Irradiance Caching & Photon Mapping

Today
- Ray Tracing Review
- Irradiance Caching
- Photon Mapping
- Ray Grammar

Last Time?
- What is a Pixel?
- Aliasing
- Fourier Analysis
- Sampling & Reconstruction
- Mip maps

Ray Casting
- Cast a ray from the eye through each pixel

Ray Tracing
- Cast a ray from the eye through each pixel
- Trace secondary rays (light, reflection, refraction)

Monte-Carlo Ray Tracing
- Cast a ray from the eye through each pixel
- Cast random rays to accumulate radiance contribution
 - Recurse to solve the Rendering Equation
 - Should also systematically sample the primary light
Monte Carlo Path Tracing
- Trace only one secondary ray per recursion
- But send many primary rays per pixel (performs antialiasing as well)

Bi-directional Path Tracing
- Start from both eye and lights
- Create all compound paths
 - Evaluate geometric/visibility term at connecting vertices: \(\cos \theta \cos \theta' / r^2 \)

Challenging Indirect Lighting Scene
- Backward path tracing
- Forward path tracing
- Bi-directional path tracing

Bi-directional Path Pyramid
- Path length
 - Only from eye
 - Only from light

Questions?
- Why do we need “good” random numbers?
 - With a fixed random sequence, we see the structure in the error

Today
- Ray Tracing Review
- Irradiance Caching
- Photon Mapping
- Ray Grammar
Path Tracing is costly

- Needs tons of rays per pixel

Direct Illumination

Global Illumination

Indirect Illumination: smooth

Irradiance Cache

- The indirect illumination is smooth
- Store the indirect illumination

Irradiance Cache

- Interpolate nearby cached values
- But do full calculation for direct lighting
Today

- Ray Tracing Review
- Irradiance Caching
- **Photon Mapping**
- Ray Grammar

Reading for Today:

Photon Mapping

- Preprocess: cast rays from light sources
 - independent of viewpoint

Photon Mapping

- Store photons
 - position + light power + incoming direction
Photon Map

- Efficiently store photons for fast access
- Use hierarchical spatial structure (kd-tree)

Rendering with Photon Map

- Cast primary rays
- For secondary rays
 - reconstruct irradiance using k closest photons
- Combine with irradiance caching and other techniques

Photon Map Results

Photon Mapping - Caustics

- Special photon map for specular reflection and refraction

Comparison

| Path Tracing | 1000 paths/pixel | Photon mapping |

Today

- Ray Tracing Review
- Irradiance Caching
- Photon Mapping
- Ray Grammar
Ray Grammar

- Classify local interaction:
 - E = eye
 - L = light
 - S = perfect specular reflection or refraction
 - G = glossy scattering
 - D = diffuse scattering

From Dutre et al.’s slides

Classic Ray Casting/Tracing

Ray casting: L D E

Ray tracing: L D S* E

“Adaptive Radiosity Textures for Bi-directional Ray Tracing”
Heckbert SIGGRAPH 1990

Photon Tracing

Radiosity: L D* E

Caustics: L S* D E
 (or worse!)

“Adaptive Radiosity Textures for Bi-directional Ray Tracing”
Heckbert SIGGRAPH 1990

Advanced Rendering References

- Eric Veach’s PhD dissertation

Advanced Global Illumination

Reading for Friday 4/4:

- Post a comment or question on the LMS discussion by 10am on Tuesday 1/29