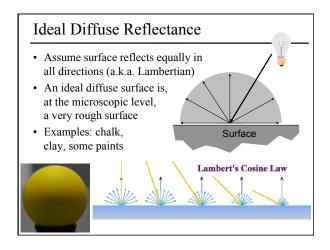
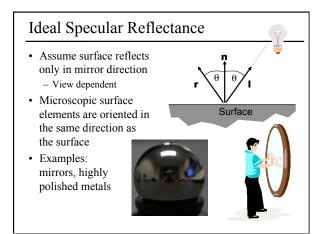
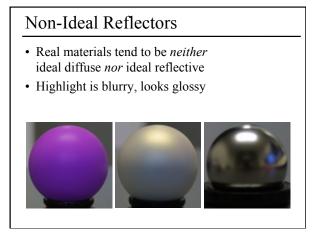
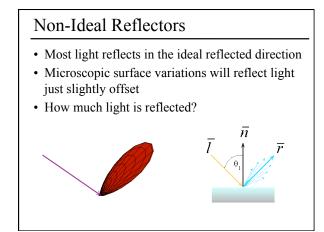
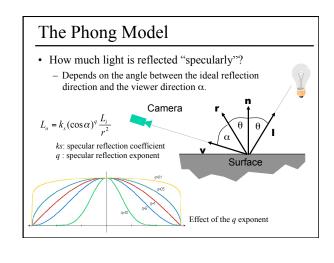

Local vs. Global Illumination & Radiosity An early application of radiative heat transfer in stables.

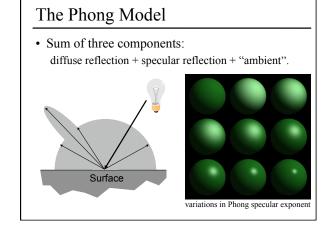


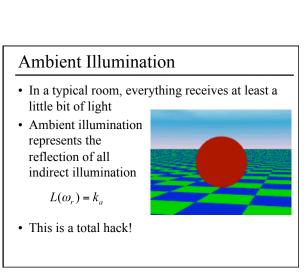

Today


- Local Illumination
 - BRDF
 - Ideal Diffuse Reflectance
 - Ideal Specular Reflectance
 - The Phong Model
- Why is Global Illumination Important?
- · Radiosity Matrix
- Calculating the Form Factors
- · Advanced Radiosity


Ratio of light coming from one direction that gets reflected in another direction Bidirectional Reflectance Distribution Function 4D R(θ_i, φ_i; θ_o, φ_o)

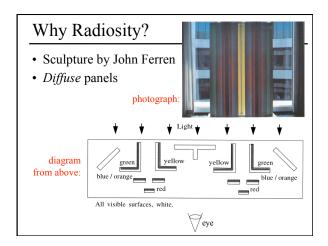


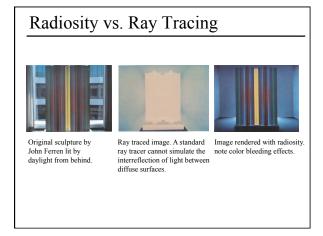


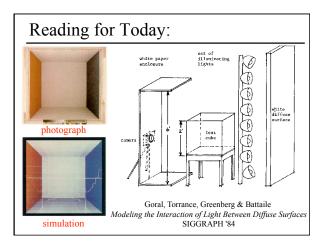


Questions?

Today


- Local Illumination
- Why is Global Illumination Important?
 - The Cornell Box
 - Radiosity vs. Ray Tracing
- Radiosity Matrix
- Calculating the Form Factors
- · Advanced Radiosity


Why Global Illumination?


• Simulate all light inter-reflections (indirect lighting)

– in a room, a lot of the light is indirect: it is reflected by walls.

The Cornell Box

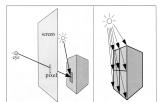
• Careful calibration and measurement allows for comparison between physical scene & simulation

photograph simulation
Light Measurement Laboratory
Cornell University, Program for Computer Graphics

Visualizing Inter-reflections...

direct illumination (0 bounces)

1 bounce

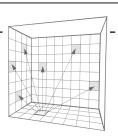

2 bounces

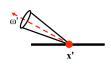
images by Micheal Callahan

Radiosity vs. Ray Tracing

- Ray tracing is an *image-space* algorithm

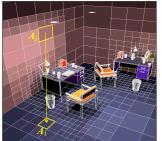
 If the camera is moved, we have to start over
- Radiosity is computed in *object-space*
 - View-independent (just don't move the light)
 - Can pre-compute complex lighting to allow interactive walkthroughs

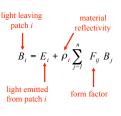



Today

- Local Illumination
- Why is Global Illumination Important?
- Radiosity Matrix
- Calculating the Form Factors
- · Advanced Radiosity

Radiosity Overview


- Surfaces are assumed to be perfectly Lambertian (diffuse)
 reflect incident light in all
 - directions with equal intensity
- The scene is divided into a set of small areas, or patches.
- The radiosity, B_i, of patch i is the total rate of energy leaving a surface. The radiosity over a patch is constant.
- Units for radiosity: Watts / steradian * meter²



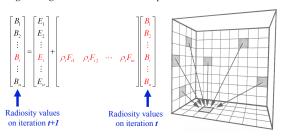
Discrete Radiosity Equation

Discretize the scene into n patches, over which the radiosity is constant

The equation is recursive, but it can be solved iteratively

Radiosity in Matrix Form

$$B_i = E_i + \rho_i \sum_{j=1}^n F_{ij} B_j$$

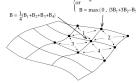

n simultaneous equations with n unknown B_i values can be written in matrix form:

$$\begin{bmatrix} 1 - \rho_1 F_{11} & -\rho_1 F_{12} & \cdots & -\rho_1 F_{1n} \\ -\rho_2 F_{21} & 1 - \rho_2 F_{22} & & & \\ \vdots & & \ddots & & \\ -\rho_n F_{n1} & \cdots & \cdots & 1 - \rho_n F_{nn} \end{bmatrix} \begin{bmatrix} \mathbf{F}_1 \\ B_2 \\ \vdots \\ B_n \end{bmatrix} = \begin{bmatrix} E_1 \\ E_2 \\ \vdots \\ E_n \end{bmatrix}$$

A solution yields a single radiosity value B_i for each patch in the environment, a view-independent solution.

Solving the Radiosity Matrix


The radiosity of a single patch *i* is updated for each iteration by *gathering* radiosities from all other patches:



This method is fundamentally a Gauss-Seidel relaxation

Interpolating Vertex Radiosities

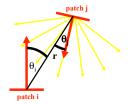
- B_i radiosity values are constant over the extent of a patch.
- How are they mapped to the vertex radiosities (intensities) needed by the renderer?
 - Average the radiosities of patches that contribute to the vertex
 - Vertices on the edge of a surface are assigned values extrapolation

Questions?

Factory simulation. Program of Computer Graphics, Cornell University. 30,000 patches.

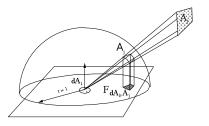
Today

- Local Illumination
- Why is Global Illumination Important?
- Radiosity Equation/Matrix
- Calculating the Form Factors
- · Advanced Radiosity


Calculating the Form Factor F_{ii}

- F_{ij} = fraction of light energy leaving patch j that arrives at patch i
- Takes account of both:
 - geometry (size, orientation & position)
 - visibility (are there any occluders?)

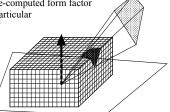
Calculating the Form Factor F_{ij}


• F_{ii} = fraction of light energy leaving patch j that arrives at patch i

$$F_{ij} = \; \frac{1}{A_i} \; \int\limits_{A_i} \int\limits_{A_j} \frac{\cos \theta_i \cos \theta_j}{\pi \; r^2} \; \; V_{ij} \, dA_j \, dA_i \label{eq:Fij}$$

Form Factor Determination

The Nusselt analog: the form factor of a patch is equivalent to the fraction of the unit circle that is formed by taking the projection of the patch onto the hemisphere surface and projecting it down onto the circle.



Hemicube Algorithm

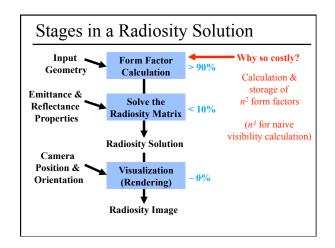
- · A hemicube is constructed around the center of each patch
- · Faces of the hemicube are divided into "pixels"
- Each patch is projected (rasterized) onto the faces of the hemicube

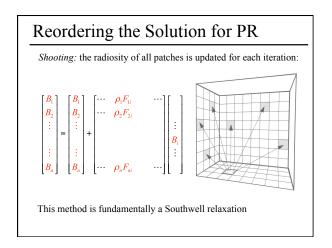
Each pixel stores its pre-computed form factor. The form factor for a particular patch is just the sum of the pixels it overlaps

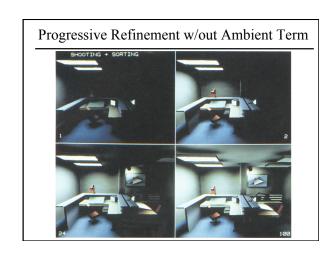
 Patch occlusions are handled similar to z-buffer rasterization

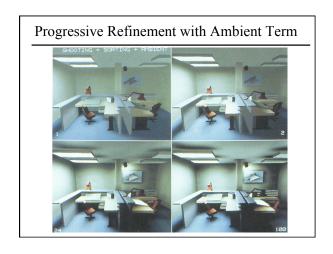
Form Factor from Ray Casting

- Cast *n* rays between the two patches
 - Compute visibility (what fraction of rays do not hit an occluder)
 - Integrate the point-to-point form factor
- Permits the computation of the patch-to-patch form factor, as opposed to point-to-patch


Questions?


Lightscape http://www.lightscape.com


Today


- Local Illumination
- Why is Global Illumination Important?
- Radiosity Equation/Matrix
- Calculating the Form Factors
- Advanced Radiosity
 - Progressive Radiosity
 - Adaptive Subdivision
 - Discontinuity Meshing
 - Hierarchical Radiosity

Progressive Refinement • Goal: Provide frequent and timely updates to the user during computation • Key Idea: Update the entire image at every iteration, rather than a single patch • How? Instead of summing the light received by one patch, distribute the radiance of the patch with the most undistributed radiance.

Today

- Local Illumination
- Why is Global Illumination Important?
- Radiosity Equation/Matrix
- Calculating the Form Factors
- Advanced Radiosity
 - Progressive Radiosity
 - Adaptive Subdivision
 - Discontinuity Meshing
 - Hierarchical Radiosity

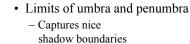
Increasing the Accuracy of the Solution

What's wrong with this picture?

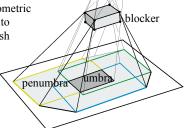
- Image quality is a function of patch size
- Compute a solution on a uniform initial mesh, then refine the mesh in areas that exceed some error tolerance:
 - shadow boundaries
 - other areas with a high radiosity gradient

source

Adaptive Subdivision of Patches

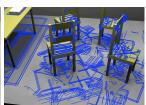


Coarse patch solution (145 patches)


Improved solution (1021 subpatches)

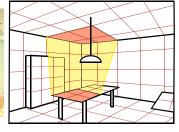
Adaptive subdivision (1306 subpatches)

Discontinuity Meshing



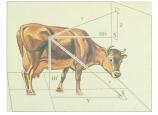
 Complex geometric computation to construct mesh

Discontinuity Meshing



"Fast and Accurate Hierarchical Radiosity Using Global Visibility" Durand, Drettakis, & Puech 1999

Hierarchical Radiosity


- Group elements when the light exchange is not important
 - Breaks the quadratic complexity
 - Control non trivial, memory cost

Practical Problems with Radiosity

- Meshing
 - memory
 - $\, robustness \,$
- Form factors computation

Cow-cow form factor?

- Diffuse limitation
 - extension to specular takes too much memory

Questions?

Lightscape http://www.lightscape.com

Readings for Tuesday 3/4 (pick one):

- "The Rendering Equation", Kajiya, SIGGRAPH 1986 $L(x',\omega') = E(x',\omega') + \int_{P_x'} (\omega,\omega') L(x,\omega) G(x,x') V(x,x') \; dA$
- "A Theoretical Framework for Physically Based Rendering", Lafortune and Willems, Computer Graphics Forum, 1994.

Figure B: An indirectly illuminated scene rendered using path tracing and bidirectional path tracing respectively. The latter method results in within less noise for the same amount of work