Irradiance Caching & Photon Mapping

Today

- Monte-Carlo Ray Tracing vs. Path Tracing
- Irradiance Caching
- Photon Mapping
- Acceleration Data Structures
- Ray Grammar

Ray Casting • Cast a ray from the eye through each pixel

Ray Tracing

- Cast a ray from the eye through each pixel
- Trace secondary rays (light, reflection, refraction)

Today

- Monte-Carlo Ray Tracing vs. Path Tracing
- Irradiance Caching
- · Photon Mapping
- Acceleration Data Structures
- Ray Grammar

Path Tracing is costly • Needs tons of rays per pixel

Questions?

- Why do we need "good" random numbers?
 - With a fixed random sequence, we see the structure in the error

Today

- Monte-Carlo Ray Tracing vs. Path Tracing
- Irradiance Caching
- Photon Mapping
- Acceleration Data Structures
- Ray Grammar

Readings for Today (pick one)

 "Rendering Caustics on Non-Lambertian Surfaces", Henrik Wann Jensen, Graphics Interface 1996.

 "Global Illumination using Photon Maps", Henrik Wann Jensen, Rendering Techniques 1996.

Photon Mapping

Preprocess: cast rays from light sources
 independent of viewpoint

Photon Mapping

- Store photons
 - position + light power + incoming direction

Photon Map

- Efficiently store photons for fast access
- Use hierarchical spatial structure (kd-tree)

Today

- Monte-Carlo Ray Tracing vs. Path Tracing
- Irradiance Caching
- Photon Mapping
- Acceleration Data Structures
- Ray Grammar

Regular Grid Discussion

- · Advantages?
 - easy to construct
 - easy to traverse
- · Disadvantages?
 - may be only sparsely filled
 - geometry may still be clumped

Variations of Adaptive Grids

When to split? When a cell contains "lots" of geometry, but has not yet reached the max tree depth

Bounding Volume Hierarchy

- Find bounding box of objects
- Split objects into two groups
- Recurse

Bounding Volume Hierarchy

- Find bounding box of objects
- Split objects into two groups
- Recurse

Where to split objects?

- At midpoint OR
- Sort, and put half of the objects on each side OR
- Use modeling hierarchy

Intersection with BVH

• Check sub-volume with closer intersection first

Bounding Volume Hierarchy Discussion

- Advantages
 - easy to construct
 - easy to traverse
 - binary
- Disadvantages
 - may be difficult to choose a good split for a node
 - poor split may result in minimal spatial pruning

Today

- Monte-Carlo Ray Tracing vs. Path Tracing
- Irradiance Caching
- Photon Mapping
- Acceleration Data Structures
- Ray Grammar

