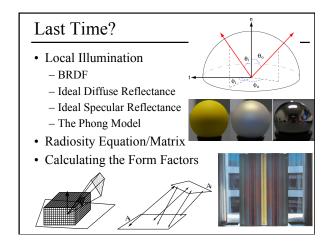
The Rendering Equation & Monte Carlo Ray Tracing

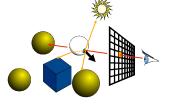


Today

- Does Ray Tracing Simulate Physics?
- The Rendering Equation
- Monte-Carlo Integration
- Sampling
- Monte-Carlo Ray Tracing vs. Path Tracing

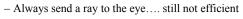
Does Ray Tracing Simulate Physics?

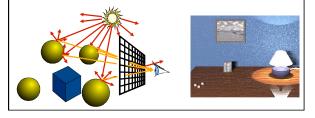
- No.... traditional ray tracing is also called *"backward" ray tracing*
- In reality, photons actually travel from the light to the eye



Forward Ray Tracing

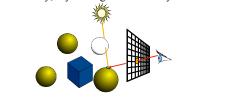
- Start from the light source - But very, very low probability to reach the eye
- What can we do about it?

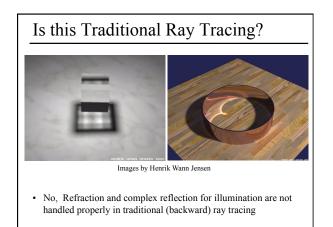


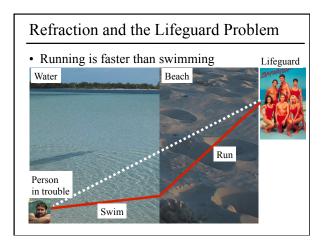


Transparent Shadows?

- What to do if the shadow ray sent to the light source intersects a transparent object?
 - Pretend it's opaque?
 - Multiply by transparency color?
 (ignores refraction & does not produce caustics)
- Unfortunately, ray tracing is full of dirty tricks





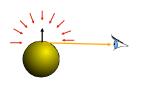


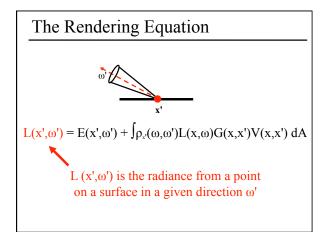
Today

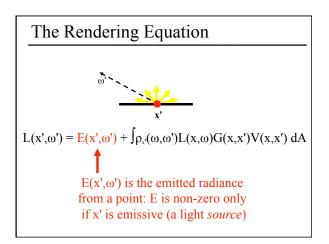
- Does Ray Tracing Simulate Physics?
- The Rendering Equation
- Monte-Carlo Integration
- Sampling
- Monte-Carlo Ray Tracing vs. Path Tracing

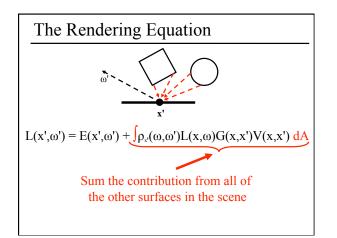
The Rendering Equation

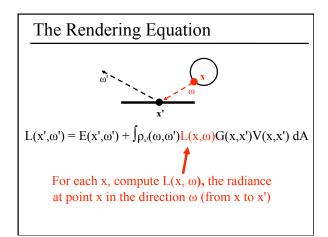
- Clean mathematical framework for light-transport simulation
- At each point, outgoing light in one direction is the integral of incoming light in all directions multiplied by reflectance property

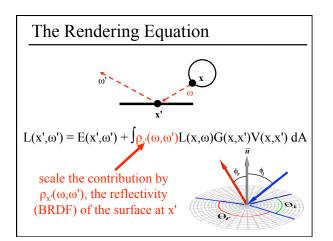


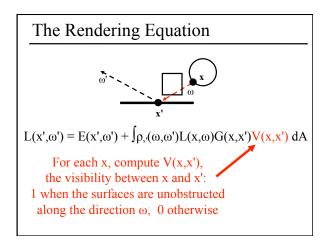


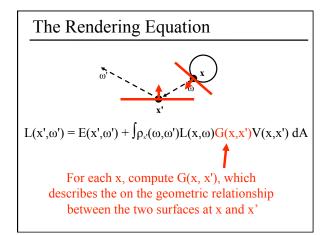


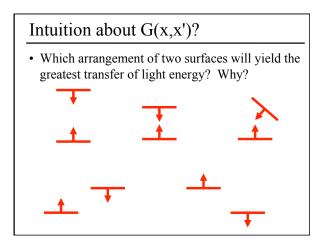


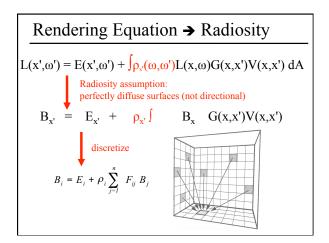












Reading for Today: • "The Rendering Equation", Kajiya, SIGGRAPH 1986 Image: Constraint of the second secon

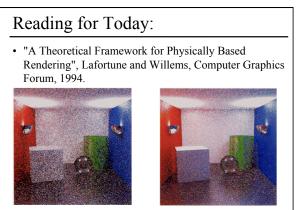


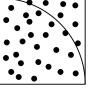
Figure B: An indirectly illuminated scene rendered using path tracing and bidirectional path tracing respectively. The latter method results in visibly less noisefor the same amount of work.

Today

- Does Ray Tracing Simulate Physics?
- The Rendering Equation
- Monte-Carlo Integration
 Probabilities and Variance
 - Analysis of Monte-Carlo Integration
- Sampling
- Monte-Carlo Ray Tracing vs. Path Tracing

Monte-Carlo Computation of π

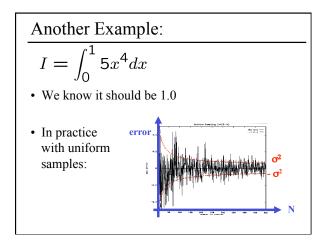
- Take a random point (x,y) in unit square
- Test if it is inside the $\frac{1}{4}$ disc - Is $x^2 + y^2 < 1?$
- Probability of being inside disc?
 - area of $\frac{1}{4}$ unit circle / area of unit square = $\frac{\pi}{4}$



- $\pi \approx 4$ * number inside disc / total number
- The error depends on the number or trials

Convergence & Error

- Let's compute 0.5 by flipping a coin:
 - 1 flip: 0 or 1
 - \rightarrow average error = 0.5
 - 2 flips: 0, 0.5, 0.5 or 1 \rightarrow average error = 0. 25
 - 4 flips: 0 (*1),0.25 (*4), 0.5 (*6), 0.75(*4), 1(*1) → average error = 0.1875
- Unfortunately, doubling the number of samples does not double accuracy



Review of (Discrete) Probability

- Random variable can take discrete values \boldsymbol{x}_i
- Probability p_i for each x_i $0 < p_i < 1$, $\sum p_i = 1$
- Expected value $E(x) = \sum_{i=1}^{n} p_i x_i$
- Expected value of function of random variable - f(x_i) is also a random variable

$$E[f(x)] = \sum_{i=1}^{n} p_i f(x_i)$$

Variance & Standard Deviation

- Variance σ^2 : deviation from expected value
- Expected value of square difference

$$\sigma^2 = E[(x - E[x])^2] = \sum_i (x_i - E[x])^2 p_i$$

• Also

$$\sigma^2 = E[x^2] - (E[x])^2$$

• Standard deviation σ: square root of variance (notion of error, RMS)

Monte Carlo Integration

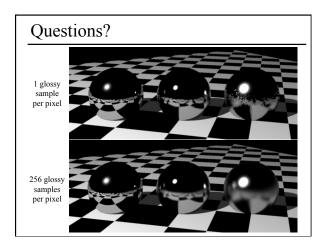
- Turn integral into finite sum
- Use *n* random samples
- As *n* increases...
 - Expected value remains the same
 - Variance decreases by n
 - Standard deviation (error) decreases by $\frac{1}{\sqrt{n}}$
- Thus, converges with $\frac{1}{\sqrt{n}}$

Advantages of MC Integration

- Few restrictions on the integrand
 - Doesn't need to be continuous, smooth, ...
 - Only need to be able to evaluate at a point
- Extends to high-dimensional problems – Same convergence
- · Conceptually straightforward
- Efficient for solving at just a few points

Disadvantages of MC Integration

- Noisy
- Slow convergence
- · Good implementation is hard
 - Debugging code
 - Debugging math
 - Choosing appropriate techniques
- Punctual technique, no notion of smoothness of function (e.g., between neighboring pixels)



Today

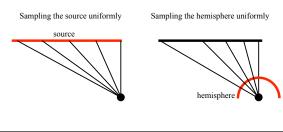
- Does Ray Tracing Simulate Physics?
- The Rendering Equation
- Monte-Carlo Integration
- Sampling
 - Stratified Sampling
 - Importance Sampling
- Monte-Carlo Ray Tracing vs. Path Tracing

Domains of Integration

- Pixel, lens (Euclidean 2D domain)
- Time (1D)
- Hemisphere
 - Work needed to ensure uniform probability

Example: Light Source

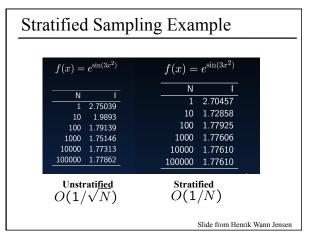
- We can integrate over surface *or* over angle
- But we must be careful to get probabilities and integration measure right!

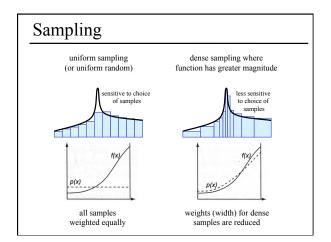


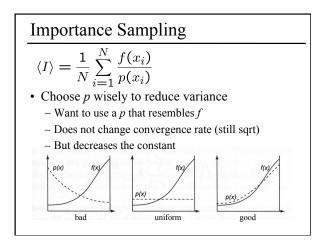
Stratified Sampling

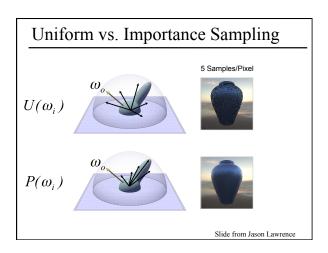
- With uniform sampling, we can get unlucky - E.g. all samples in a corner
- To prevent it, subdivide domain Ω into non-overlapping regions Ω_i
 – Each region is called a stratum

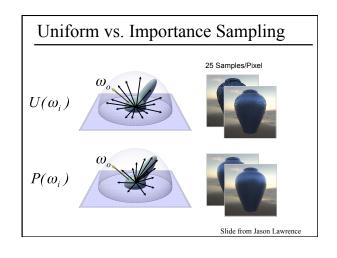
• Take one random samples per Ω_i

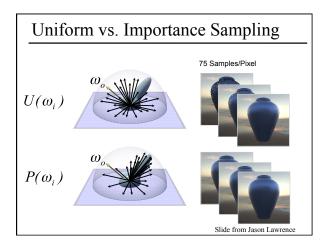


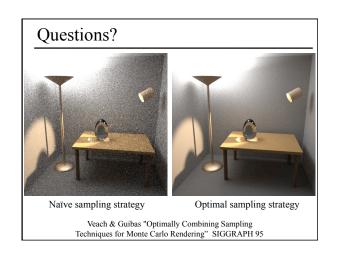










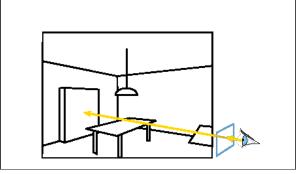


Today

- Does Ray Tracing Simulate Physics?
- The Rendering Equation
- Monte-Carlo Integration
- Sampling
- Monte-Carlo Ray Tracing & Path Tracing

Ray Casting

• Cast a ray from the eye through each pixel



Ray Tracing Cast a ray from the eye through each pixel Trace secondary rays (light, reflection, refraction)

