Programmable GPUS

Last Time?

 Planar Shadows

* Projective Texture ——
Shadows

+ Shadow Maps

» Shadow Volumes
— Stencil Buffer

Today

* Modern Graphics Hardware
* Shader Programming Languages

* Gouraud Shading vs. Phong Normal
Interpolation

* Bump, Displacement, & Environment Mapping

Modern Graphics Hardware

 High performance through
— Parallelism
— Specialization
— No data dependency data parallelism
— Efficient pre-fetching

\\ Geometry

%

Rasterization

| @ task
h Texture parallelism
ﬁ Fragment

. \ @ Display

Programmable Graphics Hardware

* Geometry and pixel (fragment) stage
become programmable
— Elaborate appearance

— More and more general-purpose
computation (GPU hacking)

E.EEl.ELElL BB

Misc. Stats on Graphics Hardware

* 2005
~ About 4-6 geometry units

— About 16 fragment units
— Deep pipeline (~800 stages)
— 600 million vertices/second
— 6 billion texels/second
* NVIDIA GeForce 9 (Feb 2008)
- ~1 TFLOPS
— 32/64 stream processors
~ 512 MB/IGB memory
« ATI Radeon R700 (2008)
— 480 stream processing units
* NVIDIA® GeForce® GTX 480 (2010)
— 480 cores
2560x1600 resolution
— 1536 MB memory

Today

* Modern Graphics Hardware

 Shader Programming Languages

* Gouraud Shading vs. Phong Normal
Interpolation

* Bump, Displacement, & Environment Mapping

Emerging Languages

* Inspired by Shade Trees [Cook 1984] &
Renderman Shading Language:
— RTSL [Stanford 2001] — real-time shading language
— Cg [NVIDIA 2003] — C for graphics
— HLSL [Microsoft 2003] — Direct X
— GLSL [OpenGL ARB 2004] — OpenGL 2.0

* General Purpose GPU computing
— CUDA [NVIDIA 2007]
— OpenCL (Open Computing Language) [Apple 2008]
for heterogeneous platforms of CPUs & GPUs

Cg Design Goals

: “Cg: A system for programming graphics
* Ease Of programming hardware in a C-like language”

« Portability Mark et al. SIGGRAPH 2003
» Complete support for hardware functionality
* Performance

» Minimal interference with application data

* Ease of adoption

+ Extensibility for future hardware

* Support for non-shading uses of the GPU

Cg Design

» Hardware is changing rapidly...
no single standard
* Specify “profile” for each hardware
— May omit support of some language capabilities
(e.g., texture lookup in vertex processor)
» Use hardware virtualization or emulation?
— “Performance would be so poor it would
be worthless for most applications”
— Well, it might be ok for general purpose
programming (not real-time graphics)

Cg compiler vs. GPU assembly

* Can inspect the assembly language produced by
Cg compiler and perform additional
optimizations by hand

— Generally once development is complete
(& output is correct)

— Using Cg is easier than writing GPU
assembly from scratch

(Typical) Language Design Issues

 Parameter binding
* Call by reference vs. call by value

* Data types: 32 bit float, 16 bit float, 12 bit fixed
& type-promotion (aim for performance)

* Specialized arrays or general-purpose arrays
— floatd4 x VS. float x[4]

* Indirect addressing/pointers (not allowed...)

* Recursion (not allowed...)

GLSL example: checkerboard.vs

ano
varying vec3 no
varying vec3 po
varying vec3 po.

eyespace;

worldspace;

/1 a shader for a black & white checkerboard

void main(void) {
position eyespace = vec3 (gl Modelviewsatrix * gl Vertex);
position worldspace = gl Vertex.xyz:
normal = normalize(gl NormalMatrix * gl Normal);
g1_rosition = gl ModelviewprojectionMatrix » gl Vertex;

E— ALl L13 cvs-1.1 (c/1 !

GLSL example: checkerboard.fs

ano
varying vec3 norma
varying vec3 posit.
varying vee3 posit

eyespace;
worldspace;

/1 a shader for a black & white checkerboard
void main (void) {
vee3 colors
/1 deternine the parity of this point in the 3D checkerboard

int count = 0;
if (mod(position worldspace.x,0.3)> 0.15) count++;

£ (count == 1 || count == 3
color = vee3(0.1,0.1,0.
} el

¢
color = veed(1,1,1);

/1 direction to the light

vee3 light = normalize(gl LightSource[1].position.xyz - position_eyespace);

/1 vasic

£loat amb: s

£loat dif 0.7+max (dot (normal, light),0.0);

color = ambient*color + diffuse*color
g1_Fragolor = vecd (color, 1.0);

)

E— £a AII11 cvs-l1.1 (c/1 !
ESC_<mouse-1> is undefined
L

Today

* Modern Graphics Hardware
 Shader Programming Languages

* Gouraud Shading vs. Phong Normal
Interpolation

¢ Bump, Displacement, & Environment Mapping

Remember Gouraud Shading?

* Instead of shading with the normal of the triangle,
shade the vertices with the average normal and
interpolate the color across each face

W

1llusion of a smooth
surface with smoothly
varying normals

Phong Normal Interpolation o hone shaine)

* Interpolate the average vertex normals across
the face and compute per-pixel shading

o

~N

Must be
renormalized

Bump Mapping

» Use textures to alter the surface normal
— Does not change the actual shape of the surface
— Just shaded as if it were a different shape

Sphere w/Diffuse Texture Swirly Bump Map

Sphere w/Diffuse Texture & Bump Map

Another GLSL example: orange.vs

/7 a shader that looks like orange peel
void main(void) {
/7 the fragment shader requires both the world space position (for

77 conststent bump mapping) & syespsce posieion (for the phong
77 specular highlignt)

position eyespace = vec3 (gl ModelviewMatrix *

91_Vertex);
position worldspace = gl_Vertex.xyz;

// pass along the nomal
al = normalize(gl NormalMatrix * gl Normal);

g1_Position = gl ModelviewProjectionMatrix * gl Vertex;
¥

—-:1--- orange.vs ALl L1 cvs-1.1 (C/1

Another GLSL example: orange.fs

eno
varying vec3 n

varying vec3 p pac
varying vec3 position worldspace;

/7 a shader that looks like orange peel
void main (void) {

// the base color is orang
e e = e (1100.5.0. 115
/4 3gh frequency noise added to the nomal for the bump map
ec3 nornal? = normalize(normal+0.4snoise3(70.0%position worldspace));

/1 dizection to the lig

ue(gl LightSource[1].position.xyz - position_eyespace);

rormatize (-position eyespace):

7 atrection
vee3 eye vec

// ideal specular reflection
vec3 reflected_ve

ctor = normalize(-reflect(light,normal2));

. 4znax(dot (nomala, Light)

2 % pwlmx(dct(xaflented abtor, eye_vector),0.0),10.0);
e (i 0,150,005

color = ambientvcolor + diffusercolor + specular+white;

g1_FragColor = vecd (color, 1.0);

—-i1--- orange.fs ALl L1 cvs-1.1 (C/1

Bump Mapping

« Treat the texture as a single-valued height function

« Compute the normal from the partial derivatives in the
texture

Another Bump Map Example

Bump Map

Cylinder w/Diffuse Texture Map Cylinder w/Texture Map & Bump Map

What's Missing?

* There are no bumps on
the silhouette of a
bump-mapped object

* Bump maps
don’t allow
self-occlusion
or self-shadowing

Displacement Mapping

» Use the texture map to actually move the surface point
* The geometry must be displaced before visibility is determined

Displacement Mapping

Image from:

Geometry Caching for
Ray-Tracing Displacement Maps
EGRW 1996
Matt Pharr and Pat Hanrahan

note the detailed shadows
cast by the stones

Environment Maps

* We can simulate reflections by using the direction of the reflected
ray to index a spherical texture map at "infinity".

* Assumes that all reflected rays
begin from the same point.

View Point

Environment map
on a sphere

Object

Terminator IT

Displacement Mapping

Ken Musgrave

What's the Best Chart?

Lattitude Map

Box Map [sesomeer]

Texture Maps for Illumination

* Also called "Light Maps"

I]

Quake

Questions?

Reading for Today:

: ek -
Image by Henrik Wann Jensen
Environment map by Paul Debevec

* Chris Wyman,
"An Approximate
Image-Space
Approach for
Interactive
Refraction”,
SIGGRAPH 2005

Readings for Friday:

Choose:

* “An Image Synthesizer”, Perlin,
SIGGRAPH 1985 & “Improving Noise”,
Perlin, SIGGRAPH 2002

» “Parallel White Noise Generation

on a GPU via Cryptographic Hash”,

Tzeng & Wei, 13D 2008.

