Mass-Spring Systems

Today

Particle Systems

- Equations of Motion (Physics)
- Forces: Gravity, Spatial, Damping
- Numerical Integration (Euler, Midpoint, etc.)
- Mass Spring System Examples – String, Hair, Cloth
- Stiffness
- Discretization

What is a Particle System?

- Collection of many small simple particles that maintain *state* (position, velocity, color, etc.)
- Particle motion influenced by external *force fields*
- *Integrate* the laws of mechanics (ODE Solvers)
- To model: sand, dust, smoke, sparks, flame, water, etc.

Particle Motion

- mass *m*, position *x*, velocity *v*
- equations of motion:

$$\frac{d}{dt}x(t) = v(t)$$

$$\frac{d}{dt}v(t) = \frac{1}{m}F(x, v, t) \qquad F = ma$$

- Analytic solutions can be found for some classes of differential equations, but most can't be solved analytically
- Instead, we will numerically approximate a solution to our *initial value problem*

Today

- Particle Systems
 - Equations of Motion (Physics)
 - Forces: Gravity, Spatial, Damping
 - Numerical Integration (Euler, Midpoint, etc.)
- Mass Spring System Examples – String, Hair, Cloth
- Stiffness
- Discretization

Forces: Spatial Fields

- Force on particle *i* depends only on position of *i*
 - wind
 - attractors
 - repulsers
 - vortices
- Can depend on time (e.g., wind gusts)
- Note: these forces will generally add energy to the system, and thus may need damping...

Forces: Damping

$$f^{(i)} = -dv^{(i)}$$

- Force on particle *i* depends only on velocity of *i*
- Force opposes motion - A hack mimicking real-world friction/drag
- Removes energy, so system can settle
- Small amount of damping can stabilize solver
- Too much damping makes motion too glue-like

Today

- Particle Systems
 - Equations of Motion (Physics)
 - Forces: Gravity, Spatial, Damping
 - Numerical Integration (Euler, Midpoint, etc.)
- Mass Spring System Examples - String, Hair, Cloth
- Stiffness
- Discretization

Euler's Method

- Examine $f(\mathbf{X},t)$ at (or near) current state
- Take a step of size *h* to new value of **X**:

$$t_{1} = t_{0} + h$$

$$\mathbf{X}_{1} = \mathbf{X}_{0} + h f(\mathbf{X}_{0}, t_{0})$$

$$\mathbf{X} = \begin{pmatrix} x \\ v \end{pmatrix}$$

$$f(X, t) = \begin{pmatrix} v \\ \frac{1}{m}F(x, v, t) \end{pmatrix}$$
update the position
by adding a
little bit of the
current velocity
by adding a little
bit of the current
acceleration

by adding a

&

it of the current

acceleration

• Piecewise-linear approximation to the curve

Effect of Step Size • Step size controls accuracy • Smaller steps more closely follow curve • For animation, we

- may want to take many small steps per frame
 - How many frames per second for animation?
 - How many steps per frame?

Analysis using Taylor Series

- Expand exact solution $\mathbf{X}(t)$ $\mathbf{X}(t_0 + h) = \mathbf{X}(t_0) + h \left(\frac{d}{dt} \mathbf{X}(t)\right)_{l_L} + \frac{h^2}{2!} \left(\frac{d^2}{dt^2} \mathbf{X}(t)\right)_{l_L} + \frac{h^3}{3!} (\cdots) + \cdots$
- Euler's method:
 - $\mathbf{X}(t_0 + h) = \mathbf{X}_0 + h f(\mathbf{X}_0, t_0) \qquad \dots + O(h^2) \text{ error}$
 - $h \rightarrow h/2 \implies error \rightarrow error/4 \text{ per step} \times \text{twice as many steps}$ $\rightarrow error/2$
- First-order method: Accuracy varies with *h* To get 100x better accuracy need 100x more steps

- Problem: *f* has varied along the step
- Idea: look at *f* at the arrival of the step and compensate for variation

Today

- Particle Systems
 - Equations of Motion (Physics)
 - Numerical Integration (Euler, Midpoint, etc.)
 - Forces: Gravity, Spatial, Damping
- Mass Spring System Examples
 String, Hair, Cloth
- Stiffness
- Discretization

Spring Forces

• Force in the direction of the spring and proportional to difference with rest length L_0

$$F(P_i, P_j) = K(L_0 - ||P_i \vec{P}_j||) \frac{P_i P_j}{||P_i \vec{P}_j||}$$

- When K gets bigger, the spring really wants to keep its rest length F

How would you simulate a string?
Springs link the particles
Springs try to keep their rest lengths and preserve the length of the string
Problems?

Stretch, actual length will be greater than rest length
Numerical oscillation

How would you simulate hair?

- Similar to string...
- Also... add deformation forces proportional to the angle between segments (hair wants to stay straight or curly)

Reading for Today• "Deformation Constraints in a Mass-Spring
Model to Describe Rigid Cloth Behavior",
Provot, 1995.Image: Describe Rigid Cloth BehaviorImage: Describe Rigid Cloth Behavio

Today

- Particle Systems
 - Equations of Motion (Physics)
 - Numerical Integration (Euler, Midpoint, etc.)
 - Forces: Gravity, Spatial, Damping
- Mass Spring System Examples – String, Hair, Cloth
- Stiffness
- Discretization

The Stiffness Issue

- What relative stiffness do we want for the different springs in the network?
- Cloth is barely elastic, shouldn't stretch so much!
- Inverse relationship between stiffness & Δt
- We really want constraints (not springs)
- Many numerical solutions
 - reduce Δt
 - use constraints
 - implicit integration
 - ...

The Discretization Problem What happens if we discretize our cloth more finely, or with a different mesh structure? Image: Image:

