

Today

- Why are Shadows Important?
- Planar Shadows
- Projective Texture Shadows
- Shadow Maps
- Shadow Volumes

Today Why are Shadows Important? Planar Shadows Projective Texture Shadows Shadow View Duality Texture Mapping Shadow Maps

Shadow Volumes

Cast Shadows on Planar Surfaces

• Draw the object primitives a second time, projected to the ground plane

Limitations of Planar Shadows

• Does not produce self-shadows, shadows cast on other objects, shadows on curved surfaces, etc.

Texture Mapping

• Don't have to represent everything with geometry

Fake Shadows using Projective Textures

- · Separate obstacle and receiver
- Compute b/w image of obstacle from light
- Use image as projective texture for each receiver

Figure from Moller & Haines "Real Time Rendering

Projective Texture Shadow Limitations

- Must specify occluder & receiver
- No self-shadows
- Resolution

Plate 52 Grandville, The Shadows (The French Cabinet) from La Caricature, 1830.

Today

- Why are Shadows Important?
- Planar Shadows
- Projective Texture Shadows
- Shadow Maps
- Shadow Volumes

Shadow Maps

• In Renderman - (High-end production software)

3. Percentage Closer Filtering

- Instead filter the result of the test (weighted average of comparison results)
- But makes the bias issue more tricky

3. Percentage Closer Filtering

- 5x5 samples
- Nice antialiased shadow
- Using a bigger filter produces fake soft shadows
- Setting bias is tricky

Today

- Why are Shadows Important?
- Planar Shadows
- Projective Texture Shadows
- Shadow Maps
- Shadow Volumes – The Stencil Buffer

mirrors, objects behind mirror, etc

Stencil Buffer Stencil Buffer – Real-time Mirror • Tag pixels in one rendering pass to · Clear frame, depth & stencil buffers control their update in subsequent · Draw all non-mirror geometry to frame buffer frame & depth buffers rendering passes Draw mirror to stencil buffer, where – "For all pixels in the frame buffer" → depth buffer passes "For all *tagged* pixels in the frame buffer" · Set depth to infinity, where stencil • Can specify different rendering buffer passes operations for each case: depth buffer · Draw reflected geometry to - stencil test fails frame & depth buffer, where - stencil test passes & depth test fails stencil buffer passes - stencil test passes & depth test passes See NVIDIA's stencil buffer tutorial http://developer.nvidia.com stencil buffer also discusses blending, multiple

Limitations of Shadow Volumes

- Introduces a lot of new geometry
- Expensive to rasterize long skinny triangles
- Limited precision of stencil buffer (counters) – for a really complex scene/object,
- the counter can overflow
- Objects must be watertight to use silhouette trick
- Rasterization of polygons sharing an edge must not overlap & must not have gap

Questions?

• From a previous quiz: Check the boxes to indicate the features & limitations of each technique

	Planar	Projective			Ray
Features / Limitations	Fake	Texture	Shadow	Shadow	Casting
	Shadows	Shadows	Maps	Volumes	Shadows
Allows objects to cast shadows					
on themselves (self shadowing)					
Permits shadows on arbitrary					
surfaces (i.e. curved)					
Renders geometry from the					
viewpoint of the light					
Generates extra geometric primitives					
Limited resolution of intermediate					
representation can result in jaggie					
shadow artifacts					

Reading for Tuesday:

 Chris Wyman, "An Approximate Image-Space Approach for Interactive Refraction", SIGGRAPH 2005

