The Rendering Equation & Monte Carlo Ray Tracing

From Last Time

- Computing Form Factors
- Advanced Radiosity
 - Progressive Radiosity
 - Adaptive Subdivision
 - Discontinuity Meshing
 - Hierarchical Radiosity

Form Factor from Ray Casting

- Cast *n* rays between the two patches
 Compute visibility (what fraction of rays do not hit an occluder)
 - Integrate the point-to-point form factor
- Permits the computation of the patch-to-patch form factor, as opposed to point-to-patch

Progressive Refinement w/out Ambient Term

- Image quality is a function of patch size
- Compute a solution on a uniform initial mesh, then refine the mesh in areas that exceed some error tolerance:
- shadow boundaries
- other areas with a high radiosity gradient

Hierarchical Radiosity

Group elements when the light exchange is not important
 Breaks the quadratic complexity

• Diffuse limitation – extension to specular takes too much memory

Today

- Does Ray Tracing Simulate Physics?
- The Rendering Equation
- Monte-Carlo Integration
- Sampling
- Monte-Carlo Ray Tracing vs. Path Tracing

Does Ray Tracing Simulate Physics?

- No.... traditional ray tracing is also called *"backward" ray tracing*
- In reality, photons actually travel from the light to the eye

Forward Ray Tracing

- Start from the light source - But very, very low probability to reach the eye
- What can we do about it? – Always send a ray to the eye.... still not efficient

Transparent Shadows?

- What to do if the shadow ray sent to the light source intersects a transparent object?
 - Pretend it's opaque?
 - Multiply by transparency color? (ignores refraction & does not produce caustics)
- · Unfortunately, ray tracing is full of dirty tricks

• No, Refraction and complex reflection for illumination are not handled properly in traditional (backward) ray tracing

Today

- Does Ray Tracing Simulate Physics?
- The Rendering Equation
- Monte-Carlo Integration
- Sampling
- Monte-Carlo Ray Tracing vs. Path Tracing

The Rendering Equation

- Clean mathematical framework for lighttransport simulation
- At each point, outgoing light in one direction is the integral of incoming light in all directions multiplied by reflectance property

Today

- Does Ray Tracing Simulate Physics?
- The Rendering Equation
- Monte-Carlo Integration
 - Probabilities and Variance
 - Analysis of Monte-Carlo Integration
- Sampling
- Monte-Carlo Ray Tracing vs. Path Tracing

• The error depends on the number or trials

Convergence & Error

- Let's compute 0.5 by flipping a coin:
 - 1 flip: 0 or 1
 - \rightarrow average error = 0.5
 - 2 flips: 0, 0.5, 0.5 or 1
 - \rightarrow average error = 0. 25
 - -4 flips: 0 (*1),0.25 (*4), 0.5 (*6), 0.75(*4), 1(*1) \rightarrow average error = 0.1875
- Unfortunately, doubling the number of samples does not double accuracy

Review of (Discrete) Probability

- Random variable can take discrete values x_i
- Probability p_i for each x_i $0 < p_i < 1$, $\sum p_i = 1$
- Expected value $E(x) = \sum_{i=1}^{n} p_i x_i$
- Expected value of function of random variable $-f(x_i)$ is also a random variable

$$E[f(x)] = \sum_{i=1}^{n} p_i f(x_i)$$

Variance & Standard Deviation

- Variance σ^2 : deviation from expected value
- Expected value of square difference

$$\sigma^2 = E[(x - E[x])^2] = \sum_i (x_i - E[x])^2 p_i$$

• Also

$$\sigma^2 = E[x^2] - (E[x])^2$$

• Standard deviation σ: square root of variance (notion of error, RMS)

Monte Carlo Integration

- Turn integral into finite sum
- Use *n* random samples
- As *n* increases...
 - Expected value remains the same
 - Variance decreases by n

- Standard deviation (error) decreases by
$$\frac{1}{\sqrt{n}}$$

• Thus, converges with $\frac{1}{\sqrt{n}}$

Advantages of MC Integration Few restrictions on the integrand Doesn't need to be continuous, smooth, ... Only need to be able to evaluate at a point Extends to high-dimensional problems Same convergence

- Conceptually straightforward
- Efficient for solving at just a few points

Disadvantages of MC Integration

• Noisy

- Slow convergence
- Good implementation is hard
 - Debugging code
 - Debugging math
 - Choosing appropriate techniques
- Punctual technique, no notion of smoothness of function (e.g., between neighboring pixels)

Questions?

• "A Theoretical Framework for Physically Based Rendering", Lafortune and Willems, Computer Graphics Forum, 1994.

Figure B: An indirectly illuminated scene rendered using path tracing and bidirectional path tracing respectively. The latter method results in visibly less noisefor the same amount of work.

Today

- Does Ray Tracing Simulate Physics?
- The Rendering Equation
- Monte-Carlo Integration
- Sampling
 - Stratified Sampling
 - Importance Sampling
- Monte-Carlo Ray Tracing vs. Path Tracing

Domains of Integration

- Pixel, lens (Euclidean 2D domain)
- Time (1D)
- Hemisphere
 - Work needed to ensure uniform probability

Example: Light Source

- We can integrate over surface *or* over angle
- But we must be careful to get probabilities and integration measure right!

Sampling the source uniformly

Stratified Sampling

- With uniform sampling, we can get unlucky E.g. all samples in a corner
- To prevent it, subdivide domain Ω into non-overlapping regions Ω_i
 – Each region is called a stratum

- Take one random samples per $\boldsymbol{\Omega}_i$

Today

- Does Ray Tracing Simulate Physics?
- The Rendering Equation
- Monte-Carlo Integration
- Sampling
- Monte-Carlo Ray Tracing & Path Tracing

Ray Tracing

- Cast a ray from the eye through each pixel
- Trace secondary rays (light, reflection, refraction)

