
1

CSCI-4530/6530
Advanced Computer Graphics

1

Barb Cutler
cutler@cs.rpi.edu

MRC 331A

http://www.cs.rpi.edu/~cutler/classes/advancedgraphics/S12/

Luxo Jr.

2

Pixar Animation Studios, 1986

Topics for the Semester
•  Meshes

–  representation
–  simplification
–  subdivision surfaces
–  construction/generation
–  volumetric modeling

•  Simulation
–  particle systems, cloth
–  rigid body, deformation
–  wind/water flows
–  collision detection
–  weathering

3

•  Rendering
–  ray tracing, shadows
–  appearance models
–  local vs. global

illumination
–  radiosity, photon

mapping, subsurface
scattering, etc.

•  procedural modeling
•  texture synthesis
•  non-photorealistic rendering
•  hardware & more …

Mesh Simplification

4

Hoppe “Progressive Meshes” SIGGRAPH 1996

Mesh Generation & Volumetric Modeling

5

Cutler et al., “Simplification and Improvement of
Tetrahedral Models for Simulation” 2004

Modeling – Subdivision Surfaces

6

Hoppe et al., “Piecewise Smooth
Surface Reconstruction” 1994

Geri’s Game
Pixar 1997

2

Particle Systems

7 Star Trek: The Wrath of Khan 1982

Physical Simulation
•  Rigid Body Dynamics
•  Collision Detection
•  Fracture
•  Deformation

8

Müller et al., “Stable Real-Time
Deformations” 2002

Fluid Dynamics

9

Foster & Mataxas, 1996

“Visual Simulation of Smoke”
Fedkiw, Stam & Jensen

SIGGRAPH 2001

Ray Casting/Tracing

10

“An Improved Illumination
Model for Shaded Display”

Whitted 1980

•  For every pixel
construct a ray from the eye
– For every object in the scene

•  Find intersection with the ray
•  Keep the closest

•  Shade (interaction of
light and material)

•  Secondary rays
(shadows,
reflection,
refraction)

Appearance Models

11

θi θr

φi φr

Henrik Wann Jensen

Wojciech Matusik

Subsurface Scattering

12

Surface

Jensen et al., “A Practical
Model for Subsurface
Light Transport” 2001

3

Syllabus & Course Website
http://www.cs.rpi.edu/~cutler/classes/advancedgraphics/S12/

•  Which version should I register for?
–  CSCI 6530 : 3 units of graduate credit, class ends at 3:20
–  CSCI 4530 : 4 units of undergraduate credit, class ends at 3:50

 (same lectures, assignments, quizzes, & grading criteria)

•  This is an intensive course aimed at graduate students and
undergraduates interested in graphics research, involving
significant reading & programming each week. Taking this
course in a 5 course overload semester is discouraged.

•  Other Questions?
13 14

CSCI 4530/6530 Advanced
Computer Graphics

CSCI 4973 Introduction
 to Visualization

Established course
 traditional, technical lectures
 instructor provides most of the content
 lots of in class discussion
 read 2 research papers a week

Structured individual homeworks
 lots of programming
 flexibility only in extra credit

5 week final project
 teams of 2 encouraged
 topic of your choice
 lots of graphics-related
 programming

4 units of credit (3 for grad version)
Counts as a “CS option” for CS majors
Huge time commitment

Prior graphics experience recommended

New course
 will be different than Fall 2010 offering
 instructor provides some of the content
 students provide some of the content
 lots of in class discussion
 some in class work time
 read 1 research paper a week

Design-your-own homeworks
 design/art/creativity/thinking/revision/
 presentation is focus
 some programming for implementation
 some fiddling with visualization toolkits
 individual & group work required

2 units of credit
Counts only as “Free Elective” for CS majors
(Probably) an unreasonable time
 commitment expected for a 2 credit course

Passion for visual perfection recommended

Participation/Laptops in Class Policy
•  Use of laptops for reference during paper

discussion and general note-taking is allowed

•  Participation is 15% of your grade:
So, if your focus is mostly on your laptop and
you rarely speak up in class, you will get a zero
for participation

•  If you are likely to be distracted by your laptop
(email, web-surfing, games), close the lid 

15

Introductions – Who are you?

16

•  name
•  year/degree
•  graphics background (if any)
•  research/job interests, future plans
•  something fun, interesting, or unusual

about yourself

17

Outline
•  Course Overview
•  Classes of Transformations
•  Representing Transformations
•  Combining Transformations
•  Orthographic & Perspective Projections
•  Example: Iterated Function Systems (IFS)
•  OpenGL Basics

18

What is a Transformation?
•  Maps points (x, y) in one coordinate system to

points (x', y') in another coordinate system

•  For example, Iterated Function System (IFS):

x' = ax + by + c
y' = dx + ey + f

4

19

Simple Transformations

•  Can be combined
•  Are these operations invertible?

Yes, except scale = 0

20

Transformations are used to:
•  Position objects in a scene
•  Change the shape of objects
•  Create multiple copies of objects
•  Projection for virtual cameras
•  Describe

animations

21

Rigid-Body / Euclidean Transforms

•  Preserves distances
•  Preserves angles

Translation
Rotation

Rigid / Euclidean

Identity

22

Similitudes / Similarity Transforms

•  Preserves angles

Translation
Rotation

Rigid / Euclidean

Similitudes

Isotropic Scaling
Identity

23

Linear Transformations

Translation
Rotation

Rigid / Euclidean
Linear

Similitudes

Isotropic Scaling
Identity

Scaling

Shear

Reflection

24

Linear Transformations

•  L(p + q) = L(p) + L(q)
•  L(ap) = a L(p)

Translation
Rotation

Rigid / Euclidean
Linear

Similitudes

Isotropic Scaling

Scaling

Shear

Reflection
Identity

5

25

Affine Transformations

•  preserves
parallel lines

Translation
Rotation

Rigid / Euclidean
Linear

Similitudes

Isotropic Scaling

Scaling

Shear

Reflection
Identity

Affine

26

Projective Transformations

•  preserves lines

Translation
Rotation

Rigid / Euclidean
Linear

Affine

Projective

Similitudes

Isotropic Scaling

Scaling

Shear

Reflection

Perspective

Identity

General (Free-Form) Transformation
•  Does not preserve lines
•  Not as pervasive, computationally more involved

27 Sederberg and Parry, Siggraph 1986 28

Outline
•  Course Overview
•  Classes of Transformations
•  Representing Transformations
•  Combining Transformations
•  Orthographic & Perspective Projections
•  Example: Iterated Function Systems (IFS)
•  OpenGL Basics

29

How are Transforms Represented?

x' = ax + by + c
y' = dx + ey + f

x'
y'

a b
d e

c
f

=
x
y

+

p' = M p + t

30

Homogeneous Coordinates
•  Add an extra dimension

•  in 2D, we use 3 x 3 matrices
•  In 3D, we use 4 x 4 matrices

•  Each point has an extra value, w

x'
y'
z'
w'

=

x
y
z
w

a
e
i
m

b
f
j
n

c
g
k
o

d
h
l
p

p' = M p

6

31

Translation in homogeneous coordinates
x' = ax + by + c
y' = dx + ey + f

x'
y'
1

a b
d e
0 0

c
f
1

=
x
y
1

p' = M p

x'
y'

a b
d e

c
f

=
x
y

+

p' = M p + t

Affine formulation Homogeneous formulation

32

Homogeneous Coordinates
•  Most of the time w = 1, and we can ignore it

•  If we multiply a homogeneous coordinate
by an affine matrix, w is unchanged

x'
y'
z'
1

=

x
y
z
1

a
e
i
0

b
f
j
0

c
g
k
0

d
h
l
1

33

Homogeneous Visualization
•  Divide by w to normalize (homogenize)
•  W = 0?

w = 1

w = 2

(0, 0, 1) = (0, 0, 2) = …
(7, 1, 1) = (14, 2, 2) = …
(4, 5, 1) = (8, 10, 2) = …

Point at infinity (direction)

34

Translate (tx, ty, tz)
•  Why bother with the

extra dimension?
Because now translations
can be encoded in the matrix!

=

x
y
z
1

1
0
0
0

0
1
0
0

0
0
1
0

tx

ty

tz

1

Translate(c,0,0)

x

y

p p'

c

x'
y'
z'
1

35

Scale (sx, sy, sz)
•  Isotropic (uniform)

scaling: sx = sy = sz

x'
y'
z'
1

=

x
y
z
1

sx

0
0
0

0
sy

0
0

0
0
sz

0

0
0
0
1

Scale(s,s,s)

x

p

p'

q
q'

y

36

Rotation
•  About z axis

x'
y'
z'
1

=

x
y
z
1

cos θ
sin θ

0
0

-sin θ
 cos θ

0
0

0
0
1
0

0
0
0
1

ZRotate(θ)

x

y

z

p

p'

θ

7

37

Rotation
•  About (kx, ky, kz), a unit

vector on an arbitrary axis
(Rodrigues Formula)

x'
y'
z'
1

=

x
y
z
1

kxkx(1-c)+c
kykx(1-c)+kzs
kzkx(1-c)-kys

0

0
0
0
1

 kzkx(1-c)-kzs
kzkx(1-c)+c
kzkx(1-c)-kxs

0

 kxkz(1-c)+kys
kykz(1-c)-kxs
kzkz(1-c)+c

0

where c = cos θ & s = sin θ

Rotate(k, θ)

x

y

z

θ

k

38

Storage
•  Often, w is not stored (always 1)
•  Needs careful handling of direction vs. point

– Mathematically, the simplest is to encode directions
with w = 0

–  In terms of storage, using a 3-component array for
both direction and points is more efficient

– Which requires to have special operation routines for
points vs. directions

39

Outline
•  Course Overview
•  Classes of Transformations
•  Representing Transformations
•  Combining Transformations
•  Orthographic & Perspective Projections
•  Example: Iterated Function Systems (IFS)
•  OpenGL Basics

40

How are transforms combined?

(0,0)
(1,1)

(2,2)

(0,0)

(5,3)

(3,1)
Scale(2,2) Translate(3,1)

TS =
2

0
0
2

0
0

1

0
0
1

3
1

2

0
0
2

3
1 =

Scale then Translate

Use matrix multiplication: p' = T (S p) = TS p

Caution: matrix multiplication is NOT commutative!

0 0 1 0 0 1 0 0 1

41

Non-commutative Composition
Scale then Translate: p' = T (S p) = TS p

Translate then Scale: p' = S (T p) = ST p

(0,0)

(1,1)
(4,2)

(3,1)

(8,4)

(6,2)

(0,0)
(1,1)

(2,2)

(0,0)

(5,3)

(3,1)
Scale(2,2) Translate(3,1)

Translate(3,1) Scale(2,2)

42

TS =
2

0
0

0
2

0

0
0
1

1

0
0

0
1

0

3
1
1

ST =
2

0
0
2

0
0

1

0
0
1

3
1

Non-commutative Composition
Scale then Translate: p' = T (S p) = TS p

2

0
0

0
2

0

3
1
1

2

0
0
2

6
2

=

=

Translate then Scale: p' = S (T p) = ST p

0 0 1 0 0 1 0 0 1

8

43

Outline
•  Course Overview
•  Classes of Transformations
•  Representing Transformations
•  Combining Transformations
•  Orthographic & Perspective Projections
•  Example: Iterated Function Systems (IFS)
•  OpenGL Basics

44

Orthographic vs. Perspective
•  Orthographic

•  Perspective

45

Simple Orthographic Projection
•  Project all points along the z axis to the z = 0 plane

x
y
0
1

=

x
y
z
1

1
0
0
0

0
1
0
0

0
0
0
0

0
0
0
1

46

•  Project all points along the z axis to the z = d plane,
eyepoint at the origin:

Simple Perspective Projection

x
y
z

z / d

=

x
y
z
1

1
0
0
0

0
1
0
0

0
0
1

1/d

0
0
0
0

x * d / z
y * d / z

d
1

=

homogenize

By similar triangles:
 x’/x = d/z
 x’ = (x*d)/z

(x’,y’,z’)

’

47

Alternate Perspective Projection
•  Project all points along the z axis to the z = 0

plane, eyepoint at the (0,0,-d):

x
y
0

(z + d)/ d

=

x
y
z
1

1
0
0
0

0
1
0
0

0
0
0

1/d

0
0
0
1

x * d / (z + d)
y * d / (z + d)

0
1

=

homogenize
(x’,y’,z’)

By similar triangles:
 x’/x = d/(z+d)
 x’ = (x*d)/(z+d)

48

In the limit, as d → ∞

1
0
0
0

0
1
0
0

0
0
0

1/d

0
0
0
1

1
0
0
0

0
1
0
0

0
0
0
0

0
0
0
1

→

...is simply an
orthographic projection

this perspective
projection matrix...

9

Outline
•  Course Overview
•  Classes of Transformations
•  Representing Transformations
•  Combining Transformations
•  Orthographic & Perspective Projections
•  Example: Iterated Function Systems (IFS)
•  OpenGL Basics

49 50

Iterated Function Systems (IFS)

•  Capture self-similarity
•  Contraction

(reduce distances)
•  An attractor is a

fixed point

51

Example: Sierpinski Triangle
•  Described by a set of n affine transformations
•  In this case, n = 3

–  translate & scale by 0.5

52

Example: Sierpinski Triangle
for “lots” of random input points (x0, y0)

for j=0 to num_iters
randomly pick one of the transformations
(xk+1, yk+1) = fi (xk, yk)

display (xk, yk)

Increasing the number of iterations

53

Another IFS: The Dragon

54

3D IFS in OpenGL

GL_QUADS

GL_POINTS

10

55

Assignment 0: OpenGL Warmup
•  Get familiar with:

– C++ environment
– OpenGL
– Transformations
–  simple Vector &

Matrix classes
•  Have Fun!
•  Due ASAP (start it today!)
•  ¼ of the points of the other HWs

(but you should still do it and submit it!)

Outline

56

•  Course Overview
•  Classes of Transformations
•  Representing Transformations
•  Combining Transformations
•  Orthographic & Perspective Projections
•  Example: Iterated Function Systems (IFS)
•  OpenGL Basics

OpenGL
•  OpenGL is a “state machine”
•  OpenGL has lots of finicky setup & execution

function calls
–  omitting a function call, swapping the order of 2

function calls, or passing the “wrong” argument, can
result in a blank screen, nothing happens/changes,
craziness happens, bus error, seg fault, etc.

•  Often there’s more than one way to do things
–  often one way is much faster than another

•  What is possible depends on your hardware
57 58

OpenGL Basics: Array Buffer
•  Some useful commands:

/* store data in points array */
glGenBuffers(1, &points_VBO);
glBindBuffer(GL_ARRAY_BUFFER,points_VBO);
glBufferData(GL_ARRAY_BUFFER, ..., points);
glColor3f(0,0,0);
glPointSize(1);
glEnableClientState(GL_VERTEX_ARRAY);
glVertexPointer(...);
glEnableVertexAttribArray(...);
glVertexAttribPointer(...);
glDrawArrays(GL_POINTS, ...);
glDisableClientState(GL_VERTEX_ARRAY);
glDisableVertexAttribArray(...);

59

OpenGL Basics: Index Vertex Buffers

•  Some useful commands:
/* store data in verts & faces arrays */
glBindBuffer(GL_ARRAY_BUFFER,cube_verts_VBO);
glBufferData(GL_ARRAY_BUFFER, cube_verts, ...);
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER,

cube_face_indices_VBO);
glBufferData(GL_ELEMENT_ARRAY_BUFFER,

 cube_face_indices, GL_STATIC_DRAW);
glEnableClientState(GL_VERTEX_ARRAY);
glVertexPointer(... BUFFER_OFFSET(0));
glEnableClientState(GL_NORMAL_ARRAY);
glNormalPointer(..., BUFFER_OFFSET(12));
glEnableClientState(GL_COLOR_ARRAY);
glColorPointer(..., BUFFER_OFFSET(24));
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER,

cube_face_indices_VBO);
glDrawElements(GL_QUADS, ...);
glDisableClientState(GL_NORMAL_ARRAY);
glDisableClientState(GL_COLOR_ARRAY);
glDisableClientState(GL_VERTEX_ARRAY);

60

OpenGL Basics: Transformations
•  Useful commands:

glMatrixMode(GL_MODELVIEW);
glPushMatrix();
glPopMatrix();
glMultMatrixf(…);

From OpenGL Reference Manual

11

61

Questions?

Image by Henrik Wann Jensen

62

For Next Time:
•  Read Hugues Hoppe “Progressive Meshes”

SIGGRAPH 1996
•  Post a comment or question on the course

WebCT/LMS discussion by 10am on Friday

