
Cinematic Particle Systems with OpenCL

Tim Horton
∗

Rensselaer Polytechnic Institute

Figure 1: A simple gravity simulation with two emitters and
three supermassive particles (approx. 45,000 particles)

Abstract

High-particle-count simulations are becoming increasingly
crucial in many different aspects of our world today: both in
entertainment — within video games, movies, and the like
— and in scientific fields, where particle systems are capable
of simulating and visualizing many interesting phenomena.

This paper will explore the possibility of parallelizing the
simulation of these large particle systems and offloading
them to very-parallel1 hardware which is usually only used
for rendering: the video card.

We will also touch briefly on ways to design a system for
describing particle systems in a generalized way, though the
majority of the work that is currently in a functional state
centers around simulation and rendering.

1 Introduction

Simulation of large particle systems requires a large amount
of computation — each particle must be inspected and up-
dated. For certain types of particle systems — n-body grav-
ity, for example — each particle is affected by its neighbors,
increasing the required calculation time drastically.

This is what we aim to address with this paper. While it’s
unlikely that we can contribute any improved simulation al-

∗e-mail: hortot2@rpi.edu
1As opposed to massively-parallel, like the CCNI’s Blue

Gene/L, or the slightly-parallel CPU in most modern computers

gorithms, we can instead work to parallelize these algorithms
and implement them with OpenCL, which will allow them
to run on the GPU contained within modern graphics cards.
This paper will demonstrate both the parallelization of the
application of forces on large numbers of particles and the
significant performance gained by doing so.

We will also explore a simple parallelized particle renderer,
as well as the potential for the integration of our simulator
into the popular open-source 3D package, Blender.

It is important to understand that the system we’ve devel-
oped is purely for offline work — it is not suitable for re-
altime simulation and rendering. Thus, cinematic. This is
primarily because of the relatively poor performance of the
renderer. However, as you’ll notice in section 4, the speedup
provided by our work is actually sufficient to make some
simulations fast enough to run in real time, if one were to
find a faster renderer.

2 Prior Art

[Drone 2007] discusses a system quite similar to ours — they
use the GPU to simulate large-particle-count systems, in-
cluding computationally-intensive forces like n-body gravity
— however, they make one simplification which drastically
improves performance: they assume that the particle data
never needs to return to the CPU. This means that the ex-
tremely expensive copying to and from video memory which
is done continually within our system is completely unnec-
essary, but also removes the ability to use the particle data
in any flexible way (i.e. copying it to a file to be rendered
later, etc.).

3 Implementation

The code for this paper is available under the two-clause
BSD license at:

http://github.com/hortont424/particles

It consists of about 3000 lines2 of C and Objective C, which
encompass the curve editor and other design tools, an ab-
straction layer on top of OpenCL3, and all of the code to
drive simulation, preview, and rendering. In addition, there
are well over 300 lines of OpenCL Kernel Language, which
includes the code to apply each of the forces as well as the
renderer.

3.1 Particle Systems

A particle system is defined by a simple JSON4 file (figure
2 is a very simple example of such a file), which lays out
all of the system’s parameters: the number of particles to

2According to sloccount
3the Open Computing Language, a framework for creating

programs using a language similar to GLSL and run on the GPU
4JavaScript Object Notation, a format often used today for

information exchange in place of things like XML, due to its

lightweight nature

1 {

2 "initialParticles": {

3 "count": 1

4 },

5 "forces": [

6 {

7 "kernel": "gravity",

8 "strength": 1.0,

9 "noise": 0.0,

10 "mass": 100000000000.0,

11 "particle": {

12 "fixed": true,

13 "x": 1.2,

14 "y": 1.2,

15 "z": 0.5

16 }

17 }

18],

19 "emitters": [

20 {

21 "birthRate": 20.0,

22 "initialVelocity": 0.0,

23 "particle": {

24 "fixed": true,

25 "x": -1.2,

26 "y": 1.2,

27 "z": 1.5

28 }

29 }],

30 "integration": {

31 "kernel": "verlet",

32 "timestep": 0.005

33 }

34 }

Figure 2: A simple sample curve file, with one emitter and
one force

start out with, the location and properties of emitters, the
location and properties of forces, and many other things. If
Interpolator had been finished, this file would also contain
the mappings between these properties and various curve
files.

3.2 Design

The particle system design tools implemented during the
course of this project are not entirely functional, as they
took a backseat to the simulation, preview, and rendering
components, mostly due to the fact that it’s possible to de-
sign a system by hand.

The primary design tool, which can be seen in figure 3, is
called Interpolator, as it is quite literally a tool to design in-
terpolation curves. It’s a Cocoa application which provides
an interface to edit arbitrary Bézier splines and map them
to properties of an element in the particle system. For ex-
ample, one curve might dictate the x position of an emitter,
while another might be mapped to the lifetime that emitter’s
children.

Since this tool was not finished in time for this paper, it
is not integrated into the simulation and rendering phases
introduced here.

Figure 3: A screenshot of the unfinished Interpolator particle
system design tool

3.3 Simulation

The simulation phase is the heart of our project. Start-
ing from a system description file (as shown in figure 2), it
eventually provides the position of each particle to either
the previewing or rendering subsystems in a frame-by-frame
manner. It involves various steps, which we’ll outline below.

3.3.1 Parsing the .psys

The particle system description file, in JSON format, is
parsed with Michael Clark’s MIT-licensed json-c library.
All of the properties are read into internal data structures
and validated, with reasonable defaults being filled in for
missing values.

3.3.2 Load necessary kernels

There are quite a few OpenCL kernels included with this
project; since the program now knows which ones it needs,
it can now instantiate one kernel for each force, as well as
one copy of the interpolator kernel.

This is done by making a copy of the appropriate master ker-
nel, all of which are loaded into a kernel library and compiled
at the beginning of the process.

3.3.3 Randomly generate default particles

Some particle systems have an initial set of particles — some,
because they don’t include any emitters, others, because
they simply want to start with some particles displayed. At
the moment, the only parameter of the initial particles that
can be controlled is the number; they are placed randomly in
the unit cube with zero initial velocity. Eventually, it would
be ideal to support manipulation of the range and location of
random positions, as well as of the mass and initial velocity.

3.3.4 Evaluate emitters

Evaluation of emitters primarily involves adding new parti-
cles at the location of the particle and giving them an initial
velocity (depending on the emitter’s settings).

Emitters are evaluated on the CPU (instead of the GPU).
This is done primarily because of a limitation in OpenCL
where one cannot resize a buffer from inside a kernel —
so, there would be no way to allocate space from inside an
emitter kernel.

One key performance consideration while evaluating emit-
ters is how many new particles to allocate space for. If
we’re given a constant emitter, we don’t want to allocate
just enough space during each frame to fit the new particles,
because then we’d have to allocate more space on each new
frame. Instead, we allocate enough space for 10 frames of
said emitter plus 10245 extra particles, which seems to stave
off the performance-crushing problem of constant buffer re-
allocation, at least for the systems we’ve tested.

3.3.5 Evaluate forces

At this point, all particle data is copied to the GPU. Each
force’s kernel is instantiated once for each particle, and many
such kernels can operate on their respective particles in par-
allel.

Each instance of the force kernel computes its own contribu-
tion to the acceleration of the particle it affects, adding the
result to that particle’s global acceleration accumulator.

A sample force — pushing outward on all particles from one
direction, with falloff — is included in figure 4.

3.3.6 Integrate positions

Our simulation uses a form of Verlet integration from [Dum-
mer 2009], which is theoretically much more stable than ba-
sic Euler integration (which was used during the project’s
inception) in order to apply the acceleration values to the
particles positions. This works by keeping around the pre-
vious position of the particle, instead of a velocity value:

pnext = (p− plast) + (ap ∗ t2), (1)

where t is the timestep and ap is the acceleration due to all
of the forces on the given particle.

3.4 Preview

The preview subsystem takes the output from the simulator
and uses an OpenGL view to draw all of the particles as
uniformly sized red dots, as you can see in figure 5. This
rendering is very rough but also very quick — fast enough
to be real-time, in many cases.

Preview rendering should be used when designing particle
systems, as it provides nearly instant — though relatively
unattractive — feedback.

3.5 Rendering

Our renderer is currently very simple: it takes the particle
data from the simulation phase and turns it into a greyscale
image. It does this by iterating over each pixel of the out-
put image, mapping the pixel’s location into ’particle space’,
then searching through all of the particles, finding those
which are within � units of it, and updating the output im-
age. Particles are orthographically projected onto the plane

5This is completely arbitrary, chosen by random dice roll!

1 __kernel void force(

2 __global PAPhysicsParticle * input,

3 __global PAPhysicsParticle * output,

4 __global PAPhysicsNewtonian * newtonIn,

5 __global PAPhysicsNewtonian * newtonOut,

6 __global PAPhysicsForce * force,

7 const unsigned int count)

8 {

9 float4 fpoint, loc, accel, uv;

10 float dist;

11

12 int id = get_global_id(0);

13

14 if(id > count || input[id].lifetime == 0)

15 return;
16

17 // Load location of force and current point
18 loc = (float4)(input[id].x, input[id].y,

19 input[id].z, 0.0f);

20 fpoint = (float4)(force->particle.x,

21 force->particle.y,

22 force->particle.z, 0.0f);

23

24 // Compute acceleration on particle
25 uv = normalize(loc - fpoint);

26 accel = force->data.normal.strength * uv;

27 dist = distance(loc, fpoint);

28 accel = accel * (1.0f / powr(dist + 1.0f,

29 force->data.normal.falloff.strength));

30

31 // Accumulate acceleration on particle
32 newtonOut[id].ax += accel.x;

33 newtonOut[id].ay += accel.y;

34 newtonOut[id].az += accel.z;

35 }

Figure 4: A simplified version of our ’normal’ force kernel,
which pushes outward on particles from a point, with falloff

Figure 5: Example frame of preview output (simple gravity
system); approximately 15,000 particles

Figure 6: Smooth rendering mode

of the image, and — at the moment — depth information is
completely ignored.

For the purposes of all of the systems contained in this paper,
� = 0.1.

There are two main rendering modes at the moment:
smooth, and cloudy.

Cloudy simply increments the luminance of the pixel for
each particle it finds that’s within � units, leading to ’circles
of influence’ around each particle, as seen in figure 1.

Smooth weights the increase in luminance by the distance
to the particle, according to (0.1− dist) · k, as seen in figure
6. k is an ’exposure’ constant, and is determined by the
number of particles likely to be near each other at any given
time.

We’ve asked numerous people which of the two rendering
modes they prefer, and have come up almost completely
split, so they’re both included for the time being.

4 Performance & Results

4.1 Hardware

All benchmarks and performance tests were taken on a ma-
chine running Mac OS X with a Core 2 Duo E7200 at
2×2.53GHz with 8GB of RAM and an ATI Radeon 4890
at 800×850MHz with 1GB of VRAM.

4.2 Benchmarks

Figure 7 shows the relative frame-rates of three different
particle systems which we’ve been using as sample systems
on the CPU versus the GPU.

The n-body system is a simulation of 16,384 particles all
interacting with each other, simulating gravity. There are

GPU CPU GPU CPU GPU CPU
n�body simple gravity two�forces

100

200

300

400

fps

Figure 7: Simulation frame-rate of various different systems
on CPU vs. GPU; higher values are better; the horizontal
line rests at 60 fps

no emitters in this system, and only one force.

The simple gravity system (also pictured in figure 1) is a
simulation with two emitters — which emit 20 particles per
frame each — and three equal-strength gravity wells (in the
top right, top left, and center). The gravity simulation in
this system is much simpler than in n-body, as the particles
don’t interact with each other, just with the three wells.

The two-forces system is a simulation with 1,048,576 parti-
cles and two outward-acting normal forces placed equidistant
from the center on a diagonal through the random cloud of
particles.

You’ll note that n-body shows a drastic speedup when
moved to the GPU — almost 10x! This is primarily be-
cause the n-body force is perfect for parallelization, as it has
a long per-particle runtime (each particle has to iterate over
all of the other particles, since we lack a spatial hashing data
structure).

Something similar is true for two-forces: while it’s not actu-
ally nearly as computationally intensive per-particle, there
are such a sheer number of particles that the parallelism
comes into play in a big way, providing a less-impressive-
but-still-significant 4× speedup.

The simple gravity system shows the weakness of our ap-
proach: since emitters are evaluated on the CPU no matter
what (because of the infeasbility of resizing buffers on the
GPU discussed in section 3.3.4), and incur an additional pair
of copies to/from the GPU, the CPU is able to significantly
outpace the GPU. This makes it clear that emitter-heavy
systems with few expensive forces are not well suited for our
approach.

4.3 Video

Both the preview and rendering subsystems have the ability
to output a PNG file for each simulated frame. These can
be recombined and encoded with most video editing tools
into a usable format.

5 Applications

The most likely application for GPU-side particle systems is
games; however, our approach isn’t targeted at games — pri-
marily because we copy the particle data back to the CPU,
something unnecessarily expensive for a live game. Instead,
our approach would more likely be useful to augment the
current particle system tools within Blender, Apple’s Mo-
tion, or Adobe’s After Effects, all of which are meant for
semi-offline work where the particle data is at some point
needed for more generic computation on the CPU.

All three of these tools currently have advanced particle sys-
tems, but it seems reasonable, given the speedup demon-
strated within this paper, that they might benefit signifi-
cantly by offloading at least some of their physical simulation
to the GPU.

6 Future Work

6.1 Spatial Hashing

One improvement which would massively improve the per-
formance of both the renderer and some of the forces would
be the inclusion of a spatial hashing mechanism.

For example, the renderer currently iterates over all of the
particles to find the few which are very close to the pixel
currently being rendered — this operation is currently im-
plemented in the most näıve way possible, which is O(n2).
The implementation of a kd-tree would make this O(n2/3)
instead — quite a significant improvement, though at the
expense of a measurable increase in complexity.

Alternatively, [Drone 2007]’s ”force splatting” approach
might make even better use of the optimized hardware avail-
able, though it’s unclear to me that the summing operation
(which their approach improves) is actually the primary bot-
tleneck.

6.2 Design Tools

The design tools need a significant amount of work before
they’re usable. Most importantly, a method for exporting
curves to files which the simulator can import and use to
manipulate properties must be implemented.

Additionally, there’s no rulers on either axis in Interpolator
— these would be necessary before one could even imagine
using it as a design tool.

Really, the time constraints on this project made the im-
plementation of both Interpolator and the remainder of the
project very unlikely, and, as such, there’s a lot left to do.
We’re actually planning on continuing work in our free time
over the summer, as this has turned out to be an eye-opening
project.

6.3 Rendering Improvements

In the future, the renderer could be improved visually
through a few means. Firstly, it would be a significant ad-
vantage to be able to support color image buffers — this
way, various sorts of information could be represented. For
example, depth data could be encoded in one of the color
channels, providing an easier way to understand the data.

In addition, the ability to move the camera (and script the
camera’s movements with Interpolator curves) would make
for much-improved visualizations, but would also require sig-
nificant additional complication. However, we were planning
on implementing raytracing through the particles in order
to provide self-shadowing and other useful features, which
would also imply the ability to move the camera.

7 Conclusion

After consuming quite a bit of processing power doing ex-
periments, and after writing a few thousand lines of code, I
think it’s safe to say that we’ve introduced a feasible imple-
mentation of very-parallel particle simulation on the GPU.
It’s also quite clear that it’s very possible to use this tech-
nology in order to speed up highly-physically-accurate sim-
ulations, especially ones with high algorithmic complexity,
like the n-body problem.

It’s also clear that our implementation is not the be-all-end-
all of particle simulators. There are many missing cases,
and a few conditions in which our simulation actually nega-
tively impacts performance, but it seems that an intelligent
algorithm could certainly switch between target devices de-
pending on the nature of the system, massively improving
performance for many cases.

We would have liked to have an extra month or two to work
on this; it’s likely that such time would have made for a much
more interesting final result... alas, a semester is short, so
we only had time for minor successes. There’s always the
summer...

References

Drone, S. 2007. Real-time particle systems on the GPU in
dynamic environments. In SIGGRAPH ’07: ACM SIG-
GRAPH 2007 courses, ACM, New York, NY, USA, 80–96.

Dummer, J., 2009. A simple time-corrected ver-
let integration method. http://www.gamedev.net/

reference/programming/features/verlet/.

Kipfer, P., Segal, M., and Westermann, R. 2004.
UberFlow: a GPU-based particle engine. In HWWS ’04:
Proceedings of the ACM SIGGRAPH/EUROGRAPHICS
conference on Graphics hardware, ACM Press, New York,
NY, USA, 115–122.

Reeves, W. T. 1983. Particle systems—a technique for
modeling a class of fuzzy objects. ACM Trans. Graph. 2,
2, 91–108.

