
Graphics and J.D. Foley
Image Processing Editor

An Improved
Illumination Model for
Shaded Display
Turner Whitted
Bell Laboratories
Holmdel, New Jersey

To accurately render a two-dimensional image of a
three-dimensional scene, global illumination information
that affects the intensity of each pixel of the image
must be known at the time the intensity is calculated.
In a simplified form, this information is stored in a tree
of "rays" extending from the viewer to the first surface
encountered and from there to other surfaces and to
the light sources. A visible surface algorithm creates
this tree for each pixel of the display and passes it to
the shader. The shader then traverses the tree to
determine the intensity of the light received by the
viewer. Consideration of all of these factors allows the
shader to accurately simulate true reflection, shadows,
and refraction, as well as the effects simulated by
conventional shaders. Anti-aliasing is included as an
integral part of the visibility calculations. Surfaces
displayed include curved as well as polygonal surfaces.

Key Words and Phrases: computer graphics,
computer animation, visible surface algorithms, shading,
raster displays

CR Category: 8.2

Introduction

Since its beginnings, shaded computer graphics has
progressed toward greater realism. Even the earliest vis-
ible surface algorithms included shaders that simulated
such effects as specular reflection [19], shadows [1, 7],
and transparency [18]. The importance of illumination
models is most vividly demonstrated by the realism
produced with newly developed techniques [2, 4, 5, 16,
20].

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Comput ing Machinery. To copy
otherwise, or to republish, requires a fee and /o r specific permission.

Author 's address: Bell Laboratories, Holmdel, NJ 07733.
O 1980 ACM 0001-0782/80/0600-0343 $00.75.

343

The role of the illumination model is to determine
how much light is reflected to the viewer from a visible
point on a surface as a function of light source direction
and strength, viewer position, surface orientation, and
surface properties. The shading calculations can be per-
formed on three scales: microscopic, local, and global.
Although the exact nature of reflection from surfaces is
best explained in terms of microscopic interactions be-
tween light rays and the surface [3], most shaders produce
excellent results using aggregate local surface data. Un-
fortunately, these models are usually limited in scope,
i.e., they look only at light source and surface orienta-
tions, while ignoring the overall setting in which the
surface is placed. The reason that shaders tend to operate
on local data is that traditional visible surface algorithms
cannot provide the necessary global data.

A shading model is presented here that uses global
information to calculate intensities. Then, to support this
shader, extensions to a ray tracing visible surface algo-
r i thmare presented.

1. Conventional Models
\

The simplest visible surface algorithms use shaders
based on Lambert's cosine law. The intensity of the
reflected light is proportional to the dot product of the
surface normal and the light source direction, simulating
a perfect diffuser and yielding a reasonable looking
approximation to a dull, matte surface. A more sophis-
ticated model is the one devised by Bui-Tuong Phong
[8]. Intensity from Phong's model is given by

j=ls j=ls

I = Ia + kd Z (N.Lj) + ks ~ (N'L)) n, (1)
j=l j=l

where

I =
L =
kd =

ks

n ~--

the reflected intensity,
reflection due to ambient light,
diffuse reflection constant,
unit surface normal,
the vector in the direction of the j th light source,
the specular reflection coefficient,
the vector in the direction halfway between the
viewer and the j th light source,
an exponent that depends on the glossiness of the
surface.

Phong's model assumes that each light source is located
at a point infinitely distant from the objects in the scene.
The model does not account for objects within a scene
acting as light sources or for light reflected from object
to object. As noted in [6], this drawback does not affect
the realism of diffuse reflection components very much,
but it seriously hurts the quality of specular reflections.
A method developed by Blinn and Newell [5] partially
solves the problem by modeling an object's environment
and mapping it onto a sphere of infinite radius. The
technique yields some of the most realistic computer

Communicat ions June 1980
of Volume 23
the ACM Number 6

generated pictures ever made, but its limitations preclude
its use in the general case.

In addition to the specular reflection, the simulation
of shadows is one of the more desirable features of an
illumination model. A point on a surface lies in shadow
if it is visible to the viewer but not visible to the light
source. Some methods [2, 20] invoke the visible surface
algorithm twice, once for the light source and once for
the viewer. Others [1, 7, 12] use a simplified calculation
to determine whether the point is visible to the light
source.

Transmission of light through transparent objects has
been simulated in algorithms that paint surfaces in re-
verse depth order [18]. When painting a transparent
surface, the background is partially overwritten, allowing
previously painted portions of the image to show
through. While the technique has produced some im-
pressive pictures, it does not simulate refraction. Kay
[171 has improved on this approach with a technique
that yields a very realistic approximation to the effects
of refraction.

Fig. 1.

S

\

I
I

Ir

!
T

SURFACE

2. Improved Model

A simple model for reflection of light from perfectly
smooth surfaces is provided by classical ray optics. As
shown in Figure 1, the light intensity, I, passed to the
viewer from a point on the surface consists primarily of
the specular reflection, S, and transmission, T, compo-
nents. These intensities represent light propagated along
the V, R, and /5 directions, respectively. Since surfaces
displayed are not always perfectly glossy, a term must be
added to model the diffuse component as well. Ideally
the diffuse reflection should contain components due to
reflection of nearby objects as well as predefined light
sources, but the computation required to model a distrib-
uted light source is overwhelming. Instead, the diffuse
term from (1) is retained in the new model. Then the
new model is

j=ls
I = la + ka • (N .L j) + ksS + k t T , (2)

j=l

where

S = the intensity of light incident from the/~ direction,
kt = the transmission coefficient,
T = the intensity of light from the/5 direction.

The coefficients ks and kt a r e held constant for the model
used to make pictures in this report, but for the best
accuracy they should be functions that incorporate an
approximation of the Fresnel reflection law (i.e., the
coefficients should vary as a function of incidence angle
in a manner that depends on the material's surface
properties). In addition, these coefficients must be care-
fully chosen to correspond to physically reasonable val-
ues if realistic pictures are to be generated. The /~
direction is determined by the simple rule that the angle

344

of reflection must equal the angle of incidence. Similarly,
the /5 direction of transmitted light must obey Snell's
law. Then,/~ and/5 are functions of N and P" given by

I7

I V ' N I '
~q= ~ ' + 22q,
/5 = kr(2q + Y') - ~7,

where

kr = (k~l g ' 12 - I V' + ~712)-1<

and

kn = the index of refraction.

Since these equations assume that V- N is less than zero,
the intersection processor must adjust the sign of N so
that it points to the side of the surface from which the
intersecting ray is incident. It must likewise adjust the
index of refraction to account for the sign change. If the
denominator of the expression for k r is imaginary, T is
assumed to be zero because of total internal reflection.

By making ks smaller and ka larger, the surface can
be made to look less glossy. However, the simple model
will not spread the specular term as Phong's model does
by reducing the specular exponent n. As pointed out in
[3], the specular reflection from a roughened surface is
produced by microscopic mirrorlike facets. The intensity
of the specular reflection is proportional to the number
of these microscopic facets whose normal vector is
aligned with the mean surface normal value at the region
being sampled. To generate the proper looking specular
reflection, a random perturbation is added to the surface
normal to simulate the randomly oriented microfacets.

C o m m u n i c a t i o n s J u n e 1980
o f V o l u m e 23
the A C M N u m b e r 6

Fig. 2.
T 2

T/~SURFACE 1

Fig. 3. I

S 2

s

S

(A similar normal perturbation technique is used by
Blinn [4] to model texture on curved surfaces.) For a
glossy surface, this perturbation has a small variance;
with greater variances the surface will begin to look less
glossy. This same perturbation will cause a transparent
object to look progressively more frosted as the variance
is increased. While providing a good model for micro-
scopic surface roughness, this scheme relies on sampled
surface normals and will show the effects of aliasing for
larger variances. Since this scheme also requires entirely
too much additional computing, it is avoided whenever
possible. For instance, in the case of specular reflections
caused directly by a point light source, Phong's model is
used at the point of reflection instead of the perturbation
scheme.

The simple model approximates the reflection from
a single surface. In a scene of even moderate complexity
light will often be reflected from several surfaces before
reaching the viewer. For one such case, shown in Figure
2, the components of the light reaching the viewer from
point A are represented by the tree in Figure 3. Creating
this tree requires calculating the point of intersection of
each component ray with the surfaces in the scene. The
calculations require that the visible surface algorithm
(described in the next section) be called recursively until
all branches of the tree are terminated. For the case of
surfaces aligned in such a way that a branch of the tree
has infinite depth, the branch is truncated at the point
where it exceeds the allotted storage. Degradation of the
image from this truncation is not noticeable.

In addition to rays in the /~ and /5 direction, rays
corresponding to the £j terms in (2) are associated with
each node. If one of these rays intersects some surface in

345

the scene before it reaches the light source, the point of
intersection represented by the node lies in shadow with
respect to that light source. That light source's contri-
bution to the diffuse reflection from the point is then
attenuated.

After the tree is created, the shader traverses the tree,
applying eq. (2) at each node to calculate intensity. The
intensity at each node is then attenuated by a linear
function of the distance between intersection points on
the ray represented by the node's parent before it is used
as an input to the intensity calculation of the parent.
(Since one cannot always assume that all the surfaces are
planar and all the light sources are point sources, square-
law attenuation is not always appropriate. Instead of
modeling each unique situation, linear attenuation with
distance is used as an approximation.)

3. Visible Surface Processor

Since illumination returned to the viewer is deter-
mined by a tree of "rays," a ray tracing algorithm is
ideally suited to this model. In an obvious approach to
ray tracing, light rays emanating from a source are traced
through their paths until they strike the viewer. Since
only a few will reach the viewer, this approach is waste-
ful. In a second approach suggested by Appel [1] and
used successfully by MAGI [14], rays are traced in the
opposite direct ion--from the viewer to the objects in the
scene, as illustrated in Figure 4.

Unlike previous ray tracing algorithms, the visibility
calculations do not end when the nearest intersection of
a ray with objects in the scene is found. Instead, each
visible intersection of a ray with a surface produces more
rays in the /~ direction, the /5 direction, and in the
direction of each light source. The intersection process is
repeated for each ray until none of the new rays intersects
any object.

Because of the nature of the illumination model,
some traditional notions must be discarded. Since objects
may be visible to the viewer through reflections in other
objects, even though some other object lies between it
and the viewer, the measure of visible complexity in an
image is larger than for a conventionally generated image
of the same scene. For the same reason, clipping and
eliminating backfacing surface elements are not appli-
cable with this algorithm. Because these normal prepro-
cessor stages that simplify most visible surface algorithms
cannot be used, a different approach is taken. Using a
technique similar to one described by Clark
[11], the object description includes a bounding volume
for each item in the scene. If a ray does not intersect the
bounding volume of an object, then the object can be
eliminated from further processing for that ray. For
simplicity of representation and ease of performing the
intersection calculation, spheres are used as the bounding
volumes.

Communicat ions June 1980
of Volume 23
the ACM Number 6

• Since a sphere can serve as its own bounding volume,
initial experiments with the shading processor used
spheres as test objects. For nonspherical objects, addi-
tional intersection processors must be specified whenever
a ray does intersect the bounding sphere for that object.
For polygonal surfaces the algorithm solves for the point
of intersection of the ray and the plane of the polygon
and then checks to see if the point is on the interior of
the polygon. If the surface consists of bicubic patches,
bounding spheres are generated for each patch. If the
bounding sphere is pierced by the ray, then the patch is
subdivided using a method described by Catmull and
Clark [10], and bounding spheres are produced for each
subpatch. The subdivision process is repeated until either
no bounding spheres are intersected (i.e., the patch is not
intersected by the ray) or the intersected bounding sphere
is smaller than a predetermined minimum. This scheme
was selected for simplicity rather than efficiency.

The visible surface algorithm also contains the mech-
anism to perform anti-aliasing. Since aliasing is the result
of undersampling during the display process, the most
straightforward cure is to low-pass filter the entire image
before sampling for display [13]. A considerable amount
of computing can be saved, however, if a more econom-
ical approach is taken. Aliasing in computer generated
images is most apparent to the viewer in three cases: (1)
at regions of abrupt change in intensity such as the
silhouette of a surface, (2) at locations where small
objects fall between sampling points and disappear, and
(3) whenever a sampled function (such as texture) is
mapped onto the surface. The visible surface algorithm
looks for these cases and performs the filtering function
only in these regions.

For this visible surface algorithm a pixel is defined in
the manner described in [9] as the rectangular region
whose corners are four sample points as shown in Figure
5(a). If the intensities calculated at the four points
have nearly equal values and no small object lies in the
region between them, the algorithm assumes that the
average of the four values is a good approximation of
the intensity over the entire region. If the intensity values
are not nearly equal (Figure 5(b)), the algorithm subdi-
vides the sample square and starts over again. This
process runs recursively until the computer runs out of
resolution or until an adequate amount of information
about the detail within the sample square is recovered.
The contribution of each single subregion is weighted by
its area, and all such weighted intensities are summed to
determine the intensity of the pixel. This approach
amounts to performing a Warnock-type visibility process
for each pixel [19]. In the limit it is equivalent to area
sampling, yet it remains a point sampling technique. A
better method, currently being investigated, considers
volumes defined by each set of four corner rays and
applies a containment test for each volume.

To ensure that small objects are not lost, a minimum
radius (based on distance from the viewer) is allowed for
bounding spheres of objects. This minimum is chosen so

3 4 6

Fig. 4. Fig. 4.

OBJECT _

FOCAL POINT

Fig. 5.

SAMPLE

0

(a)

, f

0

(b)

that no matter how small the object, its bounding sphere
will always be intersected by at least one ray. If a ray
passes within a minimum radius of a bounding sphere
but does not intersect the object, the algorithm will know
to subdivide each of the four sample squares that share
the ray until the missing object is found. Although

Communications June 1980
of Volume 23
the ACM Number 6

Fig. 6.

Fig. 7.

347 Communicat ions
of
the ACM

June 1980
Volume 23
Number 6

Fig. 8.

~ ~

ii

Fig. 9.

348 C o m m u n i c a t i o n s
of
the A C M

June 1980
V o l u m e 23
N u m b e r 6

adequate for rays that reach the viewer directly, this
scheme will not always work for rays being reflected
from curved surfaces.

4. Results

A version of this algorithm has been programmed in
C, running under UNIX ~ on both a PDP-11/45 and a
VAX-11/780. To simplify the programming, all calcu-
lations are performed in floating point (at a considerable
speed penalty). The pictures are displayed at a resolution
of 480 by 640 pixels with 9 bits per pixel. Originally color
pictures were photographed from the screen of a color
CRT so that only three bits were available for each of
the three primary colors. Ordered dither [15] was applied
to the image data to produce 111 effective intensity levels
per primary. For this report pictures are produced by a
high-quality color hardcopy camera that exposes each
color separately to provide eight bits of intensity per
color.

For the scenes shown in this paper, the image gen-
eration times are

Figure 6: 44 minutes,
Figure 7: 74 minutes,
Figure 8:122 minutes.

All times given are for the VAX, which is nearly three
times faster than the PDP-11/45 for this application. The
image of Figure 6 shows three glossy objects with
shadows and object-to-object reflections. The texturing
is added using Blinn's wrinkling technique. Figure 7
illustrates the effect of refraction through a transparent
object. The algorithm has also been used to produce a
short animated sequence. The enhancements provided
by this illumination model are more readily apparent in
the animated sequence than in the still photographs.

A breakdown of where the program spends its time
for simple scenes is:

Overhead-- 13 percent,
Intersection--75 percent,
Shading-- 12 percent.

For more complex scenes the percentage of time required
to compute the intersections of rays and surfaces in-
creases to over 95 percent. Since the program makes
almost no use of image coherence, these figures are
actually quite promising. They indicate that a more
efficient intersection processor will greatly improve the
algorithm's performance. This distribution of processing
times also suggests that a reasonable division of tasks
between processors in a multiprocessor system is to have
one or more processors dedicated to intersection calcu-
lations with ray generation and shading operations per-
formed by the host.

J UNIX is a trademark of Bell Laboratories.

349

5. Summary

This illumination model draws heavily on techniques
derived previously by Phong [8] and Blinn [3-5], but it
operates recursively to allow the use of global illumina-
tion information. The approach used and the results
achieved are similar to those presented by Kay [16].

While in many cases the model generates very real-
istic effects, it leaves considerable room for improvement.
Specifically, it does not provide for diffuse reflection
from distributed light sources, nor does it gracefully
handle specular reflections from less glossy surfaces. It
is implemented through a visible surface algorithm that
is very slow but which shows some promise of becoming
more efficient. When better ways of using picture coher-
ence to speed the display process are found, this algo-
rithm may find use in the generation of realistic animated
sequences.

Received 12/78; revised 1/80; accepted 2/80

References
l. Appel, A. Some techniques for shading machine renderings of
solids. AFIPS 1968 Spring Joint Comptr. Conf., pp. 37~15.
2. Atherton, P., Weiler, K., and Greenberg, D. Polygon shadow
generation. Proc. S1GGRAPH 1978, Atlanta, Ga., pp. 275-281.
3. Blinn, J.F. Models of light reflection for computer synthesized
pictures. Proc. SIGGRAPH 1977, San Jose, Calif., pp. 192-198.
4. Blinn, J.F. Simulation of wrinkled surfaces. Proc. SIGGRAPH
1978, Atlanta, Ga., pp. 286-292.
5. Blinn, J.F., and Newell, M.E. Texture and reflection in computer
generated images. Comm. ACM 19, 10 (Oct. 1976), 542-547.
6. Blinn, J.F., and Newell, M.E. The progression of realism in
computer generated images. Proc. of the ACM Ann. Conf., 1977, pp.
444~.48.
7. Bouknight, W.K., and Kelley, K.C. An algorithm for producing
half-tone computer graphics presentations with shadows and movable
light sources. AFIPS 1970 Spring Joint Comptr. Conf., pp. 1-10.
8. Bui-Tuong Phong. Illumination for computer generated images.
Comm. ACM 18, 6 (June 1975), 311-317.
9. Catmull, E. A subdivision algorithm for computer display of
curved surfaces. UTEC CSc-74-133, Comptr. Sci. Dept., Univ. of
Utah, 1974.
10. Catmull, E., and Clark, J. Recursively generated B-spline
surfaces on arbitrary topological meshes. Comptr. Aided Design 10, 6
(Nov. 1978), 350-355.
11. Clark, J.H. Hierarchical geometric models for visible surface
algorithms. Comm. ACM 19, 10 (Oct. 1976), 547-554.
12. Crow, F.C. Shadow algorithms for computer graphics. Proc.
SIGGRAPH 1977, San Jose, Calif., pp. 242-248.
13. Crow, F.C. The aliasing problem in computer-generated shaded
images. Comm. ACM 20, 11 (Nov. 1977), 799-805.
14. Goldstein, R.A. and Nagel, R. 3-D visual simulation. Simulation
(Jan. 1971), 25-31.
15. Jarvis, J.F., Judice, C.N., and Ninke, W.H. A survey of
techniques for the display of continuous tone pictures on bilevel
displays. Comptr. Graphics and Image Proc. 5 (1976), 13M0.
16. Kay, D.S. Transparency, refraction, and ray tracing for computer
synthesized images. Masters thesis, Cornell Univ., Ithaca, N.Y.,
January 1979.
17. Kay, D.S., and Greenberg, D. Transparency for computer
synthesized images. Proc. SIGGRAPH 1979, Chicago, Ill., pp. 158-
164.
18. Newell, M.E., Newell, R.G., and Sancha, T.L. A solution to the
hidden surface problem. Proc. ACM Ann. Conf., 1972, pp. 443M50.
19. Warnock, J.E. A hidden line algorithm for halftone picture
representation. Tech. Rep. TR 4-15, Comptr. Sci. Dept., Univ. of
Utah, 1969.
20. Williams, L. Casting curved shadows on curved surfaces. Proc.
SIGGRAPH 1978, Atlanta, Ga., pp. 270-274.

Communications June 1980
of Volume 23
the ACM Number 6

