
1

Programmable GPUS

Final Project Proposals
•  You should all have received an email with

feedback…
•  Just about everyone was told:

– Test cases weren’t detailed enough
– Project was possibly too big
– Motivation could be strengthened
– Use proper bibliographic citation
–  Individuals implementing refraction/rainbows

should consider teaming up…
•  In person/Email discussion with me and/or

revised proposal suggested

Last Time?
•  Planar Shadows
•  Projective Texture

Shadows
•  Shadow Maps
•  Shadow Volumes

– Stencil Buffer

frame buffer

depth buffer

stencil buffer

Today
•  Modern Graphics Hardware
•  Shader Programming Languages
•  Gouraud Shading vs. Phong Normal

Interpolation
•  Many “Mapping” techniques

Modern Graphics Hardware
•  High performance through

–  Parallelism
–  Specialization
–  No data dependency
–  Efficient pre-fetching

G!

R"

T"

F!

D"

G!

R"

T"

F!

D"

G!

R"

T"

F!

D"

G!

R"

T"

F!

D"

task
parallelism

data parallelism

Programmable Graphics Hardware
•  Geometry and pixel (fragment) stage

become programmable
– Elaborate appearance
– More and more general-purpose

computation (GPU hacking)

G"
P!

R"

T"

F"
P!

D"

2

•  2005
–  4-6 geometry units, 16 fragment units
–  Deep pipeline (~800 stages)

•  NVIDIA GeForce 9 (Feb 2008)
–  32/64 cores, 512 MB/1GB memory

•  ATI Radeon R700 (2008)
–  480 stream processing units

•  NVIDIA GeForce GTX 480 (2010)
–  480 cores, 1536 MB memory
–  2560x1600 resolution

•  ATI Radeon HD 7900 (2012)
–  2048 processors, 3GB memory

•  NVIDIA GeForce GTX 680 (2012)
–  1536 cores, 2040 MB memory

Misc. Stats on Graphics Hardware Today
•  Modern Graphics Hardware
•  Shader Programming Languages

– Cg design goals
– GLSL examples

•  Gouraud Shading vs. Phong Normal
Interpolation

•  Many “Mapping” techniques

Emerging & Evolving Languages
•  Inspired by Shade Trees [Cook 1984] &

Renderman Shading Language [1980’s]:
–  RTSL [Stanford 2001] – real-time shading language
–  Cg [NVIDIA 2003] – “C for graphics”
–  HLSL [Microsoft 2003] – Direct X
–  GLSL [OpenGL ARB 2004] – OpenGL 2.0
–  Optix [NVIDIA 2009] – Real time ray tracing

engine for CUDA

•  General Purpose GPU computing
–  CUDA [NVIDIA 2007]
–  OpenCL (Open Computing Language) [Apple 2008]

for heterogeneous platforms of CPUs & GPUs

Cg Design Goals
•  Ease of programming
•  Portability
•  Complete support for hardware functionality
•  Performance
•  Minimal interference with application data
•  Ease of adoption
•  Extensibility for future hardware
•  Support for non-shading uses of the GPU

“Cg: A system for programming graphics
hardware in a C-like language”

Mark et al. SIGGRAPH 2003

Cg Design
•  Hardware is changing rapidly [2003]…

no single standard
•  Specify “profile” for each hardware

– May omit support of some language capabilities
(e.g., texture lookup in vertex processor)

•  Use hardware virtualization or emulation?
–  “Performance would be so poor it would

be worthless for most applications”
– Well, it might be ok for general purpose

programming (not real-time graphics)

Cg compiler vs. GPU assembly
•  Can inspect the assembly language produced

by Cg compiler and perform additional
optimizations by hand
– Generally once development is complete

(& output is correct)
•  Using Cg is easier than writing GPU

assembly from scratch

3

(Typical) Language Design Issues
•  Parameter binding
•  Call by reference vs. call by value
•  Data types: 32 bit float, 16 bit float, 12 bit fixed

& type-promotion (aim for performance)
•  Specialized arrays or general-purpose arrays

–  float4 x vs. float x[4]
•  Indirect addressing/pointers (not allowed…)
•  Recursion (not allowed…)

Today
•  Modern Graphics Hardware
•  Shader Programming Languages

– Cg design goals
– GLSL examples

•  Gouraud Shading vs. Phong Normal
Interpolation

•  Many “Mapping” techniques

GLSL example: checkerboard.vs GLSL example: checkerboard.fs

Remember Gouraud Shading?
•  Instead of shading with the normal of the triangle,

we’ll shade the vertices with the average normal
and interpolate the shaded color across each face
–  This gives the illusion of a smooth surface with smoothly varying normals

Phong Normal Interpolation
•  Interpolate the average vertex normals across the face

and compute per-pixel shading
–  Normals should be re-normalized (ensure length=1)

•  Before shaders, per-pixel shading was not possible in hardware
(Gouraud shading is actually a decent substitute!)

(Not Phong Shading)

4

Today
•  Modern Graphics Hardware
•  Shader Programming Languages
•  Gouraud Shading vs. Phong Normal

Interpolation
•  Many “Mapping” techniques

–  Bump Mapping
–  Displacement Mapping
–  Environment Mapping
–  Light Mapping

–  Normal Mapping
–  Parallax Mapping
–  Parallax Occlusion Mapping

Bump Mapping
•  Use textures to alter the surface normal

– Does not change the actual shape of the surface
–  Just shaded as if it were a different shape

Sphere w/Diffuse Texture Swirly Bump Map Sphere w/Diffuse Texture & Bump Map

Another GLSL example: orange.vs Another GLSL example: orange.fs

Bump Mapping
•  Treat a greyscale texture as a single-valued

height function
•  Compute the normal from the partial derivatives

in the texture

Another Bump Map Example

Cylinder w/Diffuse Texture Map

Bump Map

Cylinder w/Texture Map & Bump Map

5

Normal Mapping
•  Variation on Bump Mapping:

Use an RGB texture to directly encode the normal

http://en.wikipedia.org/wiki/File:Normal_map_example.png

What's Missing?
•  There are no bumps on

the silhouette of a
bump-mapped or
normal-mapped object

•  Bump/Normal
maps don’t allow
self-occlusion
or self-shadowing

Today
•  Modern Graphics Hardware
•  Shader Programming Languages
•  Gouraud Shading vs. Phong Normal

Interpolation
•  Many “Mapping” techniques

–  Bump Mapping
–  Displacement Mapping
–  Environment Mapping
–  Light Mapping

–  Normal Mapping
–  Parallax Mapping
–  Parallax Occlusion Mapping

Displacement Mapping
•  Use the texture map to actually move the surface point
•  The geometry must be displaced before visibility is determined

Displacement Mapping

Image from:

Geometry Caching for
Ray-Tracing Displacement Maps

EGRW 1996
Matt Pharr and Pat Hanrahan

note the detailed shadows
cast by the stones

Ken Musgrave

Displacement Mapping

6

Parallax Mapping
•  Displace the texture coordinates for each pixel based on view

angle and value of the height map at that point
•  At steeper view-angles, texture coordinates are displaced more,

giving illusion of depth due to parallax effects

a.k.a. Offset Mapping or
Virtual Displacement Mapping

“Detailed shape representation with parallax mapping”,
Kaneko et al. ICAT 2001

Parallax Occlusion Mapping
•  Brawley & Tatarchuk 2004
•  Per pixel ray tracing of the heightfield geometry
•  Occlusions & soft shadows

http://developer.amd.com/media/gpu_assets/
Tatarchuk-ParallaxOcclusionMapping-Sketch-print.pdf

Today
•  Modern Graphics Hardware
•  Shader Programming Languages
•  Gouraud Shading vs. Phong Normal

Interpolation
•  Many “Mapping” techniques

–  Bump Mapping
–  Displacement Mapping
–  Environment Mapping
–  Light Mapping

–  Normal Mapping
–  Parallax Mapping
–  Parallax Occlusion Mapping

Environment Maps
•  We can simulate reflections by using the direction of the reflected

ray to index a spherical texture map at "infinity".
•  Assumes that all reflected rays

begin from the same point.

What's the Best Chart? Environment Mapping Example

Terminator II

7

Texture Maps for Illumination

Quake

•  Also called "Light Maps"

Questions?

Image by Henrik Wann Jensen
Environment map by Paul Debevec

•  Chris Wyman,
"An Approximate
Image-Space
Approach for
Interactive
Refraction”,
SIGGRAPH 2005

Reading for Today: Readings for Friday:
Choose:
•  “An Image Synthesizer”, Perlin,

SIGGRAPH 1985 & “Improving Noise”,
Perlin, SIGGRAPH 2002

•  “Procedural Modeling of Buildings”
Mueller, Wonka, Haegler, Ulmer
& Van Gool, SIGGRAPH 2006

