2D Paletted Lighting
by Colin Neville

1.

Introduction
This paper attempts to devise a method of applying dynamic lighting to 2-dimensional, limited color
images. Typically, 2D lighting does not take object depth into account and often ignores occlusion.
Such lighting systems are also not suitable for art styles which use limited colors.

The process contains three steps. The first is the preprocessing step, which consists of both
automated preparation and a manual heightmap creation. Next, the occlusion of each pixel is
checked, and simulated self-shadowing is applied. Lastly, the full-color shadowed image is adapted
to the color restrictions.

Preprocessing

To ensure the result image is limited to the desired color palette, the shader must be given a list of
acceptable colors. A small program was designed to compact each unique color from a source image
into an n by 1 texture to be passed as a sampler to the shader. The process can also be replicated by
hand for specific palettes or to include additional colors.

The standard RGB representation of color is not well-suited to determining the visual proximity of
two colors. For example, a 25% difference in the hues of two colors would have more of an impact
in perception than the same difference in raw red values. For this reason, the desired palette is
passed in with a pre-converted HSV analog. The hue, saturation, and value levels are encoded the R,
G, and B levels of a standard image. Pre-converting the palette avoids unnecessary recalculations on
the GPU, and avoids the branching inherent in RGB to HSV conversion. Because the input image will
be modified by the shader before color comparison, there is no reason to convert it beforehand.
Palette and HSV generation can easily be

automated when loading images. The image to L ——
the right shows the 56-color NES palette above, and the HSV encoding below.

Finally, a heightmap image must be manually generated for the input image. A heightmap is a
grayscale image of the same dimensions as the input
image. The pixel values of the heightmap represent z-
dimension values ranging from 0.0 to 1.0 in arbitrary
units. Shown are two images and their heightmaps
(right, bottom).

Heightmap lighting

Once preprocessing has occurred and the samplers
have been sent to the shader, it must calculate self-
shadowing. The initial approach was to generate a 3D
mesh from the heightmap comprised of approximately

two triangles per pixel. This approach, while simple to

generate, had several downsides. The first, and most




obvious, was the large number of triangles resulting
from even a small image. A non-transparent 64 by 64
pixel image creates a mesh of 8,712 triangles. While it is
possible to simplify the mesh by combining regions with
the same height values, the worst-case remains the
same. Self-shadowing lighting techniques are generally
costly, and tis would be compounded by the sheer
number of triangles. Because image models had actual
depth, clipping between multiple objects was also a

potential issue.

Generating models was abandoned for a more efficient
technique than takes advantage of the gridded nature
of the heightmaps. Any given pixel can only be
occluded by anything existing on the vertical plane
which contains the ray from the pixel to the light
source. Because each height is represented in a grid,
the only ones that must be checked are the pixels
along this ray. The pixel is then occluded if there are

any heights in this plane that exist above the ray. A
shader can calculate this by traversing the ray and ensuring all values in the heightmap at the point
are less than the current height. The illustration demonstrates a single check: The blue is the pixel
being lighting tested. Green shows heights that do not block the light source, and the red fails

The method is similar to a simplified portion of the process used by Timonen and Westerholm'. In
this method, the maximum number of pixels sampled is the height plus the width of the image. In
heightmaps composed of large flat areas, it may be possible to sample fewer pixels (e.g., every other
pixel) with minimal loss in accuracy. Significant additional efficiency could be achieved by
determining the convex hull of the heightmap and testing only the texels located the hull edges, as
described in the Timonen paper.

This process can be repeated for any number of light sources, and neither the light sources nor the
image must remain static. An ambient lighting shader parameter is also adjustable. The heightmap
has no normal information, so the angle to the light source has no bearing on intensity. The lighting
information for a scene with a soft light composed of five point lights is shown to the right.

Color limiting

Once lighting has been determined, the resulting image must be limited to the specified palette.
There are several ways to accomplish this, which each yielding the best results in different kinds of
input images.

The simplest method is to assign each pixel the closest color in the palette. “Closest” in this case is
determined by assigning a weight to each hue, saturation, and value and determining a total
distance based on the differences. The weighting scheme used in this case was H=0.65,S =0.15, V
=0.20. Although the simplest, this method still requires iterating through all palette values and
calculating distance. Pre-arranging the palette into a kd-tree could reduce execution time for large
palettes. Ultimately, this technique fares best with both small images and limited palettes. In small



images, any added detail may obscure the object. In limited palettes, using more distant colors may
distort the color scheme of the image too much.

The second technique used is to find the closest colors in each of the eight octants (in the HSV color
cube) surrounding the target color. The process is illustrated for a two-dimensional example to the
right. The colored circles each represent a color in the palette, and are positioned on value and
saturation axes (in practice, a hue axis is used as well, dividing the cube into octants). The target
color divides the space into quadrants. The closest color appearing in each quadrant is collected.
For each pair of opposite octants, the sum of the distances is calculated. The pair with the shortest
distance is chosen. The shader calculates the ratio between the distances of the chosen colors. It
then determines which color the current pixel would be if the entire image were filled according to
this ratio. For example, if color A was 0.25 from the target color, and color B was 0.75 from the
target color, the fill pattern would be AAAB so that

the total distances in both octants are as close as @ Elasest Solars
possible. The process works with any ratios, but the 1Y Target Calor
fill pattern is not guaranteed to be constant q /]
throughout the image. In images with specifically . Mf

crafted palettes, this method works very well and o i |

applies a dithering-like effect to non-representable
colors. With more general palettes though, this method may select two moderately distant colors
that do not successfully represent the target color. In the example image, odd coloration is visible in
the windows.

The final method is very similar to the second, but instead of selecting the two octants based on the
total distance, it selects them based on the minimum distance of any octant. For example, an octant
has a color with a distance of 0.01, less than any other
octant. The color gets selected, as well as the color in
the opposite octant, regardless of its distance.
Because the frequency of each color is based on the
distance, if the opposite color is very distant from the
target, it will rarely ever appear. This alteration

improves results on general palettes and appears to
be the most accurate overall.

Results

Running times proved to be real-time for reasonably sized images, palettes, and light counts. Tests
were run on a beat-up and poorly cooled W500 with a Mobility FireGL V5700. The examples shown
all used the 56 color NES palette.



The “Troy Teapot,” a 64 by 64 pixel image, ran in the range of 400 — 1000 fps with a single light
source, and dropped to about 200 fps with five point light sources for soft shadows (shown right).
Without any normal information, however, the curvature of the teapot
is not very evident. The process does not seem well-suited to rounded
objects. Not only is the depth information poorly conveyed, generating

gradient heightmaps is also much more time-consuming.
A building scene (256 by 128 pixels) which utilizes sharp edges in its heightmap showed promising
results. This scene, eight times larger than the teapot, ran at about 50 fps with a single light, and
around 20 with five lights. Shadows looked much
better on the gray building, thanks to the
multiple shades of gray in the palette. Because no
colors were similar to the left building, sparse
noise pixels appear where there should be
shadow. When the left building’s color was
substituted for a light green (one of several

greens in the palette), shadows appeared
properly, at the expense of a tacky-colored building.
6. Conclusion
The technique is fast enough to use for select elements in a real-time application such as a game,
but not fast enough for an entire background. Unfortunately, a background would be where this

technique would be most appropriate, so performance improvements are necessary. The shader still

has much room for optimization, including many branches which should be removable. As
mentioned earlier, encoding the palette’s HSV values into a data structure like a kd-tree could
reduce a linear lookup time to a logarithmic one.

This method offers real-time dynamic self-shadowing on small scenes. In its current state, the
quality of results vary depending on the scene geometry, but future additions and improvements

could rectify this. In particular, attempting to estimate a normal based on local heights may improve
soft shadowing on curved surfaces. Further refinements in color selection could mitigate instances
of “noise” shadows. Currently images only self-shadow, but it is possible to combine separate
images if their heightmaps are scaled relative to each other and overlayed. Given enough time, the

entire scene could be flattened and processed at once.

References

James F. Blinn. 1978. Simulation of wrinkled surfaces. In Proceedings of the 5th annual conference on
Computer graphics and interactive techniques (SIGGRAPH '78). ACM, New York, NY, USA, 286-292.
DOI=10.1145/800248.507101| http://doi.acm.org/10.1145/800248.507101

Panagiotis Metaxas. 2003. Parallel Digital Halftoning by Error-Diffusion. In Proceedings of FCRC2003
Paris C. Kanellakis Workshop.|http://cs.wellesley.edu/~pmetaxas/pck50-metaxas.pdf



http://doi.acm.org/10.1145/800248.507101
http://cs.wellesley.edu/~pmetaxas/pck50-metaxas.pdf

Fabio Policarpo, Manuel M. Oliveira, J6ao L. D. Comba. 2005. Real-Time Relief Mapping on Arbitrary

Polygonal Surfaces.
http://www.inf.ufrgs.br/%7Eoliveira/pubs files/Policarpo Oliveira Comba RTRM [3D 2005.pdf

Ville Timonen and Jan Westerholm. 2010. Scalable Height Field Self-Shadowing. In Proceedings of
Eurographics 2010 Computer Graphics Forum.|http://wili.cc/research/hfshadow/



http://www.inf.ufrgs.br/~oliveira/pubs_files/Policarpo_Oliveira_Comba_RTRM_I3D_2005.pdf
http://wili.cc/research/hfshadow/

