
Rendering of Caustics with Photon Maps

Eric Li∗

Andrew Dolce†

Rensselaer Polytechnic Institute

Abstract

A number of techniques exist for approximating the rendering equa-
tion in order to create realistic detailed images. Photon mapping is
a method that allows for the accurate rendering of a wide range of
reflective and refractive phenomena. We explore the basis of the
photon mapping technique with the goal of constructing a system
for rendering such effects, particularly in regard to caustics. Our
implementation is divided into two separate passes, each of which
has achieved a different degree of success.

1 Motivaion

Our project is motivated primarily by an interest in various methods
of global illumination and in the stunning images that they create.
In studying computer graphics, we have explored fairly simple ren-
dering schemes involving ray tracing and radiosity, and yet none of
our prior implementations included the proper handling of a variety
of refractive effects, particularly in regard to caustics. Despite the
fact that a large amount of research already exists for a variety of
global illumination techniques capable of rendering refractive ele-
ments, we aim to successfully implement a system for rendering
caustics using an illumination scheme reasonable for the scope of a
student project.

2 Related Work

A wide range of research has been done in relation to global illumi-
nation techniques that support refractive phenomena. One method,
referred to as eikonal rendering, involves approximations of the
eikonal equation, which comprises the fundamental principle of ge-
ometric optics. In their 2007 paper, Ihrke et al. provide a general-
ized method for producing a variety of visual effects by using the
eikonal equation to compute radiance along arbitrarily curved rays.
Using a method of adaptive wavefront tracing, light is simulated
by emitting spherical or planar particle-based wavefronts into the
scene and storing radiance contributions in a grid of voxels. Al-
though this method holds the advantage of being able to compute
radiance locally for surface points in parallel, thus lending itself to
an efficient implementation on the GPU, we felt that an eikonal il-
lumination scheme was beyond a reasonable scope for our project.

A second global illumination scheme capable of rendering caustics
and other refractive effects involves a method known as photon trac-
ing. A common approach for this method, as proposed by Jenson
in 1996, is called photon mapping and involves a two-step process.
During the first step, photons are emitted from each light source
into the scene in a manner similar to ray-tracing. When each pho-
ton intersects an object in the scene, the collision point is stored in
a photon map, which Jensen implemented using a kd-tree. The sec-
ond step involves gathering the radiance and rendering the scene.
This is done via reverse ray tracing, computing the radiance at each
encountered surface point by searching the photon map for appro-
priate neighbors and computing the summed radiance. In Jenson’s
implementation, the emission step involved first casting uniformly

∗e-mail: lie2@rpi.edu
†e-mail: dolcea@rpi.edu

distributed photons into the scene and storing them in a general
photon map, followed by the emission of a large number of pho-
tons specifically aimed at refractive objects. Photon hits from the
high-density emissions are stored in a separate photon map so that
the higher resolution data can be used to render caustics at a finer
level of detail. Our project focuses primarily on photon mapping,
and we will be basing our approach largely on Jenson’s work.

A later paper published in 2008 by Sun et al. proposes a more com-
plex version of this two-step implementation. This approach in-
volves emitting photons into a voxelized scene and storing radiance
distribution within voxels. The rendering step consists of tracing
rays through the voxelized scene and summing the radiance from
each voxel that reaches the eye. In addition to accurately captur-
ing caustics, this method yields an efficient GPU implementation
capable of running at interactive frame rates.

3 Implementation

Our proposed implementation is based largely on existing work and
involves a two-step process. The first step, known as the emission
step, involves casting photons from each light source into the scene
and storing the illumination data in a photon map. Because we
are limiting our project to rendering static scenes, in which objects
and light sources do not move, the emission step will be performed
once as a pre-computation. The second step, called the rendering
or gathering step, involves rendering the scene using a reverse ray-
tracing technique.

3.1 Photon Emission

Photons are emitted from light sources within the scene. Currently
implemented are point lights sources, which emit light in all direc-
tions into the scene. For each light, we are building a projection
map to help efficiently emit photons towards the geometry. The
projection map represents a sphere surrounding the point light that
is partitioned into cells of equal surface area. The scene is then pro-
jected onto this sphere, and any cells that contain scene geometry
are then marked as such. Later, when emitting photons, this projec-
tion map can then be used to efficiently pick direction in which to
randomly fire the photon, instead of wasting time emitting photons
towards empty space.

For each photon, a ray is traced into the scene, and the intersection
point is computed and stored in a photon map. Depending on the
properties of the material, the photon will either be reflected or ab-
sorbed. We accomplish this by using a Russian roulette technique.

Normally, a photon would hit off an surface, losing some of its flux
and then continue its reflection. A surface with a reflectivity of 0.5
would reflect photons at half their power back out. However, with
Russian roulette, we tell half of the incoming photons to reflect
at full power, which over time will stochastically model the same
phenomenon.

If the photon is picked to be absorbed, it terminates its path and
adds the hit into the photon map. However, if it is destined to be
reflected, another Russian roulette is checked for whether it will
diffusely or specularly reflected. Regardless of which way it will
be reflected, if the surface is non-specular, the photon hit is also



registered into the photon map. Thus, a single photon will leave
multiple hits within the scene.

3.2 Rendering

In photon mapping, the rendering step typically involves tracing
a ray from the eye into the scene through each pixel, recursively
casting addition rays to handle reflection and refraction based on
surface properties. In order to determine the radiance at a surface
point, the photon map is searched for the nearest neighboring pho-
ton, and the photon data is used to approximate the incoming illu-
mination at the surface point. Special care must be taken to ensure
that each nearby photon is a valid contributor to the radiance of the
surface point. For example, given a point on the surface of a thin
wall, photons on the opposite side might be marked as contributors,
thereby allowing light to leak unnaturally through the wall.

We must regretfully admit that, in its current state, the rendering
step for our system is only partially implemented. However, it
should be noted that we were able to lay a foundation for future
improvement. The system is capable of rendering a scene via a
simple raytracer, but unfortunately it does not yet support reflected
or refracted rays. This limits the final rendering in that it does not
allow for the accurate rendering of reflective or refractive surfaces.

Despite these drawbacks, the rendering of diffuse surfaces is com-
puted using the nearest neighbor search algoritm as follows. For
each pixel, a ray is cast from the eye into the scene, and the closest
intersection point is found. The nearest neighbor search is then con-
ducted for N photons by incrementally expanding a sphere centered
at the surface point until the sphere contains a specified minumum
number of photons. Although the starting radius of the sphere can
vary depending on the size and photon density of the scene, our
system currently begins with a radius of 0.1. The sphere is then
recursively tested for intersection with the bounding volumes of the
photon map, until all contained photons are found. Of the con-
tained photons, the nearest N are determined by comparing squared
distances. If the sphere contains fewer than N photons, the sphere
radius is doubled and the intersection test is recomputed. This step
is repeated incrementally until enough photons are found or until
the radius exceeds a specified cutoff threshold. For our purposes,
the radius was restricted to a maximum of 0.4.

Once the nearest N neighboring photons have been located, their ra-
diance contributions are summed. Each contribution is determined
based on the photon’s RGB power value and incident direction in
accordance with the local BRDF of the surface. Currently the ren-
dering step supports only diffuse Lambertian surfaces, for which
the BRDF can be quickly evaluated by taking the dot product of the
photon direction and the surface normal. The sum of the radiance
values is then divided by an estimate of the local photon density
based on the distance to the farthest of the N neighbors.

3.3 Photon Map Implementation

Our photon map is implemented using an octree data structure,
which represents a hierarchy of bounding volumes. Each node of
the tree represents a three-dimensional bounding box. An internal
node signifies that the bounding box has been evenly divided fur-
ther into eight smaller boxes, each of which is represented by a
child node. Each leaf node stores the set of photons contained in
its bounding box. If a leaf nodes set exceeds a specified threshold,
its bounding box is divided by expanding the node into eight child
nodes and by storing each photon in the appropriate child.

The octree data structure allows the system to more efficiently find
the neighboring photons for each point during the render step. The
nearest neighbor search is comprised of an intersection test in which

the bounding volumes of the octree are compared with a specified
sphere. The search begins at the root and continues down the tree
recursively for any child volumes that intersect the sphere. At each
encountered leaf node, the photons stored are tested for intersection
individually.

4 Results

We have implemented the two-pass photon map model and in this
section we will present our initial results from this implementation.
All simulations were done on a 2.0 GHz Intel Core Duo T2500
running both Linux and Windows. We created two separate visual-
izations, each of which is 600 pixels wide.

The below table displays the memory consumption of the octree
structure for renderings of the same scene across a variable number
of emitted photons and for different octree threshold values.

Octree Threshold
10 100 1000

Emitted Photons
5k 0.5 MB 0.4 MB 0.4 MB

50k 4.9 MB 4.1 MB 3.9 MB
500k 50.3 MB 40.6 MB 39.8 MB

The left visualization shows the actual photon map used to gener-
ate the image on the right visualization. Because the power of each
individual photon is very low we have scaled up their power uni-
formly just for the photon visualization, so that we can examine the
photon emission. We can see the color bleeding effect of diffuse
surfaces that are nearby, such as in the Cornell box simulation.

The right visualizations show that actual image produced by the
rendering step. Clearly the accompanying images are marred by a
large number of unwanted artifacts, most notably the large amount
of noise in the image, which results in a speckled distribution of
bright and dark spots. This is a side-effect of the incomplete ren-
dering step which is not yet capable of properly blending the contri-
butions of photons. We hope to improve our algorithm in order to
achieve greater accuracy and reduced noise, but unfortunately we
have run out of time.

5 Conclusion

It is difficult to draw solid conclusions from our incomplete results.
Despite this, we are satisfied with the emission step algorithm in its
ability to accurately and evenly distribute photons within the scene.
Given additional time, we would we able to more fully complete
our rendering step in order to better validate our results.

References

I. Ihrke, G. Ziegler, A. Tevs, C. Theobalt, M. Magnor, H.-P. Seidel,
”Eikonal Rendering: Efficient Light Transport in Refractive Ob-
jects” , ACM Trans. on Graphics (Siggraph’07), 2007, to appear.

Sun, X., Zhou, K., Stollnitz, E., Shi, J., and Guo, B. 2008. Interac-
tive relighting of dynamic refractive objects. In ACM SIGGRAPH
2008 Papers (Los Angeles, California, August 11 - 15, 2008). SIG-
GRAPH ’08. ACM, New York, NY, 1-9.

Henrik Wann Jensen: ”Global Illumination using Photon Maps”.
In ”Rendering Techniques ’96”. Eds. X. Pueyo and P. Schrder.
Springer-Verlag, pp. 21-30, 1996.


