Navier-Stokes
&
Flow Simulation

Last Time?

* Spring-Mass Systems
* Numerical Integration

(Euler, Midpoint, Runge-Kutta)
* Modeling string, hair, & cloth

BIEIE] * Particle System

Optional Reading for Last Time:

* Baraff, Witkin & Kass
Untangling Cloth
SIGGRAPH 2003
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HW?2: Cloth & Fluid Simulation

Today

* Flow Simulations in Computer Graphics
— water, smoke, viscous fluids

* Navier-Stokes Equations
— incompressibility, conservation of mass
— conservation of momentum & energy

* Fluid Representations

* Basic Algorithm

» Data Representation

Flow Simulations in Graphics

* Random velocity fields
— with averaging to get simple background motion
* Shallow water equations
— height field only, can’t represent crashing waves, etc.

 Full Navier-Stokes

* note: typically we ignore surface tension and
focus on macroscopic behavior




Heightfield Wave Simulation Flow in a Voxel Grid

* Cem Yuksel, Donald H. House, and John Keyser, “Wave
Particles”, SIGGRAPH 2007

* conservation of mass: W ikr12

ox dy o0z

For a single phase
simulation (e.g., water
only, air only) u i-1/2,jk
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Foster & Metaxas, 1996

Navier-Stokes Equations Today

* conservation of momentum:  Flow Simulations in Computer Graphics

gravity (& other external forces)
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acceleration Convection: internal movement drag

in a fluid (e.g., caused by variation
in density due to a transfer of heat)

Modeling the Air/Water Surface Comparing Representations
ElE s * How do we render the resulting surface?
* Volume-of-fluid tracking M|  Are we guaranteed not to lose mass/volume?
Pl (is the simulation incompressible?)
» How is each affected by the grid resolution
+ Marker and Cell (MAC) s and timestep?
SmARRRn RNy + Can we guarantee stability?
S Enn RN ER R EE
* Smoothed Particle o ©®
Hydrodynamics (SPH) o o ® Q.




Volume-of-fluid-tracking

« Each cell stores a scalar value indicating that
cell’s “full”-ness

+ preserves volume
- difficult to render

- very dependent on grid resolution

Marker and Cell (MAC)

* Harlow & Welch, "Numerical calculation of
time-dependent viscous incompressible flow
of fluid with free surface”, The Physics of
Fluids, 1965.

*  Volume marker particles identify location of
fluid within the volume

(Optional) surface marker particles track the
detailed shape of the fluid/air boundary

« But... marker particles don’t have or
represent a mass/volume of fluid

+ rendering

does not preserve volume

dependent on grid resolution

Smoothed Particle Hydrodynamics (SPH)

» Each particle represents a specific mass of fluid

¢ “Meshless” (no voxel grid) b
* Repulsive forces between .
neighboring particles . q

maintain constant volume . . .
+ no grid resolution concerns (now accuracy
depends on number/size of particles)
+ volume is preserved*
+ render similar to MAC

- much more expensive (particle-particle interactions)

Demos J
* Nice Marker I S |
and Cell (MAC) ° _
videos at: - NS &

http://panoramix.ift.uni.wroc.pl/~maq/eng/cfdthesis.php
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http://mme.uwaterloo.ca/~fslien/free_surface/free_surface.htm

Reading for Today

» “Realistic Animation of Liquids”,
Foster & Metaxas, 1996

W ik

Today

Flow Simulations in Computer Graphics
+ Navier-Stokes Equations

* Fluid Representations

* Basic Algorithm

» Data Representation




Each Grid Cell Stores:

* Velocity at the cell faces (offset grid)

* Pressure
. . This is a critically
* Listof partlcles o important detail!
(and makes correct
implementation

rather annoying)
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Initialization

* Choose a voxel resolution

* Choose a particle density

* Create grid & place the particles

* Initialize pressure & velocity of each cell
* Set the viscosity & gravity

* Choose a timestep & go!

At each Timestep:

* Identify which cells are Empty,
Full, or on the Surface

» Compute new velocities

 Adjust the velocities to maintain
an incompressible flow

* Move the particles
— Interpolate the velocities at the faces

* Render the geometry and repeat!

Empty, Surface & Full Cells
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At each Timestep:

* Identify which cells are Empty,
Full, or on the Surface

* Compute new velocities
* Adjust the velocities to maintain
an incompressible flow
» Move the particles
— Interpolate the velocities at the faces
* Render the geometry and repeat!

Compute New Velocities
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Note: some of these values are the average velocity
within the cell rather than the velocity at a cell face




At each Timestep:

Adjusting the Velocities

* Identify which cells are Empty,
Full, or on the Surface

» Compute new velocities
+ Adjust the velocities to maintain
an incompressible flow
* Move the particles
— Interpolate the velocities at the faces
» Render the geometry and repeat!

* Calculate the divergence of the cell
(the extra in/out flow)
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 The divergence is used
to update the pressure
within the cell
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+ Adjust each face velocity N =
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uniformly to bring the
. k
divergence to zero N
* Iterate across the entire Image from

. . . . Foster & Metaxas, 1996
grid until divergence is <

Calculating/Eliminating Divergence

Handing Free Surface with MAC

0 0 0 0 B ]

initial flow field after 1 iteration after many iterations
) (results will vary with different calculation order)

< Divergence in
surface cells:

— Is divided
equally
amongst
neighboring
empty cells
Or other
similar
strategies?

Zero out the
divergence &
pressure in
empty cells
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At each Timestep:

Original image from

Velocity Interpolation i e 1o0s

Identify which cells are Empty,
Full, or on the Surface

» Compute new velocities

* Adjust the velocities to maintain
an incompressible flow

* Move the particles
— Interpolate the velocities at the faces

* Render the geometry and repeat!

« In2D: For each axis, find the 4 closest face velocity samples:
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¢ (In3D... Find 8 closest face velocities in each dimension)




Correct Velocity Interpolation

* NOTE: The complete implementation isn’t particularly
elegant... Storing velocities at face midpoints (req’d for

conservation of mass) makes the index math messy!
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Buggy Interpolation

No interpolation (just use the Correct Interpolation
left/bottom face velocity) Note that the velocity Note the clumping particles,
perpendicular to the and the discontinuities at
some of the cell borders

Stable Fluids

» “Stable Fluids”,

Jos Stam,
SIGGRAPH 1999.

Note the discontinuities in
velocity at cell boundaries outer box is zero

Smoke Simulation & Rendering

“Visual Simulation of Smoke™
Fedkiw, Stam & Jensen
SIGGRAPH 2001

Readings for Friday: (pick one)

“Deformable Objects Alive!” Coros, Martin, Thomaszewski,
Schumacher, & Sumner, SIGGRAPH 2012
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“Coupling Water and
Smoke to Thin Deformable
and Rigid Shells”,
Guendelman, Selle,
Losasso, & Fedkiw,
SIGGRAPH 2005.




