Implicit Surfaces, Collision Detection, & Volumetric Data Structures

Last Time?
- Spline Surfaces
 - complex topology is challenging, requires trimming curves
- Subdivision Zoo
 - Doo-Sabin
 - Loop
 - Catmull-Clark
- Subdivision w/ Creases

Today
- Implicit Surfaces, Voxels, & Marching Cubes
- Collision Detection
- Conservative Bounding Region
- Spatial Acceleration Data Structures
 - Fixed Grid
 - Nested Grid
 - Octree
 - Binary Space Partition
 - K-d tree
 - Bounding Volume Hierarchy
- Misc Vocabulary & Advanced Papers

Implicit Surfaces
- For a sphere:
 \[H(x,y,z) = x^2 + y^2 + z^2 - r^2 \]
 - If \(H(x,y,z) = 0 \), on surface
 - If \(H(x,y,z) > 0 \), outside surface
 - If \(H(x,y,z) < 0 \), inside surface

Level Sets
- Efficient method for computing signed distance field

Homework 1:
- Questions/Comments?
Marching Cubes

- Polygonization: extract triangle mesh from signed distance field

“Marching Tetrahedra”

- Polygonization: extract triangle mesh from signed distance field

“Marching Tetrahedra”

- When the Blobs Go Marching Two by Two”, Jeff Lander, Gamasutra

Similarly, we can create volumetric models:

“Interval volume tetrahedrization” Visualization ’97
Nielson & Sung

Questions?

Today

- Implicit Surfaces, Voxels, & Marching Cubes
- Collision Detection
- Conservative Bounding Region
- Spatial Acceleration Data Structures
 - Fixed Grid
 - Nested Grid
 - Octree
 - Binary Space Partition
 - K-d tree
 - Bounding Volume Hierarchy
- Misc Vocabulary & Advanced Papers

Collisions

- Detection
- Response
- Overshooting problem (when we enter the solid)
Detecting Collisions

• Easy with implicit equations of surfaces
 • \(H(x,y,z)=0 \) at surface
 • \(H(x,y,z)<0 \) inside surface
 • So just compute \(H \) and you know that you’re inside if it’s negative

• More complex with other surface definitions

Collision Detection for Solids

• How to detect collision between 2 polyhedra?
 • Need an inside/outside test
 • Test if a vertex is inside the other polyhedron
 • But treat also edge-edge intersection

Cost of Detection?

• Test each edge with each face?
 – \(O(N^2) \)
• How would you detect collision between two bunnies?
 – \(O(N^2) \) is too expensive!
 – Use spatial hierarchy

Questions?

Today

• Implicit Surfaces, Voxels, & Marching Cubes
• Collision Detection
 • Conservative Bounding Region
• Spatial Acceleration Data Structures
 – Fixed Grid
 – Nested Grid
 – Octree
 – Binary Space Partition
 – K-d tree
 – Bounding Volume Hierarchy
• Misc Vocabulary & Advanced Papers

Conservative Bounding Region

• First check for an intersection with a conservative bounding region
• Early reject

Application: Accelerate ray tracing
Intersect object & ray… more later this semester!!
Conservative Bounding Regions

• tight → avoid false positives
• fast to intersect

Overlap test

• Overlap between two axis-aligned boxes?
 – Check if the intervals along the 3 dimensions overlap
• Overlap test between two spheres?
 – \(D(\text{center}_1, \text{center}_2) < r_1 + r_2 \)

Questions?

Today

• Implicit Surfaces, Voxels, & Marching Cubes
• Collision Detection
• Conservative Bounding Region
• Spatial Acceleration Data Structures
 – Fixed Grid
 – Nested Grid
 – Octree
 – Binary Space Partition
 – K-d tree
 – Bounding Volume Hierarchy
• Misc Vocabulary & Advanced Papers

Collision Pruning via Uniform Grid

• Primitives that overlap multiple cells?

Regular Grid

• Primitives that overlap multiple cells?
• Insert into multiple cells (use pointers)
For Each Cell Along a Ray

• Does the cell contain an intersection?
 • Yes: return closest intersection
 • No: continue to march along ray

Regular Grid Discussion

• Advantages?
 – easy to construct
 – easy to traverse

• Disadvantages?
 – may be only sparsely filled
 – geometry may still be clumped

Today

• Implicit Surfaces, Voxels, & Marching Cubes
• Collision Detection
• Conservative Bounding Region
• Spatial Acceleration Data Structures
 – Fixed Grid
 – Nested Grid
 – Octree
 – Binary Space Partition
 – K-d tree
 – Bounding Volume Hierarchy
• Misc Vocabulary & Advanced Papers

Adaptive Grids

• Subdivide until each cell contains no more than n elements, or maximum depth d is reached

Variations of Adaptive Grids

• When to split? When a cell contains “lots” of geometry, but has not yet reached the max tree depth
• Where to split?
 • Quadtree/Octree: split every dimension in half, always axis aligned
 • Kd-tree: choose one dimension (often the largest dimension) and split it axis aligned (but not necessarily at the midpoint)
 • Binary Space Partition (BSP): choose an arbitrary cut plane
• Which one is best? It depends… Often they are all equally good!

Reading for Today:

• "Multidimensional Binary Search Trees Used for Associative Searching", Bentley, Communications of the ACM, 1975
Primitives in an Adaptive Grid

- Can live at intermediate levels, or be pushed to lowest level of grid

Adaptive Grid Discussion

- Advantages?
 - grid complexity matches geometric density
- Disadvantages?
 - more expensive to traverse (binary tree, lots of pointers)

General Collision Detection

- Put a hierarchy around your objects
- Use the fast overlap test recursively
- Handle exact case at the leaves (when necessary)
- More difficult for self-collision (e.g. cloth)
 - Because there is more overlap

Today

- Implicit Surfaces, Voxels, & Marching Cubes
- Collision Detection
- Conservative Bounding Region
- Spatial Acceleration Data Structures
 - Fixed Grid
 - Nested Grid
 - Octree
 - Binary Space Partition
 - K-d tree
 - Bounding Volume Hierarchy
- Misc Vocabulary & Advanced Papers

Bounding Volume Hierarchy

- Find bounding box of objects
- Split objects into two groups
- Recurse
Where to split objects?

- At midpoint OR
- Sort, and put half of the objects on each side OR
- Use modeling hierarchy

Intersection with BVH

- Check sub-volume with closer intersection first

Bounding Volume Hierarchy Discussion

- Advantages
 - easy to construct
 - easy to traverse
 - binary

- Disadvantages
 - may be difficult to choose a good split for a node
 - poor split may result in minimal spatial pruning

Reading for Today:

- "Oriented Bounding Box (OBB): generalization of the (axis-aligned) BVH"

Reading for Today:

- "Octree Textures", Benson & Davis, SIGGRAPH 2002
- "Painting and Rendering Textures on Unparameterized Models", DeBry, Gibbs, Deleon, and Robins, SIGGRAPH 2002
Questions?

Today
- Implicit Surfaces, Voxels, & Marching Cubes
- Collision Detection
- Conservative Bounding Region
- Spatial Acceleration Data Structures
 - Fixed Grid
 - Nested Grid
 - Octree
 - Binary Space Partition
 - K-d tree
 - Bounding Volume Hierarchy
- Misc Vocabulary & Advanced Papers

Voronoi Diagram/Cells/Regions
- How to re-district the Netherlands into provinces so that everyone reports to the closest capital
- Cell edges are the perpendicular bisectors of nearby points
- 2D or 3D
- Supports efficient Nearest Neighbor queries

“Optimally” site the next Starbucks

Convex vs. Non-Convex

Reduced Deformation
Doug L. James & Dinesh K. Pai
BD-Tree: Output-Sensitive Collision Detection for Reduced Deformable Models
SIGGRAPH 2004

- Collisions are expensive
- Deformation is expensive
- This is a lot of geometry!
- Simplify the simulation model
Cloth Collision

- A cloth has many points of contact
- Stays in contact
- Requires
 - Efficient collision detection
 - Efficient numerical treatment (stability)

Reading for Friday:

Optional Reading for Friday:

- Baraff, Witkin & Kass
 Untangling Cloth
 SIGGRAPH 2003

Post a comment/question on the LMS discussion by 10am