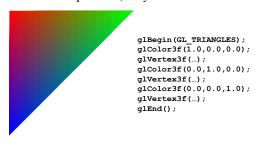
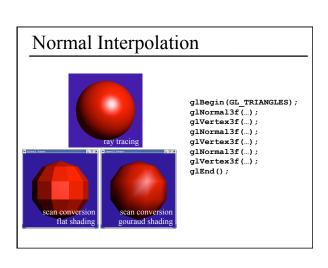
Spline Curves

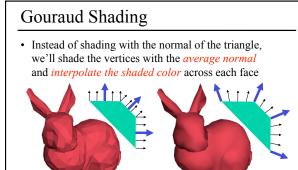
Last Time? • Adjacency Data Structures - Geometric & topologic information - Dynamic allocation - Efficiency of access • Mesh Simplification - edge collapse/vertex split - geomorphs - progressive transmission - view-dependent


Today

- Interpolating Color & Normals in OpenGL
- Limitations of Polygonal Models
- Some Modeling Tools & Definitions
- What's a Spline?
- Linear Interpolation
- Interpolation Curves vs. Approximation Curves
- · Bézier Spline
- BSpline (NURBS)

Color Interpolation


refinement


- Interpolate colors of the 3 vertices
- Linear interpolation, barycentric coordinates

glShadeModel (GL SMOOTH);

- From OpenGL Reference Manual:
 - Smooth shading, the default, causes the computed colors of vertices to be interpolated as the primitive is rasterized, typically assigning different colors to each resulting pixel fragment.
 - Flat shading selects the computed color of just one vertex and assigns it to all the pixel fragments generated by rasterizing a single primitive.
 - In either case, the computed color of a vertex is the result of lighting if lighting is enabled, or it is the current color at the time the vertex was specified if lighting is disabled.

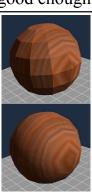
• How do we compute Average Normals? Is it expensive??

Today

- Interpolating Color & Normals in OpenGL
- Limitations of Polygonal Models
- Some Modeling Tools & Definitions
- What's a Spline?
- Linear Interpolation
- Interpolation Curves vs. Approximation Curves
- · Bézier Spline
- BSpline (NURBS)

Limitations of Polygonal Meshes

- Planar facets (& silhouettes)
- Fixed resolution
- · Deformation is difficult
- No natural parameterization (for texture mapping)



implicit polynomials

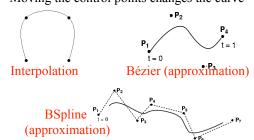
Gouraud not always good enough

- Still low, fixed resolution (missing fine details)
- Still have polygonal silhouettes
- Intersection depth is planar (e.g. ray tracing visualization)
- Collisions problems for simulation
- · Solid Texturing problems

Some Non-Polygonal Modeling Tools Extrusion Surface of Revolution Spline Surfaces/Patches Quadrics and other

Continuity definitions:

- C⁰ continuous
 - curve/surface has no breaks/gaps/holes
- G1 continuous
 - tangent at joint has same direction
- C1 continuous
 - curve/surface derivative is continuous
 - tangent at joint has same direction and magnitude
- Cⁿ continuous
 - curve/surface through nth derivative is continuous
 - important for shading


Questions?

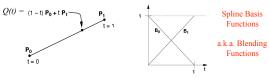
Today

- Interpolating Color & Normals in OpenGL
- · Limitations of Polygonal Models
- Some Modeling Tools & Definitions
- · What's a Spline?
- Linear Interpolation
- Interpolation Curves vs. Approximation Curves
- · Bézier Spline
- BSpline (NURBS)

Definition: What's a Spline?

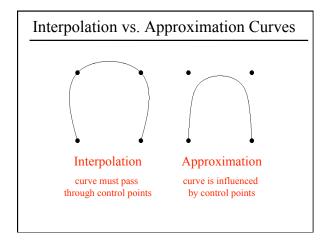
- Smooth curve defined by some control points
- Moving the control points changes the curve

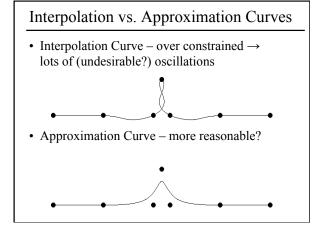
Interpolation Curves / Splines


Interpolation Curves

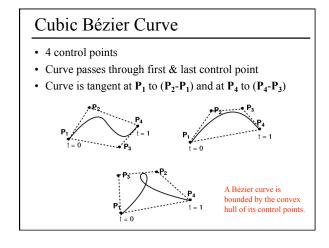
- Curve is constrained to pass through all control points
- Given points P_0 , P_1 , ... P_n , find lowest degree polynomial which passes through the points

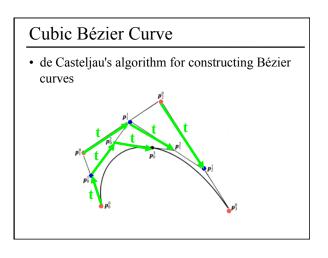
$$\begin{aligned} x(t) &= a_{n-1}t^{n-1} + + a_2t^2 + a_1t + a_0 \\ y(t) &= b_{n-1}t^{n-1} + + b_2t^2 + b_1t + b_0 \end{aligned}$$

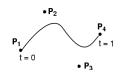

Linear Interpolation


• Simplest "curve" between two points

$$Q(t) = \begin{pmatrix} Q_x(t) \\ Q_y(t) \\ Q_z(t) \end{pmatrix} = \begin{pmatrix} (P_0) & (P_1) \end{pmatrix} \begin{pmatrix} -1 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} t \\ 1 \end{pmatrix}$$

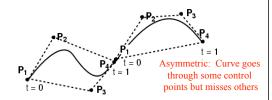

 $Q(t) = \mathbf{GBT(t)} = \text{Geometry } \mathbf{G} \cdot \text{Spline Basis } \mathbf{B} \cdot \text{Power Basis } \mathbf{T(t)}$




Questions?

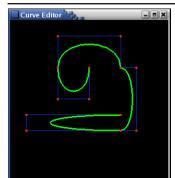
Today • Interpolating Color & Normals in OpenGL • Limitations of Polygonal Models • Some Modeling Tools & Definitions • What's a Spline? • Linear Interpolation • Interpolation Curves vs. Approximation Curves • Bézier Spline • BSpline (NURBS)

Cubic Bézier Curve


$$Q(t) = (1-t)^{3}P_{1} + 3t(1-t)^{2}P_{2} + 3t^{2}(1-t)P_{3} + t^{3}P_{4}$$

$$Q(t) = \mathbf{GBT(t)}$$
 $B_{Bezier} = \begin{bmatrix} 3 & -6 & 3 & 0 \\ -3 & 3 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix}$

Bernstein Polynomials


$$^{\blacktriangleright}$$
 $B_1(t) = (1-t)^3$; $B_2(t) = 3t(1-t)^2$; $B_3(t) = 3t^2(1-t)$; $B_4(t) = t^3$

Connecting Cubic Bézier Curves

- How can we guarantee C⁰ continuity?
- How can we guarantee G1 continuity?
- How can we guarantee C1 continuity?
- Can't guarantee higher C² or higher continuity

Connecting Cubic Bézier Curves

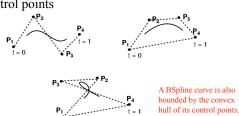
- Where is this curve
 - C⁰ continuous?
 - G1 continuous?
 - C¹ continuous?
- What's the relationship between:
 - the # of control points, and
 - the # of cubic Bézier subcurves?

Higher-Order Bézier Curves

- > 4 control points
- Bernstein Polynomials as the basis functions

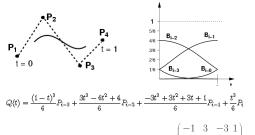
$$B_i^n(t) = \frac{n!}{i!(n-i)!} t^i (1-t)^{n-i}, \qquad 0 \le i \le n$$

- Every control point affects the entire curve
 - Not simply a local effect
 - More difficult to control for modeling

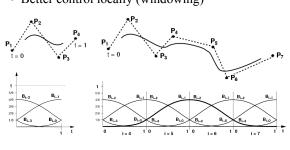

Questions?

Today

- Interpolating Color & Normals in OpenGL
- Limitations of Polygonal Models
- Some Modeling Tools & Definitions
- What's a Spline?
- Linear Interpolation
- Interpolation Curves vs. Approximation Curves
- · Bézier Spline
- BSpline (NURBS)

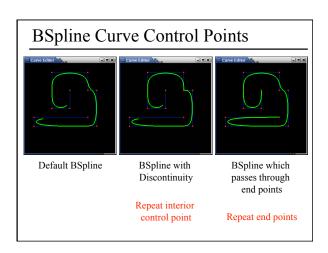

Cubic BSplines

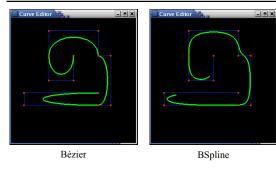
- \geq 4 control points
- Locally cubic
- Curve is not constrained to pass through any control points


Cubic BSplines

$$Q(t) = \mathbf{GBT(t)} \qquad B_{B-Spline} = \frac{1}{6} \begin{pmatrix} -1 & 3 & -3 & 1 \\ 3 & -6 & 0 & 4 \\ -3 & 3 & 3 & 1 \\ 1 & 0 & 0 & 0 \end{pmatrix}$$

Connecting Cubic BSpline Curves


- Can be chained together
- Better control locally (windowing)

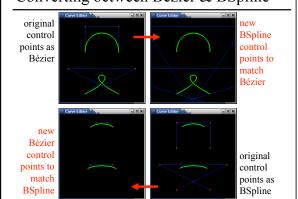

Connecting Cubic BSpline Curves

- What's the relationship between
 - the # of control points, and
 - the # of cubic BSpline subcurves?

Bézier is not the same as BSpline

Bézier is not the same as BSpline

• Relationship to the control points is different



BSpline

$$P_{i=0} = P_{i=0} = P_{i=0} = P_{i+1} = P_{i$$

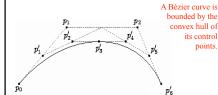
Converting between Bézier & BSpline

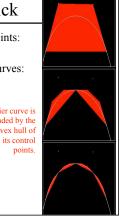
Converting between Bézier & BSpline

• Using the basis functions:

$$B_{Bezier} = \begin{pmatrix} -1 & 3 & -3 & 1 \\ 3 & -6 & 3 & 0 \\ -3 & 3 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix}$$

$$B_{B-Spline} = \frac{1}{6} \begin{pmatrix} -1 & 3 & -3 & 1 \\ 3 & -6 & 0 & 4 \\ -3 & 3 & 3 & 1 \\ 1 & 0 & 0 & 0 \end{pmatrix}$$

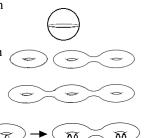

 $Q(t) = \mathbf{GBT(t)} = \text{Geometry } \mathbf{G} \cdot \text{Spline Basis } \mathbf{B} \cdot \text{Power Basis } \mathbf{T(t)}$


NURBS (generalized BSplines)

- BSpline: uniform cubic BSpline
- NURBS: Non-Uniform Rational BSpline
 - non-uniform = different spacing between the blending functions, a.k.a. knots
 - rational = ratio of polynomials (instead of cubic)

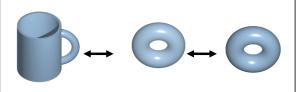
Neat Bezier Spline Trick

- A Bezier curve with 4 control points:
 - $-P_0$ P_1 P_2 P_3
- Can be split into 2 new Bezier curves:

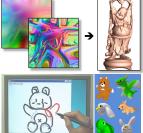


Questions?

Misc. Mesh/Surface Vocabulary


• Genus: The maximum number of disjoint simple closed curves which can be cut from an orientable surface of genus g without disconnecting it is g.

Misc. Mesh/Surface Vocabulary


• Homeomorphic/Topological equivalence: a continuous stretching and bending of the object into a new shape

http://en.wikipedia.org/wiki/Image:Mug_and_Torus_morph.gif

Readings for Today (pick one)

- "Geometry Images", Gu, Gortler, & Hoppe, SIGGRAPH 2002
- "Teddy: A Sketching Interface for 3D Freeform Design", Igarashi et al., SIGGRAPH 1999

• Post a comment or question on the LMS discussion by 10am on Tuesday

Reading for Friday (2/5)

· DeRose, Kass, & Truong, "Subdivision Surfaces in Character Animation", SIGGRAPH 1998

• Post a comment or question on the LMS discussion by 10am on Friday