Mass-Spring Systems

Last Time?
- Implicit Surfaces & Marching Cubes/Tetras
- Collision Detection & Conservative Bounding Regions
- Spatial Acceleration Data Structures
 - Octree, k-d tree, BSF tree

Today
- Particle Systems
 - Equations of Motion (Physics)
 - Forces: Gravity, Spatial, Damping
 - Numerical Integration (Euler, Midpoint, etc.)
- Mass Spring System Examples
 - String, Hair, Cloth
- Stiffness
- Discretization

Types of Dynamics
- Point
- Rigid body
- Deformable body (include clothes, fluids, smoke, etc.)

What is a Particle System?
- Collection of many small simple particles that maintain state (position, velocity, color, etc.)
- Particle motion influenced by external force fields
- Integrate the laws of mechanics (ODE Solvers)
- To model: sand, dust, smoke, sparks, flame, water, etc.

Particle Motion
- mass \(m \), position \(x \), velocity \(v \)
- equations of motion:
 \[
 \frac{d}{dt} x(t) = v(t)
 \]
 \[
 \frac{d}{dt} v(t) = \frac{1}{m} F(x, v, t)
 \]
- Analytic solutions can be found for some classes of differential equations, but most can’t be solved analytically
- Instead, we will numerically approximate a solution to our initial value problem
Higher Order ODEs

- Basic mechanics is a 2nd order ODE:
 \[\frac{d^2}{dt^2} x = \frac{1}{m} F. \]
- Express as 1st order ODE by defining \(v(t) \):
 \[\frac{dx}{dt} = v(t), \quad \frac{dv}{dt} = \frac{1}{m} F(x, v) \]

\[X = \begin{pmatrix} x \\ v \end{pmatrix}, \quad f(X, t) = \begin{pmatrix} v \\ \frac{1}{m} F(x, v) \end{pmatrix} \]

\(X \) is a vector storing the current state of the particle
\(f(X, t) \) describes how to update the state of the particle

Path Through a Field

- \(f(X, t) \) is a vector field defined everywhere
 - E.g. a velocity field which may change over time

Note: In the simplest particle systems, the particles do not interact with each other, only with external force fields

- \(X(t) \) is a path through the field

For a Collection of 3D particles…

\[X = \begin{pmatrix} x_1 \\ v_1 \\ x_2 \\ v_2 \\ \vdots \\ x_n \\ v_n \end{pmatrix}, \quad f(X, t) = \begin{pmatrix} v_1 \\ \frac{1}{m_1} F_1(x_1, v_1) \\ v_2 \\ \frac{1}{m_2} F_2(x_2, v_2) \\ \vdots \\ v_n \\ \frac{1}{m_n} F_n(x_n, v_n) \end{pmatrix} \]

more generally, we can define \(X \) as a huge vector storing the current state of all particles in a system

Questions?

Note: current state \(X \) can also include color!
and \(f(X, t) \) can animate changes in color over time!

http://en.wikipedia.org/wiki/File:Particle_sys_fire.jpg

Today

- Particle Systems
 - Equations of Motion (Physics)
 - Forces: Gravity, Spatial, Damping
 - Numerical Integration (Euler, Midpoint, etc.)
- Mass Spring System Examples
 - String, Hair, Cloth
- Stiffness
- Discretization

Forces: Gravity

- Simple gravity: depends only on particle mass
 \[\begin{pmatrix} v_0 \\ m_i \end{pmatrix} \]
 \[\text{Gravity: } f^{\text{grav}} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \]

- N-body problem: depends on all other particles
 - Magnitude inversely proportional to square distance
 - \(F_{ij} = G \frac{m_i m_j}{r^2} \)

Quickly gets impractical to compute analytically, and expensive to numerically approximate too!
Forces: Spatial Fields

- Force on particle i depends only on position of i
 - wind
 - attractors
 - repulsers
 - vortices
- Can depend on time (e.g., wind gusts)
- Note: these forces will generally add energy to the system, and thus may need damping…

Forces: Damping

$f^{(t)} = -d v^{(t)}$

- Force on particle i depends only on velocity of i
- Force opposes motion
 - A hack mimicking real-world friction/drag
- Removes energy, so system can settle
- Small amount of damping can stabilize solver
- Too much damping makes motion too glue-like

Questions?

Today

- Particle Systems
 - Equations of Motion (Physics)
 - Forces: Gravity, Spatial, Damping
 - Numerical Integration (Euler, Midpoint, etc.)
- Mass Spring System Examples
 - String, Hair, Cloth
- Stiffness
- Discretization

Euler’s Method

- Examine $f(X,t)$ at (or near) current state
- Take a step of size h to new value of X:

 \[t_1 = t_0 + h \]
 \[X_1 = X_0 + h f(X_0, t_0) \]

 \[
 X = \begin{pmatrix} x \\ v \end{pmatrix} \quad f(X, t) = \begin{pmatrix} \frac{v}{t} \\ \frac{1}{h} F(x, v, t) \end{pmatrix}
 \]

- Piecewise-linear approximation to the curve

Effect of Step Size

- Step size controls accuracy
- Smaller steps more closely follow curve
- For animation, we may want to take many small steps per frame
 - How many frames per second for animation?
 - How many steps per frame?
Euler’s Method: Inaccurate

- Simple example: particle in stable circular orbit around planet (origin)
- Current velocity is always tangent to circle
- Force is perpendicular to circle
- Euler method will spiral outward no matter how small \(h \) is

Euler’s Method: Unstable

- Problem: \(f(x,t) = -kx \)
- Solution: \(x(t) = x_0 e^{-kt} \)

- Limited step size:
 \[
 x_i = x_i (1 - bk) \]
 - \(h \leq 1/k \) ok
 - \(h > 1/k \) oscillates ±
 - \(h > 2/k \) explodes
- If \(k \) is big, \(h \) must be small

Analysis using Taylor Series

- Expand exact solution \(X(t) \)
 \[
 X(t_i + h) = X(t_i) + h \left(\frac{d}{dt} X(t_i) \right) + \frac{h^2}{2!} \left(\frac{d^2}{dt^2} X(t_i) \right) + \cdots
 \]
- Euler’s method:
 \[
 X(t_i + h) = X(t_i) + h f(X(t_i)) \quad \cdots + O(h^2)
 \]

- First-order method: Accuracy varies with \(h \)
 - To get 100x better accuracy need 100x more steps

Can we do better than Euler’s Method?

- Problem: \(f \) has varied along the step
- Idea: look at \(f \) at the arrival of the step and compensate for variation

2nd-Order Methods

- Midpoint:
 - \(1/2 \) Euler step
 - evaluate \(f_n \)
 - full step using \(f_n \)
- Trapezoid:
 - Euler step (a)
 - evaluate \(f_1 \)
 - full step using \(f_1 \) (b)
 - average (a) and (b)

- Midpoint & trapezoid do not yield exactly the same result, but they have same order of accuracy

Comparison: Euler, Midpoint, Runge-Kutta

- initial position: \((1,0,0) \)
- initial velocity: \((0,5,0) \)
- force field: pulls particles to origin with magnitude proportional to distance from origin
- correct answer: circle

Euler will always diverge (even with small \(dt \))
Comparison: Euler, Midpoint, Runge-Kutta

- **initial position**: (0, -2, 0)
- **initial velocity**: (1, 0, 0)
- **force field**: pulls particles to line $y=0$ with magnitude proportional to distance from line
- **correct answer**: sine wave

Decreasing the timestep (dt) improves the accuracy

Questions?

Image by Baraff, Witkin, Kass

Today

- **Particle Systems**
 - Equations of Motion (Physics)
 - Numerical Integration (Euler, Midpoint, etc.)
 - Forces: Gravity, Spatial, Damping
- **Mass Spring System Examples**
 - String, Hair, Cloth
- **Stiffness**
- **Discretization**

How would you simulate a string?

- Each particle is linked to two particles
- Forces try to keep the distance between particles constant
- What force?

Spring Forces

- Force in the direction of the spring and proportional to difference with rest length L_0

\[
F(P_i, P_j) = K(L_0 - ||P_iP_j||) \frac{P_iP_j}{||P_iP_j||}
\]

- K is the stiffness of the spring
 - When K gets bigger, the spring really wants to keep its rest length

How would you simulate a string?

- Springs link the particles
- Springs try to keep their rest lengths and preserve the length of the string
- Problems?
 - Stretch, actual length will be greater than rest length
 - Numerical oscillation
How would you simulate hair?

• Similar to string…
• Also… add deformation forces proportional to the angle between segments (hair wants to stay straight or curly)

Cloth Modeled with Mass-Spring

• Network of masses and springs
 • Structural springs:
 – link \((i, j) \& (i+1, j)\) and \((i, j) \& (i, j+1)\)
 • Shear springs
 – link \((i, j) \& (i+1, j+1)\) and \((i+1, j) \& (i, j+1)\)
 • Flexion (Bend) springs
 – link \((i, j) \& (i+2, j)\) and \((i, j) \& (i, j+2)\)
• Be careful not to index out of bounds on the cloth edges!

Reading for Today

Questions?

• “Interactive Animation of Structured Deformable Objects”, Desbrun, Schröder, & Barr 1999

Today

• Particle Systems
 – Equations of Motion (Physics)
 – Numerical Integration (Euler, Midpoint, etc.)
 – Forces: Gravity, Spatial, Damping
• Mass Spring System Examples
 – String, Hair, Cloth
• Stiffness
• Discretization

The Stiffness Issue

• What relative stiffness do we want for the different springs in the network?
• Cloth is barely elastic, shouldn’t stretch so much!
• Inverse relationship between stiffness & \(\Delta t\)
• We really want constraints (not springs)
• Many numerical solutions
 – reduce \(\Delta t\)
 – use constraints
 – implicit integration
 – …
How would you simulate a string?

- Springs link the particles. Problems?
 - Stretch, actual length will be greater than rest length
 - Numerical oscillation

- Rigid, fixed-length bars link the particles
 - Dynamics & Constraints
 (must be solved simultaneously non-trivial, even for tiny systems)

The Discretization Problem

- What happens if we discretize our cloth more finely, or with a different mesh structure?

- Do we get the same behavior?
 - Usually not! It takes a lot of effort to design a scheme that does not depend on the discretization.

- Using (explicit) Euler, how many timesteps before a force propagates across the mesh?

Explicit vs. Implicit Integration

- With an explicit/forward integration scheme:
 \[y_{k+1} = y_k + h \, g(y_k) \]
 we must use a very small timestep to simulate stable, stiff cloth.

- Alternatively we can use an implicit/backwards scheme:
 \[y_{k+1} = y_k + h \, g(y_{k+1}) \]
 \[y_k = y_{k+1} - h \, g(y_{k+1}) \]
 Solving one step is much more expensive (Newton’s Method, Conjugate Gradients, …) but overall faster than the thousands of explicit timesteps required for very stiff springs.

Questions?

- Dynamic motion driven by animation

Optional Reading for Today:

- Baraff, Witkin & Kass
 Untangling Cloth
 SIGGRAPH 2003

Cloth Collision

- A cloth has many points of contact
- Stays in contact
- Requires
 - Efficient collision detection
 - Efficient numerical treatment (stability)
Reading for Tuesday:

- “Realistic Animation of Liquids”, Foster & Metaxas, 1996

- Post a comment or question on the LMS discussion by 10pm Monday

HW2: Cloth & Fluid Simulation