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Abstract

Mirages are difficult to simulate in real time because they are instances of refraction. This is
a shame, because a mirage effect is an easy way to convey a sense of temperature in a
scene. Our approach details a simple, fast method to render believable mirage effects .
This approach can be easily added to realtime applications that wish to use this effect.

Introduction

Refraction in real time rendering has always been a tricky subject. As the mirage is an
example of refraction it has to deal with many of the problems. Rasterization by default
expects linear lines from the scene to the eye and does not account for refracted lines. As
refracting the pixel locations during rasterization would be prohibitively expensive most
refraction is performed after the general scene has been rendered. During this second pass
we need to take into account the difference in refraction to be able to create both inferior
mirages, which show an object below its true position, and superior mirages, which show an
object above its true position.

To accommodate, we provide a two pass rendering technique to create a simplified mirage
effect.

Our Approach

1. Anna Zinkova. http://en.wikipedia.org/wiki/
File:Farallon_Islands_at_inferior_mirage_no_mirage_and_superior_mirage.jpg



Our approach is a simplification of Wyman's approach in An Approximate Image-Space
Approach for Interactive Refraction. In a typical refraction problem, rays of light refract
twice: once as they enter the refractive geometry and again as they leave. The distance
that a ray travels inside the refractive surface determines a displacement in the ray's exiting
path. To handle this, each refractive surface needs to be rendered twice: both for back-
facing and front-facing polygons.

Because the cause of a mirage is the refraction caused by a temperature gradient, it would
seem natural to model the heated region and refract as we enter and leave it. However,
due to varying temperature gradients, using this approach is much more complicated than
refracting into solid geometry.

Instead of modeling temperature throughout the scene, we model only the temperature
gradients. By assuming that temperature on either side of a gradient is constant, we
eliminate the need to undo our refraction when leaving the region's geometry, allowing us
to handle the entire mirage process with only one additional rendering pass.

Figure n: in A an object is viewed through refractive geometry. Light is refracted twice
before hitting the image. In B the object is inside the refractive geometry, meaning light
must only refract once.

Additionally, we realize that the actual gradient does not matter except in the case where an
object is not only inside the heated area, but also inside the area of heat change. Because
of this, we can replace the gradient, a three dimensional region, with a single surface
showing the gradient's total disturbance.

Thus, our model is very simple. In addition to the scene geometry, we keep track of a set
of surfaces representing areas of notable temperature gradient. These areas are textured
with the intensity of this gradient around that surface.

We render in two passes: first we render the regular scene geometry, saving the screen
image and zbuffer as textures. Next, we render the surfaces representing temperature
gradients. Using a fragment shader, we perform the following operation on each pixel of



The scene capture shows up at the center of
the screen space and clamps everywhere else.

temperature gradient:
1. Compute the distance from the scene geometry by comparing the pixel's zbuffer with

our stored zbuffer data at that pixel from last pass.
2. Compute the shift caused by refraction by multiplying this distance with the slope

indicated by the intensity texture of this temperature gradient.
3. Add this shift to the pixel's coordinates to get the screen coordinates of the

appropriate pixel.
4. Retrieve the color from our stored screen image.

This approach should work on any set of temperature gradient surfaces, but we primarily
tested on particle systems set to display our texture gradient. The movement of the
particles is responsible for the iconic shimmer effect associated with a mirage.

Challenges



One challenge that set us back some time
was finding the method of turning screen
space into texture space. This step is
performed in our solution through a vertex
shader. For vertex shaders, you must
transform the given vertex in model space
to screen space which is done by
multiplying the vertex by the model view
matrix and then the projection matrix. This
resulting position is now in screen space.
We need to transform this value further to

get it into texture space for our fragment
shader which perform the refraction from
the current scene render.

We were able to get the primary part of the
math for this transformation. It didn't give
a great result (top to the right).

vTexCoord = (gl_Position.xy + vec2(gl_Position.w)) * 0.5;

With a long look through internet with google's help we were able to find a blog article that
provided that last small bit to the
formula. 2

vTexCoord = (gl_Position.xy + vec2(gl_Position.w)) * 0.5;
vTexCoord /= gl_Position.w;

Presenting much better results. At the time the fragment shader simply sampled that
position on screen. So the result shows nothing special. It does not change the scene.

The top image to the right also displays another issue we encountered but could not fix for
Z's machine where a stripping effect occurred on the area mirage geometry was being
rendered.

Limitations

Our approach has a number of limitations, some inherent in the design and others because
of errors in our implementation.

2. Wolfgang Engel
http://diaryofagraphicsprogrammer.blogspot.com/2008/09/calculating-screen-space-
texture.html



The major limitation in our design is
that we cannot model cases where light
bends behind an object. This is due to
the fact that by the time our mirage
pass has begun, all geometry behind
that immediately visible in the screen
has been discarded. With an inferior
mirage, this problem can only happen
when a heat distortion appears near a
busy ceiling, and thus is rather
unlikely. However, with superior
mirages, the problem occurs near a
busy floor. This is much more likely,
and our effect is less convincing on
these mirages. To the left you can see
the errors this causes in a superior

mirage: you should be able to see behind the cube, but instead see the cube itself being
pulled upwards (and creating numerous artifacts in the process).

Additionally, we cannot model a gradual temperature gradient that intersects an object. We
can approximate a gradual temperature gradient using a series of gradient surfaces, but if
an object intersects these surfaces the jump will be visible.

Other limitations are due to errors in our implementation. To properly handle a gradual
gradient using multiple gradient textures, we need to first sort them in painter's algorithm
order, then draw every one. Because of limitations in the JME engine we created our
implimentation in, we could not find a way to sort geometry before it goes through our
rendering pass. To alleviate this, we only draw the frontmost geometry. However, this is
still technically incorrect.

Additionally, an error in our shader exists that causes it to treat all rays hitting the surface
as being perpendicular to the surface. We should take the angle to the camera into account
in these cases. Thankfully, this specific error is almost imperceptible. It would be visible in
cases of overlapping distortions, but because of the above error these cannot be seen
anyway.

Further Work
The limitations in our approach caused by errors in our implementation could be fixed. This
would allow a large number of gradual gradient effects to be possible that can't be achieved
with the implementation's current state.

Limitations due to our actual approach are more difficult to fix. The problem of what to do
in the case of an object inside of a gradual gradient could potentially be fixed by intelligently
generating temperature gradient textures according to the camera's position. This,
however, would require that the simulation know the 3D temperature distribution, which is
currently not present.

Our big limitation, that of not being able to see behind objects, would be much more
difficult to fix. Because the initial (plain) rendering pass discards the information that would
be needed to do this properly, it seems that the only solutions would involve additional
passes or some method of storing the last few layers of the zbuffer and scene texture when
drawing. It may also be possible to solve this by marking locations where it causes errors
and do an extra rendering pass afterwards.
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