure
that is used to perform the scanning. The first two lines of the file
indicate the number of rows (R) and columns (C) of points that
compose the scan. The next eight lines indicate the scanners ori-
entation to the world frame. However, in all cases that the authors
have seen, the scanner is declared to be the world frame, hence these
two matrices are identity. The remaining RC lines are as follows:

x y z intensity R G B

Where (x, y, z) are the coordinates of the return relative to the
scanner, intensity is the percent of light that was reflected, and



(R,G,B) is the color of the pixel that the scanner overlaid onto
this point.

5.2 VTP File Format

The VTP format is part of the Visualization Toolkit (VTK) and
stands for VTK Polydata. As opposed to the PTX format which
is an organized set of points, the VTP file stores an unorganized set
of points. It simply stores an array of point coordinates. A separate
array can also be added to store a color corresponding to each point.
Another array of the same length is used to store (if available) the
normals of each point. If required, an array of three indices into the
point array can be stored to indicate triangle connectivity.

6 Synthetic LiDAR Scanning Using Ray Trac-
ing Techniques

To establish a ground truth for comparison, we will create a syn-
thetic LiDAR scanner. Using techniques from ray tracing, a range
scan of a 3d model can be produced. We will specify a scanner lo-
cation (relative to the model) and a list of scan parameters (θmin,
θmax, φmin, φmax, ∆θ, ∆φ). The scan is performed by tracing a
spherical grid of rays through the world and determining their clos-
est intersection with the model (ray-triangle intersections). The na-
ture of the scanning process leads to organized point clouds, where
we have information about the connectivity of the points. A flow
diagram of the process is shown in Figure 13.

3D Model Synthetic
Scanner

MSTV

PINE

TV Normal 
Estimates

PINE Normal 
Estimates

Known (Ground 
truth) Normals

Range 
Image

Figure 13: Synthetic Scanner Motivation

6.1 Octree

The running time of these ray-triangle intersections can be signifi-
cantly reduced by storing the model in an octree. The model points
are stored in the leaf nodes of an octree with a maximum depth of
5, which we determined to be sufficient experimentally. One could
also specify a maximum number of points per leaf, and continue di-
viding the space until the threshold is broken. The model triangles
are stored in the smallest node which contains all three vertices of
the triangle. The fourth level of an octree containing the points of
the Stanford Bunny is shown in Figure 14. The fourth level of an
octree of the triangles of the same model is shown in Figure 15.

Figure 14: Octree of Points

Figure 15: Octree of Triangles

6.1.1 Octree Ray-Triangle Intersection

The Ray-Triangle intersection with an octree is straight forward:

• Intersect ray with root box.

• If the box is a leaf, intersect the ray with all the triangles in
the box.

• Else, intersect the ray with all of the sub boxes

• Recurse.

6.1.2 Octree Running Time Reduction

Without this spatial data structure, we must intersect each of the R
rays with each of the T triangles in the model. We declare the clos-
est intersection to be the intersection of the ray with the model. The
running time is clearly RT . The analysis of the running time us-
ing the octree is not possible because it is completely dependent on
the geometry of the model. Both the actual shape of the model and
the density/clusteredness of the points play a large roll in determin-
ing the effectiveness of this data structure. An upperbound on the
running time is RT

8
, as a ray can intersect at most two of the eight

subnodes of the root. However, in practice much better improve-
ments are seen. In a 250,000 point scan of the Stanford Bunny, the
running time was reduced from 20 min 30 sec to 0 min 24 sec, a
factor of 51 . This example was run on a 3GHz Intel Pentium 4
computer with 2GB of RAM.

6.1.3 Other Octree Possibilities

There are several modifications to the octree data structure that
could be implemented. If axis aligned boxes are used, the Ray-Box
intersections become much faster. However, there could be exces-
sive empty space in the tree with some model geometry. Spheres



can be used instead of boxes as the tree nodes. However, there are
some implementation details that must be decided. Since non over-
lapping spheres do not fill a volume (the sphere packing problem),
we must use overlapping spheres so points are not lost. This causes
some triangles to be intersected twice. However, if the model is ro-
tated, the tree does not have to be reconstructed, so spherical nodes
are a viable option in very dynamic scenes.

6.2 Introducing Noise

[Doria 2009] The range scan produced by synthetically scanning a
3d model is completely noise-free. To make the data more realistic,
we must add some noise. In a real LiDAR scanner, the noise is
primarily along the direction of the ray that the point was sampled
from. To model this noise, we add a vector in the direction of the
ray with length drawn from a Gaussian distribution with variance
σLOS . There is also slight angular noise. To model this, we add a
vector orthogonal to the ray direction with orientation drawn from
a uniform distribution (0, 2π) and length drawn from a Gaussian
distribution with variance σorth. Both of these types of noise are
shown in Figure 16.

In
te

nd
ed

 D
ire

ct
io
n

LOS Error

Angular Error

Figure 16: Scanner Noise Model

7 Differencing Algorithm

7.1 Preprocessing

The differencing visualization algorithm takes as base input file the
results of the PINE algorithm. It takes for differencing a list of VTP
files generated by MSTV, which performs estimates at many differ-
ent scales, with one file per scale. PINE’s output files must first be
converted to a VTP, with only the surface points represented. This
VTP file is then triangulated by first projecting the 3-D points along
the line of sight onto a 2-D plane. The 2-D points are then triangu-
lated using Delaunay triangulation, and the resulting connectivity
is applied to the corresponding 3-D points. The MSTV VTP files
do not need to be triangulated as their points will only be used if
there is a corresponding point from the PINE VTP, which contain
the geometry.

7.2 Differencing

The grid indices of each point from the original PTX file are used
to align the data between the two input files. Since there are usu-
ally multiple normals assigned to each point in MSTV, we need to
decide which normal to keep. There are two options, specified by
a command line flag. One mode will keep the normal that differs
least corresponding point from the base PINE file. Another mode is
to keep the point that MSTV has decided has the highest saliency by
comparing the ”surfaceness” value stored in the VTP output from
MSTV.

7.3 Colorization

To visually indicate the differences in scalar values, we construct a
spectrum of colors using the HSV color space. We fix H and S,
and map (∆min,∆max)→ (blue, red)→ (V = 240, V = 360).
The HSV color space is shown in Figure 17.

Figure 17: HSV Color Space

8 Observations

The synthetic data demonstrates that both techniques produce nor-
mals that closely match ground truth.

8.1 Comparison of MSTV To Ground Truth

Figure 18 shows the ground truth normals (top) compared to the
MSTV normal estimations (bottom), both using axis coloring.

Figure 18: Comparison of Ground Truth Normals to Normals
Computed Using MSTV (Axis Coloring)

Figure 19 shows the ground truth normals (top) compared to the
MSTV normal estimations (bottom), both using dot product color-
ing.



Figure 19: Comparison of Ground Truth Normals to Normals
Computed Using MSTV (Dot Product Coloring)

Figure 20 shows the difference between ground truth normals and
the MSTV normal estimations.

Figure 20: Coloring of Differences Between MSTV and Ground
Truth

It is interesting to note that with MSTV, the normals behave very
poorly at polygon boundaries. Clearly this is not an issue in real
data, but there are many real world examples that behave similarly
to polygon boundaries (ie. corners of objects).

8.2 Comparison of PINE To Ground Truth

Figure 21 shows the ground truth normals (top) compared to the
PINE normal estimations (bottom), both using axis coloring.

Figure 21: Comparison of Ground Truth Normals to Normals
Computed Using PINE (Dot Product Coloring)

Figure 22 shows the ground truth normals (top) compared to the
PINE normal estimations (bottom), both using dot product coloring.

Figure 22: Comparison of Ground Truth Normals to Normals
Computed Using PINE (Dot Product Coloring)

Figure 23 shows the difference between ground truth normals and
PINE normal estimates.

Figure 23: Coloring of Differences Between PINE and Ground
Truth

We can see the PINE produces extremely accurate normal estima-
tions on the synthetic data.



8.3 MSTV/PINE Algorithm Observations

MSTV can be seen (Figure 24) to exhibit Moire banding and alias-
ing effects in its surface normal estimates of high spatial frequency
structures such as brick work, a result of the sampling process.

Figure 24: Moire Banding of MSTV

The strongest observation from examining the output of the differ-
nce visualizations is that PINE produces much smoother normals
than MSTV. Acting as a low-pass filter, it smooths away noise.
However, it retains less fine surface detail than MSTV. The two
algorithms also tend to differ in their estimation of very undersam-
pled oblique surfaces. Visualizing the additional surface attributes
calculated by the two methods has brought a great deal of insight
about the failure of MSTV on such regions. MSTV appears to pro-
duce mostly incorrect normals, with ”good” normals speckled in
correspondance with points that were sampled at many scales. Fig-
ure 25 demonstrates this.

Figure 25: Good Normals Speckled Where MSTV Sampled Points
At Many Scales

The oblique plane on the right image should be all pink. Instead
it is red, with pink speckels. The pink speckels correspond to the
points of high sampling (Red Points, Middle Image), that agreed
with the results of PINE. (Blue/Green Points, Left image).

9 Conclusions

We have presented a method that visualizes the differences between
the surface normal estimates generated by the PINE and MSTV
estimation algorithms. We have compared the algorithms perfor-
mance to ground truth normals obtained by producing synthetic
range scan of a CAD model. We have also shown how visualizing
other surface attributes can play an enormous role in understanding

areas in which the algorithms perform well, or perform less well
than desired.

References

DORIA, D., 2009. These elements of the project were accom-
plished by david, April.

E.-Y. KANG, I. C., AND MEDIONI, G. 2002. Robust affine mo-
tion estimation in joint image space using tensor voting. Inter-
national conference on pattern recognition.

G. MEDIONI, M.-S. L., AND TANG., C.-K. 2000. A computa-
tional framework for segmentation and grouping. Elsevier.

GUY, G., AND MEDIONI, G. 1996. Inferring global perceptual
contours from local features. International Journal of Computer
Vision.

KING, B. 2008. Range data analysis by free-space modeling and
tensor voting. PhD thesis, Rensselaer Polytechnic Institute.

L. REYES, G. M., AND BAYRO, E. 2007. Registration of 3d points
using geometric algebra and tensor voting. International Journal
of Computer Vision.

LEVOY, M., P. K. C. B. R. S. K. D. P. L. G. M. A. S. D. J.
G. J. S. J., AND FULK, D. 2000. The digital michelangelo
project: 3d scanning of large statues. 27th Annual Conference
on Computer Graphics and interactive Techniques International
Conference on Computer Graphics and Interactive Techniques.

MORDOHAI, P., AND MEDIONI, G. 2006. Tensor voting: A per-
ceptual organization approach to computer vision and machine
learning. Synthesis Lectures on Image, Video, and Multimedia
Processing.

PHILLIPS, C. 2009. Prioritized IRLS Surface Normal Estimation
and Point Classification. Master’s thesis, Rensselaer Polytechnic
Institute.

PHILLIPS, C., 2009. These elements of the project were accom-
plished by cody, April.

TANG, J. J. C.-K. 2003. Image repairing: robust image synthe-
sis by adaptive nd tensor voting. Computer Vision and Pattern
Recognition.

TONG., W.-S. 2004. A Complete Theory on 3D Tensor Voting for
Computer Vision and Graphics Applications. PhD thesis, Hong
Kong University of Science and Technology.


