Real-Time Shadows

“Now this is... this is... well, I guess it’s another week...”

Reading for Today:

- “Ray Tracing on Programmable Graphics Hardware Purcell”, Buck, Mark, & Hanrahan SIGGRAPH 2002

Why are Shadows Important?

- Depth cue
- Scene Lighting
- Realism
- Contact points

Today

- Why are Shadows Important?
- Planar Shadows
- Projective Texture Shadows
- Shadow Maps
- Shadow Volumes

Why are Shadows Important?

Shadows as a Depth Cue
For Intuition about Scene Lighting

- Position of the light (e.g. sundial)
- Hard shadows vs. soft shadows
- Colored lights
- Directional light vs. point light

Today

- Why are Shadows Important?
- Planar Shadows
- Projective Texture Shadows
 - Shadow View Duality
 - Texture Mapping
- Shadow Maps
- Shadow Volumes

Cast Shadows on Planar Surfaces

- Draw the object primitives a second time, projected to the ground plane

Limitations of Planar Shadows

- Does not produce self-shadows, shadows cast on other objects, shadows on curved surfaces, etc.

Shadow/View Duality

- A point is lit if it is visible from the light source
- Shadow computation similar to view computation

Texture Mapping

- Don't have to represent everything with geometry
Fake Shadows using Projective Textures

- Separate obstacle and receiver
- Compute b/w image of obstacle from light
- Use image as projective texture for each receiver

Image from light source BW image of obstacle Final image

Projective Texture Shadow Limitations

- Must specify occluder & receiver
- No self-shadows
- Resolution

Reading for Today:

Today

- Why are Shadows Important?
- Planar Shadows
- Projective Texture Shadows
- Shadow Maps
- Shadow Volumes

Shadow Maps

- In Renderman
 – (High-end production software)
Shadow Mapping

- Texture mapping with depth information
- Requires 2 passes through the pipeline:
 - Compute shadow map (depth from light source)
 - Render final image, check shadow map to see if points are in shadow

Shadow Map Look Up

- We have a 3D point \((x,y,z)_{WS}\)
- How do we look up the depth from the shadow map?
 - Use the 4x4 perspective projection matrix from the light source to get \((x',y',z')_{LS}\)
 - \(\text{ShadowMap}(x',y') < z'\)?

Limitations of Shadow Maps

1. Field of View
2. Bias (Epsilon)
3. Aliasing

1. Field of View Problem

- What if point to shadow is outside field of view of shadow map?
 - Use cubical shadow map
 - Use only spot lights!

2. The Bias (Epsilon) Nightmare

- For a point visible from the light source
 \(\text{ShadowMap}(x',y') \approx z'\)
- How can we avoid erroneous self-shadowing?
 - Add bias (epsilon)

2. Bias (Epsilon) for Shadow Maps

ShadowMap\((x',y') + \text{bias} < z'\)
Choosing a good bias value can be very tricky

Correct image Not enough bias Way too much bias
3. Shadow Map Aliasing
- Under-sampling of the shadow map
- Reprojection aliasing – especially bad when the camera & light are opposite each other

3. Shadow Map Filtering
- Should we filter the depth?
 (weighted average of neighboring depth values)
- No... filtering depth is not meaningful

3. Percentage Closer Filtering
- Instead filter the result of the test
 (weighted average of comparison results)
- But makes the bias issue more tricky

3. Percentage Closer Filtering
- 5x5 samples
- Nice antialiased shadow
- Using a bigger filter produces fake soft shadows
- Setting bias is tricky

Projective Texturing + Shadow Map

Shadows in Production
- Often use shadow maps
- Ray casting as fallback in case of robustness issues
Hardware Shadow Maps

- Can be done with hardware texture mapping
 - Texture coordinates u,v,w generated using 4x4 matrix
 - Modern hardware permits tests on texture values

Today

- Why are Shadows Important?
- Planar Shadows
- Projective Texture Shadows
- Shadow Maps
 - Shadow Volumes
 - The Stencil Buffer

Stencil Buffer

- Tag pixels in one rendering pass to control their update in subsequent rendering passes
 - "For all pixels in the frame buffer" → "For all tagged pixels in the frame buffer"
- Can specify different rendering operations for each case:
 - stencil test fails
 - stencil test passes & depth test fails
 - stencil test passes & depth test passes

Stencil Buffer – Real-time Mirror

- Clear frame, depth & stencil buffers
- Draw all non-mirror geometry to frame & depth buffers
- Draw mirror to stencil buffer, where depth buffer passes
- Set depth to infinity, where stencil buffer passes
- Draw reflected geometry to frame & depth buffer, where stencil buffer passes

See NVIDIA's stencil buffer tutorial
http://developer.nvidia.com
also discusses blending, multiple mirrors, objects behind mirror, etc…

Shadow Volumes

- Explicitly represent the volume of space in shadow
- For each polygon
 - Pyramid with point light as apex
 - Include polygon to cap
- Shadow test similar to clipping
Shadow Volumes

- If a point is inside a shadow volume cast by a particular light, the point does not receive any illumination from that light.
- Cost of naive implementation: \#polygons * \#lights

Cost of naive implementation:
\#polygons * \#lights

Shadow Volumes w/ the Stencil Buffer

1. Initialize stencil buffer to 0
2. Draw scene with ambient light only
3. Turn off frame buffer & z-buffer updates
4. Draw front-facing shadow polygons:
 - If z-pass → increment counter
5. Draw back-facing shadow polygons:
 - If z-pass → decrement counter
6. Turn on frame buffer updates:
7. Turn on lighting and redraw pixels with counter = 0

If the Eye is in Shadow...

- ... then a counter of 0 does not necessarily mean lit
- 3 Possible Solutions:
 1. Explicitly test eye point with respect to all shadow volumes
 2. Clip the shadow volumes to the view frustum
 3. "Z-Fail" shadow volumes

1. Test Eye with Respect to Volumes

- Adjust initial counter value
 - Expensive

2. Clip the Shadow Volumes

- Clip the shadow volumes to the view frustum and include these new polygons
 - Messy CSG
3. "Z-Fail" Shadow Volumes

Start at infinity

...

Draw front-facing shadow polygons
 If z-fail, decrement counter
Draw back-facing shadow polygons
 If z-fail, increment counter

...

Optimizing Shadow Volumes

• Use silhouette edges only (edge where a back-facing & front-facing polygon meet)

Limitations of Shadow Volumes

• Introduces a lot of new geometry
• Expensive to rasterize long skinny triangles
• Limited precision of stencil buffer (counters)
 – for a really complex scene/object, the counter can overflow
• Objects must be watertight to use silhouette trick
• Rasterization of polygons sharing an edge must not overlap & must not have gap

Homework 4

• Create some geometry
 – Reflected object & floor
 – Silhouette edges
 – Shadow polygons
 • Make sure your polygons aren’t doubled up
 • Make sure your polygons are oriented consistently
• Mess with the stencil buffer
 – Don’t just blindly copy code from the tutorial
 – Use the web to read the man page for each instruction & its parameters
• Be creative with shaders
 – Hopefully everyone can get the examples to compile & run (we were not 100% successful last year)

Questions?

• From a previous quiz: Check the boxes to indicate the features & limitations of each technique

<table>
<thead>
<tr>
<th>Features / Limitations</th>
<th>Plane Fake Shadows</th>
<th>Projective Texture Shadows</th>
<th>Shadow Maps</th>
<th>Shadow Volumes</th>
<th>Bump Casting Shadows</th>
</tr>
</thead>
<tbody>
<tr>
<td>Allows objects to cast shadows on themselves (self-shading)</td>
<td>✅</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Permits shadows on arbitrary surfaces (i.e., curved)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Renders geometry from the viewpoint of the light</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Generates extra geometric primitives</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Limited resolution of intermediate representation can result in jaggy shadow artifacts</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Reading for Tuesday:

- Chris Wyman, "An Approximate Image-Space Approach for Interactive Refraction", SIGGRAPH 2005

- and catch up on the other readings