
1

Real-Time
Shadows

Last Time:

•  Graphics Pipeline
•  Clipping
•  Rasterization

Modeling
Transformations

Illumination
(Shading)

Viewing Transformation
(Perspective / Orthographic)

Clipping

Projection
(to Screen Space)

Scan Conversion
(Rasterization)

Visibility / Display

Today
•  Why are Shadows Important?
•  Planar Shadows
•  Projective Texture Shadows
•  Shadow Maps
•  Shadow Volumes

Why are Shadows Important?
•  Depth cue
•  Scene

Lighting
•  Realism
•  Contact

points

Shadows as a Depth Cue For Intuition about Scene Lighting
•  Position of the light (e.g. sundial)
•  Hard shadows vs. soft shadows
•  Colored lights
•  Directional light vs. point light

2

Today
•  Why are Shadows Important?
•  Planar Shadows
•  Projective Texture Shadows

– Shadow View Duality
– Texture Mapping

•  Shadow Maps
•  Shadow Volumes

Cast Shadows on Planar Surfaces
•  Draw the object primitives a second time,

projected to the ground plane

Limitations of Planar Shadows
•  Does not produce self-shadows, shadows cast on

other objects, shadows on curved surfaces, etc.

Shadow/View Duality
•  A point is lit if it

is visible from
the light source

•  Shadow
computation
similar to view
computation

Texture Mapping
•  Don't have to represent everything with geometry

Fake Shadows using Projective Textures

•  Separate obstacle and receiver
•  Compute b/w image of obstacle from light
•  Use image as projective texture for each receiver
Image from light source BW image of obstacle Final image

Figure from Moller & Haines “Real Time Rendering”

3

Projective Texture Shadow Limitations

•  Must specify occluder & receiver
•  No self-shadows
•  Resolution

Figure from Moller & Haines “Real Time Rendering”

Questions?

Reading for Today:
•  “Shadow Algorithms for Computer Graphics”,

Frank Crow, SIGGRAPH 1977

Today
•  Why are Shadows Important?
•  Planar Shadows
•  Projective Texture Shadows
•  Shadow Maps
•  Shadow Volumes

Shadow Maps
•  In Renderman

–  (High-end production software)

Shadow Mapping
•  Texture mapping with

depth information
•  Requires 2 passes

through the pipeline:
–  Compute shadow

map (depth from
light source)

–  Render final image,
check shadow map
to see if points are
in shadow

Foley et al. “Computer Graphics Principles and Practice”

4

Shadow Map Look Up
•  We have a 3D point (x,y,z)WS

•  How do we look up
the depth from the
shadow map?

•  Use the 4x4
perspective projection
matrix from the light
source to get (x',y',z')LS

•  ShadowMap(x',y') < z'?

Foley et al. “Computer Graphics Principles and Practice”

(x,y,z)WS (x',y',z')LS

Limitations of Shadow Maps
1.  Field of View

2.  Bias (Epsilon)

3.  Aliasing

1. Field of View Problem
•  What if point to

shadow is outside
field of view of
shadow map?
– Use cubical

shadow map
– Use only

spot lights!

2. The Bias (Epsilon) Nightmare
•  For a point visible

from the light source
 ShadowMap(x’,y’) ≈ z’

•  How can we
avoid erroneous
self-shadowing?
– Add bias (epsilon)

2. Bias (Epsilon) for Shadow Maps
ShadowMap(x’,y’) + bias < z’
Choosing a good bias value can be very tricky

Correct image Not enough bias Way too much bias

3. Shadow Map Aliasing
•  Under-sampling of the shadow map
•  Reprojection aliasing – especially bad when the

camera & light are opposite each other

5

3. Shadow Map Filtering
•  Should we filter the depth?

(weighted average of neighboring depth values)
•  No... filtering depth is not meaningful

3. Percentage Closer Filtering
•  Instead filter the result of the test

(weighted average of comparison results)
•  But makes the bias issue more tricky

3. Percentage Closer Filtering
•  5x5 samples
•  Nice antialiased

shadow
•  Using a bigger

filter produces
fake soft
shadows

•  Setting bias
is tricky

Projective Texturing + Shadow Map

Eye’s View Light’s View Depth/Shadow Map

Images from Cass Everitt et al.,
“Hardware Shadow Mapping”

NVIDIA SDK White Paper

Shadows in Production
•  Often use

shadow maps
•  Ray casting as

fallback in case
of robustness
issues

Hardware Shadow Maps
•  Can be done with hardware texture mapping

– Texture coordinates u,v,w generated using 4x4 matrix
– Modern hardware permits tests on texture values

6

Questions? Today
•  Why are Shadows Important?
•  Planar Shadows
•  Projective Texture Shadows
•  Shadow Maps
•  Shadow Volumes

– The Stencil Buffer

Stencil Buffer
•  Tag pixels in one rendering pass to

control their update in subsequent
rendering passes
–  "For all pixels in the frame buffer" →

"For all tagged pixels in the frame buffer"
•  Can specify different rendering

operations for each case:
–  stencil test fails
–  stencil test passes & depth test fails
–  stencil test passes & depth test passes

frame buffer

depth buffer

stencil buffer

Stencil Buffer – Real-time Mirror
•  Clear frame, depth & stencil buffers
•  Draw all non-mirror geometry to

frame & depth buffers
•  Draw mirror to stencil buffer, where

depth buffer passes
•  Set depth to infinity, where stencil

buffer passes
•  Draw reflected geometry to

frame & depth buffer, where
stencil buffer passes

See NVIDIA's stencil buffer tutorial
http://developer.nvidia.com

also discusses blending, multiple
mirrors, objects behind mirror, etc…

without
stencil
buffer:

reflected
geometry

Shadow Volumes
•  Explicitly represent the volume

of space in shadow
•  For each polygon

– Pyramid with point
light as apex

–  Include polygon to cap
•  Shadow test similar

to clipping

Shadow Volumes
•  If a point is inside a shadow

volume cast by a particular light,
the point does not receive any
illumination from that light

•  Cost of naive
implementation:
 #polygons * #lights

7

Shadow Volumes
•  Shoot a ray from the eye to

the visible point
•  Increment/decrement a

counter each time we
intersect a shadow
volume polygon
(check z buffer)

•  If the counter ≠ 0,
the point is
in shadow

+1 -1

+1

Shadow Volumes w/ the Stencil Buffer
Initialize stencil buffer to 0
Draw scene with ambient light only
Turn off frame buffer & z-buffer updates
Draw front-facing shadow polygons

If z-pass → increment counter
Draw back-facing shadow polygons

If z-pass → decrement counter
Turn on frame buffer updates
Turn on lighting and

redraw pixels with
counter = 0

0
+2

+1

If the Eye is in Shadow...
•  ... then a counter of 0 does

not necessarily mean lit
•  3 Possible Solutions:

1. Explicitly test eye
point with respect
to all shadow volumes

2. Clip the shadow
volumes to the
view frustum

3. "Z-Fail" shadow
volumes

-1
0

-1

1. Test Eye with Respect to Volumes
•  Adjust initial

counter value

 Expensive

0
+1

0

+1

2. Clip the Shadow Volumes
•  Clip the shadow volumes to the view frustum

and include these new polygons
•  Messy CSG

3. "Z-Fail" Shadow Volumes
Start at infinity

...

Draw front-facing shadow polygons
If z-fail, decrement counter

Draw back-facing shadow polygons
If z-fail, increment counter

...
0

+1

0

8

3. "Z-Fail" Shadow Volumes

0
+1

0

•  Introduces problems
with far clipping plane

•  Solved by clamping the
depth during clipping

Optimizing Shadow Volumes
•  Use silhouette edges only (edge where

a back-facing & front-facing polygon meet)

Limitations of Shadow Volumes
•  Introduces a lot of new geometry
•  Expensive to rasterize long skinny triangles
•  Limited precision of stencil buffer (counters)

–  for a really complex scene/object,
the counter can overflow

•  Objects must be watertight to use silhouette trick
•  Rasterization of polygons sharing an edge

must not overlap & must not have gap

Questions?
•  From a previous quiz: Check the boxes to indicate the

features & limitations of each technique

•  Chris Wyman,
"An Approximate
Image-Space
Approach for
Interactive
Refraction”,
SIGGRAPH 2005

Reading for Tuesday:

