Ray Tracing

Last Time?
- Keyframing
- Procedural Animation
- Physically-Based Animation
- Forward and Inverse Kinematics
- Motion Capture

Today
- Ray Casting
 - Ray-Plane Intersection
 - Ray-Sphere Intersection
 - Point in Polygon
- Ray Tracing
- Recursive Ray Tracing
- Distribution Ray Tracing

Reading for Today

Durer’s Ray Casting Machine
- Albrecht Durer, 16th century

Ray Casting
For every pixel
Construct a ray from the eye
For every object in the scene
Find intersection with the ray
Keep if closest
Shade depending on light and normal vector
A Note on Local Shading

- Surface/Scene Characteristics:
 - surface normal
 - direction to light
 - viewpoint
- Material Properties
 - color/texture
 - diffuse (matte)
 - specular (shiny)
- More later!

Diffuse sphere Specular spheres

Ray Representation?

- Two vectors:
 - Origin
 - Direction (normalized is better)
- Parametric line (explicit representation)
 - \(P(t) = \text{origin} + t \times \text{direction} \)

3D Plane Representation?

- Plane defined by
 - \(P_0 = (x,y,z) \)
 - \(n = (A,B,C) \)
- Implicit plane equation
 - \(H(P) = Ax + By + Cz + D = 0 \)
 - \(n \cdot P + D = 0 \)
- Point-Plane distance?
 - If \(n \) is normalized, distance to plane, \(d = H(P) \)
 - \(d \) is the signed distance!

Explicit vs. Implicit?

- Ray equation is explicit
 - \(P(t) = R_o + t \times R_d \)
 - Parametric
 - Generates points
 - Harder to verify that a point is on the ray
- Plane equation is implicit
 - \(H(P) = n \cdot P + D = 0 \)
 - Solution of an equation
 - Does not generate points
 - Verifies that a point is on the plane

Ray-Plane Intersection

- Intersection means both are satisfied
- So, insert explicit equation of ray into implicit equation of plane & solve for \(t \)
 \[
 P(t) = \text{R}_o + t \times \text{R}_d \\
 H(P) = n \cdot P + D = 0 \\
 n \cdot (\text{R}_o + t \times \text{R}_d) + D = 0 \\
 t = -\frac{D + n \cdot \text{R}_o}{n \cdot \text{R}_d}
 \]

Additional Housekeeping

- Verify that intersection is closer than previous
 \(P(t) < t_{\text{current}} \)
- Verify that it is not out of range (behind eye)
 \(P(t) > t_{\text{min}} \)
Normal

- Needed for shading
 - diffuse: dot product between light and normal
- Normal of a plane is constant!

Ray-Triangle Intersection

- Use barycentric coordinates:
 - \(P(\alpha, \beta, \gamma) = \alpha \mathbf{a} + \beta \mathbf{b} + \gamma \mathbf{c} \)
 - with \(\alpha + \beta + \gamma = 1 \)
 - If \(0 < \alpha < 1 \) & \(0 < \beta < 1 \) & \(0 < \gamma < 1 \)
 then the point is inside the triangle!

How Do We Compute \(\alpha, \beta, \gamma \)?

- Ratio of opposite sub-triangle area to total area
 - \(\alpha = \frac{A_a}{A} \)
 - \(\beta = \frac{A_b}{A} \)
 - \(\gamma = \frac{A_c}{A} \)
- Use signed areas for points outside the triangle

Using Cramer’s Rule...

- Used to solve for one variable at a time in system of equations

\[
\begin{vmatrix}
 a_x - R_{ox} & a_x - c_x & R_{dx} \\
 a_y - R_{oy} & a_y - c_y & R_{dy} \\
 a_z - R_{oz} & a_z - c_z & R_{dz} \\
\end{vmatrix} = 0
\]

\[
\begin{vmatrix}
 a_x - R_{ox} & a_x - c_x & a_x - R_{oz} \\
 a_y - R_{oy} & a_y - c_y & a_y - R_{oz} \\
 a_z - R_{oz} & a_z - c_z & a_z - R_{oz} \\
\end{vmatrix} = 0
\]

\[
t = \frac{- \begin{vmatrix}
 a_x - R_{ox} & a_x - c_x & a_x - R_{oz} \\
 a_y - R_{oy} & a_y - c_y & a_y - R_{oz} \\
 a_z - R_{oz} & a_z - c_z & a_z - R_{oz} \\
\end{vmatrix}}{\begin{vmatrix}
 a_x - c_x & a_x - c_x & a_x - c_x \\
 a_y - c_y & a_y - c_y & a_y - c_y \\
 a_z - c_z & a_z - c_z & a_z - c_z \\
\end{vmatrix}}
\]

Sphere Representation?

- Implicit sphere equation
 - Assume centered at origin (easy to translate)
 - \(H(P) = P \cdot P - r^2 = 0 \)

Ray-Sphere Intersection

- Insert explicit equation of ray into implicit equation of sphere & solve for \(t \)

\[
P(t) = R_o + t R_d \quad H(P) = P \cdot P - r^2 = 0
\]

\[
(R_o + t R_d) \cdot (R_o + t R_d) - r^2 = 0
\]

\[
R_d \cdot R_d t^2 + 2 R_d \cdot R_o t + R_o \cdot R_o - r^2 = 0
\]
Ray-Sphere Intersection

- Quadratic: \(at^2 + bt + c = 0 \)
 - \(a = 1 \) (remember, \(||R_d|| = 1 \))
 - \(b = 2R_d \cdot R_o \)
 - \(c = R_o \cdot R_o - r^2 \)

- with discriminant \(d = \sqrt{b^2 - 4ac} \)
- and solutions \(t_{\pm} = \frac{-b \pm d}{2a} \)

- What does it mean if there are no solutions, 1 solution, or 2 solutions?

Questions?

Today

- Ray Casting
- Ray Tracing
 - Shadows
 - Reflection
 - Refraction
- Recursive Ray Tracing
- Distribution Ray Tracing

How Can We Add Shadows?

Mirror Reflection

- Cast ray symmetric with respect to the normal
- Multiply by reflection coefficient (color)

Reflection

- Reflection angle = view angle
- \(\mathbf{R} = \mathbf{V} - 2(\mathbf{V} \cdot \mathbf{N}) \mathbf{N} \)
Transparency

- Cast ray in refracted direction
- Multiply by transparency coefficient (color)

Snell-Descartes Law:
\[\eta_i \sin \theta_i = \eta_T \sin \theta_T \]

Total Internal Reflection

- Total internal reflection when the square root is imaginary
- Don't forget to normalize!

Refraction & the Sidedness of Objects

- Make sure you know whether you're entering or leaving the transmissive material:

Questions?
Reading for Today

Today

- Ray Casting
- Ray Tracing
- Recursive Ray Tracing
- Distribution Ray Tracing

Ray Tracing

- Trace ray
 - Intersect all objects
 - For every light
 - Cast shadow ray
 - Color = Color*refl * trace reflected ray
 - If mirror
 - Color += Color*ambient * trace reflected ray
 - If transparent
 - Color += Color*transm * trace transmitted ray

- Does it ever end?

The Ray Tree

- Stopping criteria:
 - Recursion depth
 - Stop after a number of bounces
 - Ray contribution
 - Stop if reflected / transmitted contribution becomes too small

Complexity?

Ray Debugging

- Visualize the ray tree for single image pixel

Today

- Ray Casting
- Ray Tracing
- Recursive Ray Tracing
- Distribution Ray Tracing
 - Soft shadows
 - Antialiasing (getting rid of jaggies)
 - Glossy reflection
 - Motion blur
 - Depth of field (focus)
Shadows
• one shadow ray per intersection per point light source

Soft Shadows
• multiple shadow rays to sample area light source

Reflection
• one reflection ray per intersection

Glossy Reflection
• multiple reflection rays

Antialiasing – Supersampling
• multiple rays per pixel

Shadows & Light Sources
- no shadow rays
- one shadow ray
- clear bulb
- frosted bulb

http://www.pa.uky.edu/~sciworks/light/preview/bulb2.htm
http://www.paulrefer.net/html الرiry/scrresh Público.htm
Motion Blur
- Sample objects temporally

Depth of Field
- multiple rays per pixel

Ray Tracing Algorithm Analysis
- Ray casting
- Lots of primitives
- Recursive
- Distributed Ray Tracing Effects
 - Soft shadows
 - Anti-aliasing
 - Glossy reflection
 - Motion blur
 - Depth of field
 - cost ≈ height * width * num primitives * intersection cost * size of recursive ray tree * num shadow rays * num supersamples * num glossy rays * num temporal samples * num focal samples *
 - can we reduce this?
 - these can serve double duty

Raytracing & Epsilon

Reading for Friday 3/8:
- Goral, Torrance, Greenberg & Battaile “Modeling the Interaction of Light Between Diffuse Surfaces”, SIGGRAPH ’84