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To accurately render a two-dimensional image of a 
three-dimensional scene, global illumination information 
that affects the intensity of  each pixel of  the image 
must be known at the time the intensity is calculated. 
In a simplified form, this information is stored in a tree 
of  "rays" extending from the viewer to the first surface 
encountered and from there to other surfaces and to 
the light sources. A visible surface algorithm creates 
this tree for each pixel of  the display and passes it to 
the shader. The shader then traverses the tree to 
determine the intensity of  the light received by the 
viewer. Consideration of  all of  these factors allows the 
shader to accurately simulate true reflection, shadows, 
and refraction, as well as the effects simulated by 
conventional shaders. Anti-aliasing is included as an 
integral part of  the visibility calculations. Surfaces 
displayed include curved as well as polygonal surfaces. 
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Introduction 

Since its beginnings, shaded computer graphics has 
progressed toward greater realism. Even the earliest vis- 
ible surface algorithms included shaders that simulated 
such effects as specular reflection [19], shadows [1, 7], 
and transparency [18]. The importance of illumination 
models is most vividly demonstrated by the realism 
produced with newly developed techniques [2, 4, 5, 16, 
20]. 
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The role of the illumination model is to determine 
how much light is reflected to the viewer from a visible 
point on a surface as a function of light source direction 
and strength, viewer position, surface orientation, and 
surface properties. The shading calculations can be per- 
formed on three scales: microscopic, local, and global. 
Although the exact nature of reflection from surfaces is 
best explained in terms of microscopic interactions be- 
tween light rays and the surface [3], most shaders produce 
excellent results using aggregate local surface data. Un- 
fortunately, these models are usually limited in scope, 
i.e., they look only at light source and surface orienta- 
tions, while ignoring the overall setting in which the 
surface is placed. The reason that shaders tend to operate 
on local data is that traditional visible surface algorithms 
cannot provide the necessary global data. 

A shading model is presented here that uses global 
information to calculate intensities. Then, to support this 
shader, extensions to a ray tracing visible surface algo- 
r i thmare  presented. 

1. Conventional Models  
\ 

The simplest visible surface algorithms use shaders 
based on Lambert's cosine law. The intensity of the 
reflected light is proportional to the dot product of the 
surface normal and the light source direction, simulating 
a perfect diffuser and yielding a reasonable looking 
approximation to a dull, matte surface. A more sophis- 
ticated model is the one devised by Bui-Tuong Phong 
[8]. Intensity from Phong's model is given by 

j=ls j=ls 

I =  Ia + kd Z (N.Lj) + ks ~ (N'L)) n, (1) 
j=l j=l 

where 

I =  
L =  
kd  = 

ks 

n ~-- 

the reflected intensity, 
reflection due to ambient light, 
diffuse reflection constant, 
unit surface normal, 
the vector in the direction of the j th  light source, 
the specular reflection coefficient, 
the vector in the direction halfway between the 
viewer and the j th  light source, 
an exponent that depends on the glossiness of the 
surface. 

Phong's model assumes that each light source is located 
at a point infinitely distant from the objects in the scene. 
The model does not account for objects within a scene 
acting as light sources or for light reflected from object 
to object. As noted in [6], this drawback does not affect 
the realism of diffuse reflection components very much, 
but it seriously hurts the quality of specular reflections. 
A method developed by Blinn and Newell [5] partially 
solves the problem by modeling an object's environment 
and mapping it onto a sphere of infinite radius. The 
technique yields some of the most realistic computer 
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generated pictures ever made, but its limitations preclude 
its use in the general case. 

In addition to the specular reflection, the simulation 
of shadows is one of the more desirable features of an 
illumination model. A point on a surface lies in shadow 
if it is visible to the viewer but not visible to the light 
source. Some methods [2, 20] invoke the visible surface 
algorithm twice, once for the light source and once for 
the viewer. Others [1, 7, 12] use a simplified calculation 
to determine whether the point is visible to the light 
source. 

Transmission of light through transparent objects has 
been simulated in algorithms that paint surfaces in re- 
verse depth order [18]. When painting a transparent 
surface, the background is partially overwritten, allowing 
previously painted portions of the image to show 
through. While the technique has produced some im- 
pressive pictures, it does not simulate refraction. Kay 
[171 has improved on this approach with a technique 
that yields a very realistic approximation to the effects 
of refraction. 

Fig. 1. 
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2. Improved Model 

A simple model for reflection of light from perfectly 
smooth surfaces is provided by classical ray optics. As 
shown in Figure 1, the light intensity, I, passed to the 
viewer from a point on the surface consists primarily of 
the specular reflection, S, and transmission, T, compo- 
nents. These intensities represent light propagated along 
the V, R, and /5 directions, respectively. Since surfaces 
displayed are not always perfectly glossy, a term must be 
added to model the diffuse component as well. Ideally 
the diffuse reflection should contain components due to 
reflection of nearby objects as well as predefined light 
sources, but the computation required to model a distrib- 
uted light source is overwhelming. Instead, the diffuse 
term from (1) is retained in the new model. Then the 
new model is 

j=ls 
I = la + ka • (N .L j )  + ksS + k t T ,  (2) 

j=l 

where 

S = the intensity of light incident from the/~ direction, 
kt = the transmission coefficient, 
T = the intensity of light from the/5 direction. 

The coefficients ks and kt a r e  held constant for the model 
used to make pictures in this report, but for the best 
accuracy they should be functions that incorporate an 
approximation of the Fresnel reflection law (i.e., the 
coefficients should vary as a function of incidence angle 
in a manner that depends on the material's surface 
properties). In addition, these coefficients must be care- 
fully chosen to correspond to physically reasonable val- 
ues if realistic pictures are to be generated. The /~ 
direction is determined by the simple rule that the angle 
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of reflection must equal the angle of incidence. Similarly, 
the /5 direction of transmitted light must obey Snell's 
law. Then,/~ and/5 are functions of N and P" given by 

I7 

I V ' N I '  
~q=  ~ '  + 22q, 
/5 = kr(2q + Y') - ~7, 

where 

kr = (k~l g '  12 - I V'  + ~712)-1< 

and 

kn = the index of refraction. 

Since these equations assume that V- N is less than zero, 
the intersection processor must adjust the sign of N so 
that it points to the side of the surface from which the 
intersecting ray is incident. It must likewise adjust the 
index of refraction to account for the sign change. If  the 
denominator of the expression for k r is imaginary, T is 
assumed to be zero because of total internal reflection. 

By making ks smaller and ka larger, the surface can 
be made to look less glossy. However, the simple model 
will not spread the specular term as Phong's model does 
by reducing the specular exponent n. As pointed out in 
[3], the specular reflection from a roughened surface is 
produced by microscopic mirrorlike facets. The intensity 
of the specular reflection is proportional to the number 
of these microscopic facets whose normal vector is 
aligned with the mean surface normal value at the region 
being sampled. To generate the proper looking specular 
reflection, a random perturbation is added to the surface 
normal to simulate the randomly oriented microfacets. 
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(A similar normal perturbation technique is used by 
Blinn [4] to model texture on curved surfaces.) For a 
glossy surface, this perturbation has a small variance; 
with greater variances the surface will begin to look less 
glossy. This same perturbation will cause a transparent 
object to look progressively more frosted as the variance 
is increased. While providing a good model for micro- 
scopic surface roughness, this scheme relies on sampled 
surface normals and will show the effects of aliasing for 
larger variances. Since this scheme also requires entirely 
too much additional computing, it is avoided whenever 
possible. For instance, in the case of  specular reflections 
caused directly by a point light source, Phong's model is 
used at the point of reflection instead of  the perturbation 
scheme. 

The simple model approximates the reflection from 
a single surface. In a scene of even moderate complexity 
light will often be reflected from several surfaces before 
reaching the viewer. For one such case, shown in Figure 
2, the components of  the light reaching the viewer from 
point A are represented by the tree in Figure 3. Creating 
this tree requires calculating the point of  intersection of 
each component ray with the surfaces in the scene. The 
calculations require that the visible surface algorithm 
(described in the next section) be called recursively until 
all branches of the tree are terminated. For the case of 
surfaces aligned in such a way that a branch of  the tree 
has infinite depth, the branch is truncated at the point 
where it exceeds the allotted storage. Degradation of the 
image from this truncation is not noticeable. 

In addition to rays in the /~ and /5 direction, rays 
corresponding to the £j terms in (2) are associated with 
each node. If  one of  these rays intersects some surface in 
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the scene before it reaches the light source, the point of  
intersection represented by the node lies in shadow with 
respect to that light source. That light source's contri- 
bution to the diffuse reflection from the point is then 
attenuated. 

After the tree is created, the shader traverses the tree, 
applying eq. (2) at each node to calculate intensity. The 
intensity at each node is then attenuated by a linear 
function of the distance between intersection points on 
the ray represented by the node's parent before it is used 
as an input to the intensity calculation of  the parent. 
(Since one cannot always assume that all the surfaces are 
planar and all the light sources are point sources, square- 
law attenuation is not always appropriate. Instead of 
modeling each unique situation, linear attenuation with 
distance is used as an approximation.) 

3. Visible Surface Processor 

Since illumination returned to the viewer is deter- 
mined by a tree of  "rays," a ray tracing algorithm is 
ideally suited to this model. In an obvious approach to 
ray tracing, light rays emanating from a source are traced 
through their paths until they strike the viewer. Since 
only a few will reach the viewer, this approach is waste- 
ful. In a second approach suggested by Appel [1] and 
used successfully by MAGI [14], rays are traced in the 
opposite direct ion--from the viewer to the objects in the 
scene, as illustrated in Figure 4. 

Unlike previous ray tracing algorithms, the visibility 
calculations do not end when the nearest intersection of  
a ray with objects in the scene is found. Instead, each 
visible intersection of  a ray with a surface produces more 
rays in the /~ direction, the /5 direction, and in the 
direction of each light source. The intersection process is 
repeated for each ray until none of the new rays intersects 
any object. 

Because of  the nature of the illumination model, 
some traditional notions must be discarded. Since objects 
may be visible to the viewer through reflections in other 
objects, even though some other object lies between it 
and the viewer, the measure of visible complexity in an 
image is larger than for a conventionally generated image 
of the same scene. For the same reason, clipping and 
eliminating backfacing surface elements are not appli- 
cable with this algorithm. Because these normal prepro- 
cessor stages that simplify most visible surface algorithms 
cannot be used, a different approach is taken. Using a 
technique similar to one described by Clark 
[11], the object description includes a bounding volume 
for each item in the scene. If  a ray does not intersect the 
bounding volume of an object, then the object can be 
eliminated from further processing for that ray. For 
simplicity of  representation and ease of performing the 
intersection calculation, spheres are used as the bounding 
volumes. 
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• Since a sphere can serve as its own bounding volume, 
initial experiments with the shading processor used 
spheres as test objects. For nonspherical objects, addi- 
tional intersection processors must be specified whenever 
a ray does intersect the bounding sphere for that object. 
For polygonal surfaces the algorithm solves for the point 
of intersection of the ray and the plane of the polygon 
and then checks to see if the point is on the interior of 
the polygon. If the surface consists of bicubic patches, 
bounding spheres are generated for each patch. If  the 
bounding sphere is pierced by the ray, then the patch is 
subdivided using a method described by Catmull and 
Clark [10], and bounding spheres are produced for each 
subpatch. The subdivision process is repeated until either 
no bounding spheres are intersected (i.e., the patch is not 
intersected by the ray) or the intersected bounding sphere 
is smaller than a predetermined minimum. This scheme 
was selected for simplicity rather than efficiency. 

The visible surface algorithm also contains the mech- 
anism to perform anti-aliasing. Since aliasing is the result 
of undersampling during the display process, the most 
straightforward cure is to low-pass filter the entire image 
before sampling for display [13]. A considerable amount 
of computing can be saved, however, if a more econom- 
ical approach is taken. Aliasing in computer generated 
images is most apparent to the viewer in three cases: (1) 
at regions of abrupt change in intensity such as the 
silhouette of a surface, (2) at locations where small 
objects fall between sampling points and disappear, and 
(3) whenever a sampled function (such as texture) is 
mapped onto the surface. The visible surface algorithm 
looks for these cases and performs the filtering function 
only in these regions. 

For this visible surface algorithm a pixel is defined in 
the manner described in [9] as the rectangular region 
whose corners are four sample points as shown in Figure 
5(a). If the intensities calculated at the four points 
have nearly equal values and no small object lies in the 
region between them, the algorithm assumes that the 
average of the four values is a good approximation of 
the intensity over the entire region. If  the intensity values 
are not nearly equal (Figure 5(b)), the algorithm subdi- 
vides the sample square and starts over again. This 
process runs recursively until the computer runs out of 
resolution or until an adequate amount of information 
about the detail within the sample square is recovered. 
The contribution of each single subregion is weighted by 
its area, and all such weighted intensities are summed to 
determine the intensity of the pixel. This approach 
amounts to performing a Warnock-type visibility process 
for each pixel [19]. In the limit it is equivalent to area 
sampling, yet it remains a point sampling technique. A 
better method, currently being investigated, considers 
volumes defined by each set of four corner rays and 
applies a containment test for each volume. 

To ensure that small objects are not lost, a minimum 
radius (based on distance from the viewer) is allowed for 
bounding spheres of objects. This minimum is chosen so 
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that no matter how small the object, its bounding sphere 
will always be intersected by at least one ray. If  a ray 
passes within a minimum radius of a bounding sphere 
but does not intersect the object, the algorithm will know 
to subdivide each of the four sample squares that share 
the ray until the missing object is found. Although 
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Fig. 6. 
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adequate for rays that reach the viewer directly, this 
scheme will not always work for rays being reflected 
from curved surfaces. 

4. Results 

A version of this algorithm has been programmed in 
C, running under UNIX ~ on both a PDP-11/45 and a 
VAX-11/780. To simplify the programming, all calcu- 
lations are performed in floating point (at a considerable 
speed penalty). The pictures are displayed at a resolution 
of 480 by 640 pixels with 9 bits per pixel. Originally color 
pictures were photographed from the screen of a color 
CRT so that only three bits were available for each of 
the three primary colors. Ordered dither [15] was applied 
to the image data to produce 111 effective intensity levels 
per primary. For this report pictures are produced by a 
high-quality color hardcopy camera that exposes each 
color separately to provide eight bits of intensity per 
color. 

For the scenes shown in this paper, the image gen- 
eration times are 

Figure 6: 44 minutes, 
Figure 7: 74 minutes, 
Figure 8:122 minutes. 

All times given are for the VAX, which is nearly three 
times faster than the PDP-11/45 for this application. The 
image of Figure 6 shows three glossy objects with 
shadows and object-to-object reflections. The texturing 
is added using Blinn's wrinkling technique. Figure 7 
illustrates the effect of refraction through a transparent 
object. The algorithm has also been used to produce a 
short animated sequence. The enhancements provided 
by this illumination model are more readily apparent in 
the animated sequence than in the still photographs. 

A breakdown of where the program spends its time 
for simple scenes is: 

Overhead-- 13 percent, 
Intersection--75 percent, 
Shading-- 12 percent. 

For more complex scenes the percentage of time required 
to compute the intersections of rays and surfaces in- 
creases to over 95 percent. Since the program makes 
almost no use of image coherence, these figures are 
actually quite promising. They indicate that a more 
efficient intersection processor will greatly improve the 
algorithm's performance. This distribution of processing 
times also suggests that a reasonable division of tasks 
between processors in a multiprocessor system is to have 
one or more processors dedicated to intersection calcu- 
lations with ray generation and shading operations per- 
formed by the host. 

J UNIX is a trademark of Bell Laboratories. 
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5. Summary 

This illumination model draws heavily on techniques 
derived previously by Phong [8] and Blinn [3-5], but it 
operates recursively to allow the use of global illumina- 
tion information. The approach used and the results 
achieved are similar to those presented by Kay [16]. 

While in many cases the model generates very real- 
istic effects, it leaves considerable room for improvement. 
Specifically, it does not provide for diffuse reflection 
from distributed light sources, nor does it gracefully 
handle specular reflections from less glossy surfaces. It 
is implemented through a visible surface algorithm that 
is very slow but which shows some promise of becoming 
more efficient. When better ways of using picture coher- 
ence to speed the display process are found, this algo- 
rithm may find use in the generation of realistic animated 
sequences. 
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