Curves & Surfaces

Today

- Limitations of Polygonal Models
 - Interpolating Color & Normals in OpenGL
 - Some Modeling Tools & Definitions
- What's a Spline?
 - Interpolation Curves vs. Approximation Curves
- Linear Interpolation
- Bézier Spline
- BSpline (NURBS)
- Extending to Surfaces Tensor Product

Today

- Limitations of Polygonal Models
 - Interpolating Color & Normals in OpenGL
 - Some Modeling Tools & Definitions
- What's a Spline?
 - Interpolation Curves vs. Approximation Curves
 Linear Interpolation
- Bézier Spline
- BSpline (NURBS)
- Extending to Surfaces Tensor Product

Limitations of Polygonal Meshes Planar facets (& silhouettes) Fixed resolution Deformation is difficult No natural parameterization (for texture mapping)

Questions?

Today

Limitations of Polygonal Models

Interpolating Color & Normals in OpenGL
Some Modeling Tools & Definitions

What's a Spline?

Interpolation Curves vs. Approximation Curves
Linear Interpolation

Bézier Spline

BSpline (NURBS)
Extending to Surfaces – Tensor Product

- > 4 control points
- · Bernstein Polynomials as the basis functions

$$B_i^n(t) = \frac{n!}{i!(n-i)!} t^i (1-t)^{n-i}, \qquad 0 \le i \le n$$

- Every control point affects the entire curve - Not simply a local effect
 - More difficult to control for modeling

Today

- · Limitations of Polygonal Models
 - Interpolating Color & Normals in OpenGL
 - Some Modeling Tools & Definitions
- What's a Spline?
 - Interpolation Curves vs. Approximation Curves
 Linear Interpolation
- Bézier Spline
- BSpline (NURBS)
- Extending to Surfaces Tensor Product

NURBS (generalized BSplines)

- BSpline: uniform cubic BSpline
- NURBS: Non-Uniform Rational BSpline

 non-uniform = different spacing between the blending functions, a.k.a. knots
 - rational = ratio of polynomials (instead of cubic)

Today

- Limitations of Polygonal Models

 Interpolating Color & Normals in OpenGL
 Some Modeling Tools & Definitions
- What's a Spline?
 - Interpolation Curves vs. Approximation Curves
 - Linear Interpolation
- Bézier Spline
- BSpline (NURBS)
- Extending to Surfaces Tensor Product

