
Parallel Radiosity Using the Message Passing Interface

Joshua D. Nasman
nasmaj@cs.rpi.edu

Jon Zolla
zollaj@rpi.edu

Figure 1: Sample rendering of an 8.5k face mesh

Abstract

A method is described to parallelize the computation of global il-
lumination using radiosity. Radiosity is a lighting technique which
uses the diffuse properties of materials as well as emitting patches
to determine the lighting in a closed space. By distributing light
throughout a scene each iteration based on the properties of each
surface, light is distributed until all light within a given threshold
has been approximated. Radiosity is especially effective at render-
ing effects such as color-bleeding[Goral et al. 1984]. The tech-
nique described in this paper parallelizes the initial setup of this
method, calculating form factors, using the Message Passing Inter-
face (MPI). We describe a method to distribute the work across pro-
cessors as well as a number of optimizations to make our algorithm
more efficient. Also described herein are the technical challenges
faced as this algorithm was developed.

Keywords: radiosity, global illumination, mpi, parallel computing

1 Background

1.1 Radiosity

Radiosity is a view independent global illumination algorithm
based on methods from thermal engineering that models the in-
teraction of light between diffuse surfaces[Goral et al. 1984]. Ra-
diosity calculation is an iterative method, where the patch with the
most undistributed energy shoots light to every other patch in the
scene during each iteration. The amount of light distributed from
any patch i to another patch j is dependent on the form factor value
Fij . The iterations cease when the total undistrbuted light in a scene
comes within ε of zero.

Fij =
1

Ai

Z
Ai

Z
Aj

cosΘicosΘj

πr2
Vij dAj dAi (1)

The value Fij is computed using equation (1), where the value Vij

is the visibility between patch i and patch j. Θi is the angle be-
tween the normal and the vector from i to j; Θj is the opposite; r
is the distance between the faces. If all of these values are known,
then Fij can be computed in constant time, meaning it is possible to
compute all n2 form factors in O(n2) time. However, calculating
the visibility parameter is commonly done by casting rays between

patches i and j, which can take O(n) time with a simple ray cast-
ing implementation, which pushes the overall computation of form
factors towards O(n3).

1.2 Foundations of Parallel Computing

Parallel computing describes any one of a number of ways to divide
a task and distribute work across multiple processors[Grama et al.
2003]. This allows more than one processor to work on obtaining a
solution to a problem at the same time, and ideally this will lead to
a shorter overall time to the result.

There are several metrics to determine whether or not a parallel
program has significantly improved execution speed. The first is
known as speedup, and is calculated using equation (2).

SP =
T1

TP
(2)

Where P is the the number of processors used, and T indicates the
execution time for a given number of processors. If T1 is the exe-
cution time of the best known sequential algorithm, then this will
calculate absolute speedup. If T1 is the execution time of the paral-
lel algorithm on a single processor, then this formula will calculate
relative speedup.

The ideal speedup would be SP = P . This would mean that the
algorithm executes P times faster using P processors.

Efficiency is calculated by equation (3), which the percentage of
the ideal speedup that has been achieved. The ideal effiency for a
parallel algorithm is 100%.

EP =
SP

P
(3)

1.2.1 Types of Parallelism

There are two main ways that sequential problems can be divided
to take advantage of multiple processors. The first is task paral-
lelism, where all of the processors operate on the same data set,
but perform a different task. A common example of this is divid-
ing a three dimensional space amongst processors, and having each
processor be responsible for performing a task on particles as they
move through that processor’s assigned space.



The second type of parallelism, which we utilized in this paper, is
data parallelism. In this case, every process performs the same task
on a subset of the entire data set.

1.3 MPI Overview

In this paper we used the Message Passing Interface (MPI) to
achieve parallelism. In this paradigm, processors communicate
solely by passing messages amongst each other via a set of function
calls. These messages can be passed both synchronously and asyn-
chronously. Many types of communication are possible, including
one to one, one to many, many to one, and many to many.

Each of the n processors is assigned a rank from 0 to n− 1. When
messages are passed they have both a source and destination rank
associated with them, along with a tag value. The reason for this
tag value will become apparent later in the paper, since we take
advantage of it in our implementation.

There are several implementations of this API, including MPICH,
OpenMPI, and vender specific distributions. There are subtle differ-
ences between these implementations which we ended up encoun-
tering as we implemented our algorithm.

1.4 Blue Gene/L

One of the target systems for this project was the IBM Blue Gene/L
computer located at Rensselaer Polytechnic Institute’s Computa-
tional Center for Nanotechnology and Innovation. This computer
contains 32,768 processors and is built specifically for quick com-
munication using its 3 networks. The Blue Gene’s 3 networks are
the point to point network, the collective network, and the barrier
network. The point to point network is for simple sends and re-
ceives between processors. The collective network is useful for op-
erations such as scatter, gather and all reduce. All Reduce allows
an operation over a common variable across all processors on the
machine.

The BlueGene also has an extremely limited amount of memory.
It is set up such that it has 16,384 nodes of 2 processors a piece.
Some nodes have 512 MB of ram while others have 1 GB of ram.
Because of this, once large jobs are done each processor will only
have 256 MB of ram. This means that as this project develops it
will be necessary to be extremely careful of memory issues.

2 Goals

Before undertaking this project, four distinct goals were set forth.
They were:

• Speed up radiosity using parallel computing

• Obtain at least a factor of two speedup from one to four pro-
cessors

• Implement this algorithm using the Message Passing Interface
(MPI)

• Provide a good foundation for further research

Our first goal was motivated by the availability of an IBM Blue
Gene Computer to the RPI campus. The Graphics research group
of the Computer Science department uses radiosity for much of
their research and an efficient parallel version of the code could
ultimately be very useful.

As this project had approximately a month of time available to it,
the group wanted to show scalability on a small scale in this time
before moving to a larger platform such as the Blue Gene/L. For

this reason a factor of two speedup on a four processor run was
considered a reasonable goal.

Figure 2: Distribution of work in radiosity

After running our original code on some sample meshes we de-
termined that calculating for factors accounted for more than 99%
of the computation time on larger meshes. You can see the ap-
proximate ratios in Figure 2. Parallelizing this portion of the code
seemed an appropriate goal for a semester project.

The Message Passing Interface was decided on as the parallel li-
brary of choice because of its prevalence in the distributed comput-
ing field. The architecture of the Blue Gene and other high perfor-
mance computers are designed to take advantage of MPI commu-
nication . The three networks of the Blue Gene correspond to the
different types of MPI messages..

This project will be continued by Joshua Nasman after the goals of
this paper are reached, so it was also important that a good founda-
tion was established so future research could proceed.

3 Implementation

3.1 Separation of Rendering and Form Factor Compu-
tation

The initial code were were using for our implementation was a
combined radiosity solver, ray tracer, and renderer. This meant
that in order to parallelize the form factor compuation using MPI,
we had to work MPI into the OpenGL renderer. This proved to
be difficult for several reasons. First, we were unable to ever call
MPI Finalize, used to clean up after MPI programs, since the
GLUT library provides no callback to execute code when the win-
dow is closed. Secondly, interactive OpenGL rendering is not avail-
able on systems such as the Blue Gene.

To get around these problems, we separated the form factor compu-
tation into a standalone executable which would ouptut a binary file
containing the computed form factor matrix. This file could then
be loaded by the renderer. We found this method to work much
better, depsite the annoyance of maintaining some repeated code in
the project.

3.2 Form Factor Computation

Calculating the form factors is a naturally parallel task. Initially,
form factors were calculated by naively dividing the rows of the



form factor matrix and having each processor send its results to
processor 0, whereupon processor 0 assembled the matrix. This
was done my using MPI Send from all of the worker nodes (node
1 through n− 1) and using MPI Recv from processor 0.

One important design decision was that a deterministic algorithm
was used to assign rows to each processor, which could be used by
rank 0 to determine the rows assigned to every processor. Because
of this, it was possible to simply have each processor send its form
factors to processor 0 without prefacing the message to indicate
which rows were going to be sent.

A problem appeared in the first implementation, where the mes-
sages being sent were larger than the MPICH permitted on the test
system. In order to alleviate this problem, a temporary hack was
inserted where each message contained a maximum of 100 form
factors. After moving to more stable MPI implementations, it was
discovered that this was not only uneccessary, but also dramatically
reduced scalability. Because of this, we removed the message size
limitation.

In order to more efficiently calculate form factors, the fact that Fij

only varies from Fji by a factor of the areas of the second face was
exploited. Instead of calculating every form factor, only the upper
right half of the matrix was calculated in parallel. This half of the
matrix was then sent to rank 0. This processor then copies the upper
right half of the matrix across the diagonal to the lower left. Finally
each entry is divided by Aj .

3.3 Workload balancing

Once we began calculating only half of the form factor matrix, our
initial assignment algorithm ran into issues. Because the rows were
being assigned in increasing order, and the amount of work asso-
ciated with each row varied, each processor was assigned a very
uneven amount of work. Initially we were also not utilizing rank
0 to do any form factor computation, it was only collecting form
factors.

Processor 0 was utilized more effectively by assigning it work as
well. The one difference in it’s implementation is that it does not
send its form factors since it already has them.

In order to balance the workloads on the half matrix, different meth-
ods of dividing work were discussed. One idea was to divide up the
geometry of the triangle such that the work done for processors n

2
to n − 1 (which formed a triangle) was fit into the empty triangle
from processors 0 to n

2
− 1. Another method discussed was to sim-

ply divide the form factors needed by the number of processors and
no longer divide by rows at all.

Ultimately, a simple solution was found. The method was to ini-
tially delegate only half of the rows to processors. The second half
was then delegated in reverse order. This evens out the workload
since when a processor is assigned a row involving more computa-
tion from the top of the matrix, this is balanced by assigning a row
with less work from the bottom of the matrix. This method ade-
quately divides work, except when the number of processors starts
approaching half of the size of the mesh. When this occurs, the
difference in work assigned becomes noticeable, since a very small
number of rows are being assigned to each processor.

One of the important qualities of our load balancing algorithm is
that each processor has full knowledge of the assignment algorithm.
This means that no communication between processors is neces-
sary to initiate form factor computation. However, this also has the
downside of providing no dynamic load balancing capabilities – the
quality balance is determined completely by the static assignment
function.

3.4 Ray Casting

One of the most expensive operations in the form factor computa-
tion is the ray casting used to determine visibility between patches.
The current implementation uses no type of spatial or hierarchal
data structure to store geometry, so every face in the mesh must
be examined for every ray. This increases the cost of form factor
computation from approximately O(n2) to O(n3).

To get around this increased cost, we gave the option to use a sepa-
rate mesh for ray casting. This mesh would have the same physical
geometry as the normal sized mesh, but would have significantly
fewer faces. This meant our cost to cast a single ray would not
increase with the size of the mesh being used for form factor calcu-
lations.

3.5 Usage of MPI

Our implementation utilizes MPI communication to send computed
form factors from ranks 1 to n− 1 to rank 0. This is accomplished
by using synchronous MPI Send and MPI Recv calls.

Once each processor finishes computing its assigned rows in the
form factor matrix, it initiates one call to MPI Send for the first
row it computed, which blocks until rank 0 receives it. The mes-
sage utilizes the tag field in order to communicate which row is
contained in the message. Once rank 0 receives this message, an-
other is sent until all rows have been exhausted.

Rank 0 does not specify a source rank or tag in the MPI Recv, so
the order messages are received is abitrary. Once a message is re-
ceived, the tag value is read to determine where to place the received
message. MPI Get count is then used to determine the number
of form factors contained in that row, so the precise placement in
the form factor matrix can be calculated. Since rank 0 can calulate
the total number of rows and knows how many it computed itself,
it can calculate how many messages it should expect to receive.

3.6 Testing

By outputting a form factor file, we could simply compare this file
with previous results as we scaled to ensure that our calculations
weren’t changing with respect to a serial algorithm. Although this
testing accounts for any errors that would be introduced during par-
allelization, it would fail to catch any issues with the original form
factor computation itself. We considered this acceptable since the
project focused mainly on the parallel scaling of the algorithm.

4 Results

The first results we obtained measured how performance changed
across processor counts with a fixed size mesh. We chose a mesh of
size 5.5 thousand faces because of memory restrictions and current
limitations in the program. Figure 3 shows how the results scaled
close to linearly for smaller runs. Figure 4 is provided to show
a different perspectice on scaling. It shows how closed to perfect
scaling was obtained. It can be seen that up to 256 processors the
scaling was nearly perfect. We believe the dropoff in performance
which followed was largely a result of the limited sized mesh. The
mesh size was 5.5K and rows of the matrix were divided in groups
of 2 (as described above). As the processor count approached 1/2
the number of faces our program understandably has poorer load
balancing. On the 2048 processor case shown in the graph some
processors were given 2 rows while other were given 4. For this
reason many of the processors wasted nearly half of the computa-
tion time on form factors and scaling was only around 64%.



Figure 3: Effect of processor count on execution time

Figure 4: Scaling as processor count increases

For our second test we varied the number of mesh faces across a
set processor count (128). The results in Figure 6 showed that the
time increased quadratically as the mesh size was increased. Our
initial algorithm was n3 but our raycasting technique reduced it to
quadratic. It is important to notice that the time isn’t exactly a func-
tion of n2 because a small mesh is used in the base case for ray
casting and this is used throughout the test. This factor was on
the order of 700 faces for most of our test (which is significantly
greater than even log n). So our form factor algorithm is slightly
greater than n2logn overall.

Figure 6 is provided to show how well we performed agains one
of our initial goals: to get a scaling factor of at least two on four
processors. You will notice that this goal was achieved. On up to
the four processors on that case we scaled almost perfectly. The
results obtained on the BlueGene exceeded all of our initial goals.

The final test performed used 128 processors, and raycasting was

Figure 5: Performance as mesh size increases

performed using the full mesh (5503 faces) as well as a reduced
mesh (712 faces). The results to this experiment are still not fully
understood. The reduced mesh had 13% of the faces of the full
mesh. Computing the form factors using this mesh took only 11%
of the time of the full mesh. Theories of why this may be the case
include postulating that it might have been possible for more of
the processors to remain in cache when the smaller mesh was used
or that it could have been close to perfect scaling but an operating
system anomaly could have switched out the case where we were
using the larger mesh.

5 Limitations

5.1 Memory Usage

The major limitation of our software that has prevented us from
scaling to meshes larger than 8500 patches has been excessive



Figure 6: Performance using desktop hardware

memory usage. Currently, the entire mesh geometry and form fac-
tor matrix is stored on every processor. The form factor matrix
alone for 8500 faces is approximately 550MB, so considering the
maximum memory the Blue Gene can have available per processor
is 1024MB, memory usage is a major issue.

There are several solutions to this problem. First, we can most
likely get around storing the entire form factor matrix on any pro-
cessor at a given time. Also, we could distribute the mesh geometry
over all of the processors. This geometry distribution will be dis-
cussed in more detail in the future work section.

5.2 Form Factor File Size

We discovered that one major bottleneck for our algorithm was
writing out the form factor file. As the mesh size grows, so does
the form factor file, which means output takes more time. Since the
file output is done by a single processor after all of the computa-
tion is complete, this is an unacceptably slow serial portion of the
algorithm as a whole.

The best way to avoid this may be to have rank 0 do no form factor
computation and instead be entirely responsible for receiving form
factor rows and writing them to the file as other processors continue
to compute form factors . This would involve changes to the file
format so that rows could be written in arbitrary order which may
actually increase file size, but could improve the parallelism of the
algorithm.

5.3 Brightness Glitch

Near the completion of our project, we noticed that there appears
to be a brightness difference between different size meshes. It is
unknown whether this is based on the initiation of light energy in
the scene or if it is a result of the form factor matrix. Ideally while
the smaller mesh should be less accurate, the amount of light in the
scene should not be affected.

6 Conclusion

This project accomplished the four goals set forth at the beginning.
We were largely successful speeding up radiosity using parallel
computing. We ran runs up to 2000 processors while still scaling

at greater than 60%. Up to 500 processors the scaling was close to
linear.

Our initial goal of scaling by a factor of at least 2 using 4 processors
was exceeded when we scaled to nearly 4 times using 4 processors.
The implementation was done using the Messages Passing Interface
as specified. In the future, we may take advantage of more of the
variety of calls in MPI, but we were largely successful. We success-
fully set a good foundation for future research as will be described
in the future work section.

We discovered that scaling to several thousand processors is pos-
sible, but that scaling to any more necessitates a more intelligent
data structure. The form factor matrix became approximately 550
megabytes on our largest test runs. Because the Blue gene can only
have 1 gigabyte of space per processor even in co-processor mode,
it will be necessary to change the structure in future work.

Overall, the project was largely successful. All goals were met and
future areas of research were discussed and planned.

7 Division of Labor

It is hard to define the division of labor between team members as
towards the end of the project much of the project was done in close
communication either in the same room or in close communication
on-line. Both team members did equal work setting up mpi on their
respective machines as well as contributing to the final paper.

Josh did more of the work setting up the initial MPI program, in-
cluding the initial work in attempting to balance work on proces-
sors. He also was responsible for running the jobs on the blue gene,
creating the charts, and solving the endianness issues.

Jon’s designated work included cleaning up the initial code and pro-
viding some additional optimizations. He experimented with the
role of processor 0 (ultimately making it compute as well), and ad-
justed the MPI calls to use MPI pack.

Many other individual bugs were worked out throughout the course
of the project which were divided fairly equally through the group.

Overall, both group members spent upwards of 40 hours working
on this project.

8 Future Work

As this research is part of a graduate student’s research the amount
of potential future work is more than there is room for here. This
section is a small selection of that.

8.1 Reduce Memory Usage

As the primary current limitation of this code is that the form factor
is too large in memory, the most immediate initial work will be to
find ways to reduce the size of the form factor matrix. This could
be achieved in a number of ways. The simplest one would be to
reduce the form factors from double precision to C++ floats. This
will enable the form factor to grow to twice the size or have a factor
of
√

2 more faces. This will not be sufficient to run the large scale
test.

8.2 Distributed Geometry

One major improvement that could be made would be to distribute
the mesh geometry over all of the processors, similar to the im-
plementation by Studdard[Studdard et al. 1995]. This would have



several advantages over the current system, where the gometry is
replicated on every processor.

First, it would reduce the amount of memory required on each pro-
cessor and help the software scale to larger meshes. Secondly, if
implemented correctly, the geometry can be distributed in a way
similar to a spatial data structure, where a single processor contains
the faces for certain areas of space. This can reduce the cost of ray-
casting, since a query could be done asking each processor if a ray
intersects their space, without checking all faces inside. Also, each
processor could store their data in a hierarchical data sctructure,
such as an octree, to further speed up intersection testing.

8.3 Improved MPI Communication

Another useful topic for future research would be more effectively
using MPI. Currently, almost the entire implementation is done us-
ing blocking sends and receives. This only utilizes one of the Blue-
Gene’s 3 networks. It would be useful to see how performance
changes if collective operations such as MPI Gather are used.

8.4 Selective Form Factor Sending

To get to even larger matrices without running into scaling isues,
a method will be used to only store the more important part of the
matrix. This will likely be in the form of only storing the top 10%
or 20% of the matrix. If the form factors are still normalized this
will enable no light to be lost and should provide a fairly accurate
approximation in cases where there are many occlusions (or many
rooms).

8.5 Useful Applications

In lighting research it is often useful to compute the amount of light
at one particular point in a room. Future research will be done
which shows a graph of the amount of light in a room across times
in a day in one axis and days of the year in the other.

Acknowledgements

To Barb Cutler for the code base as well as direction in the project.

References

ADIGA, N., ALMASI, G., ET AL. 2002. An overview of the blue-
gene/l supercomputer. In Supercomputing ’02: Proceedings of
the 2002 ACM/IEEE conference on Supercomputing, IEEE Com-
puter Society Press, Los Alamitos, CA, USA, 1–22.

GORAL, C. M., TORRANCE, K. E., GREENBERG, D. P., AND
BATTAILE, B. 1984. Modeling the interaction of light between
diffuse surfaces. SIGGRAPH Comput. Graph. 18, 3, 213–222.

GRAMA, A., KARYPIS, G., GUPTA, A., AND KUMAR, V. 2003.
Introduction to Parallel Computing: Design and Analysis of Al-
gorithms, 2nd ed. Addison-Wesley.

STRZLINGER, W., AND WILD, C. 1994. Parallel visibility compu-
tations for parallel radiosity. In Parallel Processing: CONPAR
94 - VAAP VI (Third Joint International Conference on Vector
and Parallel Processing), B. Buchberger and J. Volkert, Eds.,
vol. 854 of Lecture Notes in Computer Science, 405–413.

STUDDARD, D., WORRAL, A., PADDON, D., AND WILLIS, C.
1995. A parallel radiosity system for large data sets. In The
Third International Conference in Central Europe on Computer

Graphics and Visualization 95, V. Skala, Ed., vol. 2, University
of West Bohemia, 421–429.

STÜRZLINGER, W., SCHAUFLER, G., AND VOLKERT, J. 1995.
Load balancing for a parallel radiosity algorithm. In PRS
’95: Proceedings of the IEEE symposium on Parallel rendering,
ACM, New York, NY, USA, 39–45.



Figure 7: Rendering of 8.5k face mesh, radiance values interpolated across faces

Figure 8: Rendering of 8.5k face mesh, wireframe view


