Ray Tracing

Keyframing Procedural Animation Physically-Based Animation Forward and Inverse Kinematics Motion Capture

Today

- Ray Casting
 - Ray-Plane Intersection
 - Ray-Sphere Intersection
 - Point in Polygon
- Ray Tracing
- Recursive Ray Tracing
- Distribution Ray Tracing

Reading for Today

 "An improved illumination model for shaded display" Turner Whitted, 1980.

Durer's Ray Casting Machine

• Albrecht Durer, 16th century

A Note on Local Shading • Surface/Scene Characteristics: - surface normal - direction to light - viewpoint • Material Properties - color/texture - diffuse (matte) - specular (shiny) - ... • More later! Diffuse sphere

• Plane defined by • Point-Plane equation • Point-Plane distance? • In is normalized, distance to plane, d = H(P) • d > 0 • Point-Plane distance!

Ray-Plane Intersection

Normal

- · Needed for shading
 - diffuse: dot product between light and normal
- Normal of a plane is constant!

Ray-Triangle Intersection

- Use barycentric coordinates:
 - $-P(\alpha, \beta, \gamma) = \alpha a + \beta b + \gamma c$ with $\alpha + \beta + \gamma = 1$
 - If $0 < \alpha < 1$ & $0 < \beta < 1$ & $0 < \gamma < 1$ then the point is inside the triangle!

How Do We Compute α , β , γ ?

- Ratio of opposite sub-triangle area to total area $-\alpha = A_a/A$ $\beta = A_b/A$ $\gamma = A_c/A$
- Use signed areas for points outside the triangle

But how do I know if the point is outside the triangle? That's what I was trying to determine!

Using Cramer's Rule...

• Used to solve for one variable at a time in system of equations

$$\beta = \frac{\begin{vmatrix} a_x - R_{ox} & a_x - c_x & R_{dx} \\ a_y - R_{oy} & a_y - c_y & R_{dy} \\ a_z - R_{oz} & a_z - c_z & R_{dz} \end{vmatrix}}{|A|} \qquad \gamma = \frac{\begin{vmatrix} a_x - b_x & a_x - R_{ox} & R_{dx} \\ a_y - b_y & a_y - R_{oy} & R_{dy} \\ a_z - b_z & a_z - R_{oz} & R_{dz} \end{vmatrix}}{|A|}$$

$$t = \begin{vmatrix} a_{x} - b_{x} & a_{x} - c_{x} & a_{x} - R_{ox} \\ a_{y} - b_{y} & a_{y} - c_{y} & a_{y} - R_{oy} \\ a_{z} - b_{z} & a_{z} - c_{z} & a_{z} - R_{oz} \end{vmatrix}$$

| | denotes the determinant

Can be copied mechanically into code

Sphere Representation?

- Implicit sphere equation
 - Assume centered at origin (easy to translate)
 - $-H(P) = P \cdot P r^2 = 0$

Ray-Sphere Intersection

• Insert explicit equation of ray into implicit equation of sphere & solve for t

$$\begin{split} P(t) &= R_o + t * R_d & H(P) = P \cdot P - r^2 = 0 \\ (R_o + t R_d) \cdot (R_o + t R_d) - r^2 &= 0 \\ R_d \cdot R_d t^2 + 2 R_d \cdot R_o t + R_o \cdot R_o - r^2 &= 0 \\ \end{split}$$

Ray-Sphere Intersection

- Quadratic: $at^2 + bt + c = 0$
 - -a = 1 (remember, $||R_d|| = 1$)
 - $-b = 2R_{d} \cdot R_{o}$
 - $-c = R_0 \cdot R_0 r^2$
- with discriminant $d = \sqrt{b^2 4ac}$
- and solutions

$$t_{\pm} = \frac{-b \pm d}{2a}$$

• What does it mean if there are no solutions, 1 solution, or 2 solutions?

Today

- Ray Casting
- Ray Tracing
 - Shadows
 - Reflection
 - Refraction
- Recursive Ray Tracing
- Distribution Ray Tracing

Transparency

- Cast ray in refracted direction
- Multiply by transparency coefficient (color)

Reading for Today

• "Distributed Ray Tracing", Cook, Porter, & Carpenter, SIGGRAPH 1984.

Today

- Ray Casting
- · Ray Tracing
- Recursive Ray Tracing
- Distribution Ray Tracing

Ray Tracing Intersect all objects color = ambient term For every light cast shadow ray Stopping criteria: color += local shading term · Recursion depth If mirror color += color_{refl} * trace reflected ray - Stop after a number of bounces If transparent • Ray contribution $color += color_{trans} *$ - Stop if reflected / trace transmitted ray transmitted contribution · Does it ever end? becomes too small

Today

- · Ray Casting
- Ray Tracing
- Recursive Ray Tracing
- Distribution Ray Tracing
 - Soft shadows
 - Antialiasing (getting rid of jaggies)
 - Glossy reflection
 - Motion blur
 - Depth of field (focus)

