Linear Algebra Review

by Rob Jagnow & Patrick Nichols For MIT's 6.837 Introduction to Computer graphics

6.837 Linear Algebra Review

Overview

- Basic matrix operations (+, -, *)
- · Cross and dot products
- · Determinants and inverses
- · Homogeneous coordinates
- · Orthonormal basis

6.837 Linear Algebra Review

Additional Resources

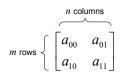
- · 18.06 Text Book
- · 6.837 Text Book
- 6.837 staff@graphics.csail.mit.edu
- Check the course website for a copy of these notes

6.837 Linear Algebra Review

What is a Matrix?

• A matrix is a set of elements, organized into rows and columns

 $m \times n$ matrix



6.837 Linear Algebra Review

Basic Operations

• Transpose: Swap rows with columns

$$M = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} \qquad M^{T} = \begin{bmatrix} a & d & g \\ b & e & h \\ c & f & i \end{bmatrix}$$

$$V = \begin{bmatrix} x \\ y \\ z \end{bmatrix} \qquad V^T = \begin{bmatrix} x & y & z \end{bmatrix}$$

6.837 Linear Algebra Review

Basic Operations

· Addition and Subtraction

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} + \begin{bmatrix} e & f \\ g & h \end{bmatrix} = \begin{bmatrix} a+e & b+f \\ c+g & d+h \end{bmatrix}$$
$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} - \begin{bmatrix} e & f \\ \pounds & h \end{bmatrix} = \begin{bmatrix} a-e & b-f \\ c-g & d-h \end{bmatrix}$$

Just add elements

Just subtract elements

 $A \rightarrow B$

-B A-B -B

Basic Operations

· Multiplication

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} e & f \\ g & h \end{bmatrix} = \begin{bmatrix} ae + bg & af + bh \\ ce + dg & cf + dh \end{bmatrix}$$

Multiply each row by each column

An $m \times n$ can be multiplied by an $n \times p$ matrix to yield an $m \times p$ result

6.837 Linear Algebra Review

Multiplication

• Is AB = BA? Maybe, but maybe not!

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} e & f \\ g & h \end{bmatrix} = \begin{bmatrix} ae+bg & \dots \\ \dots & \dots \end{bmatrix} \quad \begin{bmatrix} e & f \\ g & h \end{bmatrix} \begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} ea+fc & \dots \\ \dots & \dots \end{bmatrix}$$

• Heads up: multiplication is NOT commutative!

6.837 Linear Algebra Review

Vector Operations

- Vector: $n \times 1$ matrix
- Interpretation: a point or line in *n*-dimensional space
- Dot Product, Cross
 Product, and Magnitude
 defined on vectors only

6.837 Linear Algebra Review

Vector Interpretation

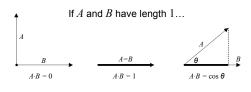
- Think of a vector as a line in 2D or 3D
- Think of a matrix as a transformation on a line or set of lines

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

6.837 Linear Algebra Review

Vectors: Dot Product

• Interpretation: the dot product measures to what degree two vectors are aligned



6.837 Linear Algebra Review

Vectors: Dot Product

$$A \cdot B = AB^T = \begin{bmatrix} a & b & c \end{bmatrix} \begin{bmatrix} d \\ e \\ f \end{bmatrix} = ad + be + cf$$
 Think of the dot product as a matrix multiplication

$$||A||^2 = AA^T = aa + bb + cc$$

The magnitude is the dot product of a vector with itself

 $A \cdot B = ||A|| ||B|| \cos(\theta)$

The dot product is also related to the angle between the two vectors

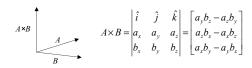
Vectors: Cross Product

- The cross product of vectors A and B is a vector C which is perpendicular to A and B
- The magnitude of C is proportional to the sin of the angle between A and B
- The direction of C follows the **right hand rule** if we are working in a right-handed coordinate system

6.837 Linear Algebra Review

Vectors: Cross Product

The cross product can be computed as a specially constructed determinant



6.837 Linear Algebra Review

Inverse of a Matrix

· Identity matrix:

AI = A

 Some matrices have an inverse, such that:

 $AA^{-1} = I$

 Inversion is tricky: $(ABC)^{-1} = C^{-1}B^{-1}A^{-1}$

Derived from non commutativity property $I = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$

6.837 Linear Algebra Review

Determinant of a Matrix

- · Used for inversion
- If det(A) = 0, then A has no inverse
- Can be found using factorials, pivots, and cofactors!
- Lots of interpretations for more info, take 18.06

$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$

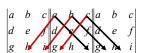
$$\det(A) = ad - bc$$

 $A^{-1} = \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$

6.837 Linear Algebra Review

Determinant of a Matrix

$$\begin{vmatrix} a & b & c \\ d & e & f \\ g & h & i \end{vmatrix} = aei + bfg + cdh - afh - bdi - ceg$$



Sum from left to right Subtract from right to left

Note: In the general case, the determinant has n! terms

6.837 Linear Algebra Review

Inverse of a Matrix

$$\begin{bmatrix} a & b & c & 1 & 0 & 0 \\ d & e & f + 0 & 1 & 0 \\ g & h & i & 0 & 0 & 1 \end{bmatrix} \begin{tabular}{ll} \begin{tabular}{ll} 3. \begin{tabular}{ll} Subtract multiples of the other rows from the first row to reduce the diagonal element to 1 and the interval of the diagonal element to 1 and the interval of the diagonal element to 1 and the interval of the int$$

- 1. Append the identity matrix
- 3. Transform the identity matrix as you go
 - 4. When the original matrix is the identity, the identity has become the inverse!

Homogeneous Matrices

- Problem: how to include translations in transformations (and do perspective transforms)
- · Solution: add an extra dimension

$$\begin{bmatrix} z' \\ y' \\ z' \\ 1 \end{bmatrix} = \begin{bmatrix} a_{00} & a_{01} & a_{02} & t_x \\ a_{10} & a_{11} & a_{12} & t_y \\ a_{20} & a_{21} & a_{22} & t_z \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x' \\ y \\ z \\ 1 \end{bmatrix}$$

6.837 Linear Algebra Review

Orthonormal Basis

- Basis: a space is totally defined by a set of vectors any point is a *linear combination* of the basis
- Orthogonal: dot product is zero
- Normal: magnitude is one
- Orthonormal: orthogonal + normal
- Most common Example: $\hat{x}, \hat{y}, \hat{z}$

6.837 Linear Algebra Review

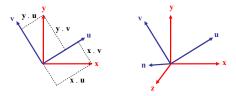
Change of Orthonormal Basis

Given:
 coordinate frames
 xyz and uvn
 point p = (px, py, pz)

• Find: $\mathbf{p} = (p_u, p_v, p_n)$

6.837 Linear Algebra Review

Change of Orthonormal Basis



6.837 Linear Algebra Review

Change of Orthonormal Basis

$$\mathbf{x} = (\mathbf{x} \cdot \mathbf{u}) \mathbf{u} + (\mathbf{x} \cdot \mathbf{v}) \mathbf{v} + (\mathbf{x} \cdot \mathbf{n}) \mathbf{n}$$

 $\mathbf{y} = (\mathbf{y} \cdot \mathbf{u}) \mathbf{u} + (\mathbf{y} \cdot \mathbf{v}) \mathbf{v} + (\mathbf{y} \cdot \mathbf{n}) \mathbf{n}$
 $\mathbf{z} = (\mathbf{z} \cdot \mathbf{u}) \mathbf{u} + (\mathbf{z} \cdot \mathbf{v}) \mathbf{v} + (\mathbf{z} \cdot \mathbf{n}) \mathbf{n}$

Substitute into equation for *p*:

$$\mathbf{p} = (p_x, p_y, p_z) = p_x \mathbf{x} + p_y \mathbf{y} + p_z \mathbf{z}$$

$$\mathbf{p} = p_x [(\mathbf{x} \cdot \mathbf{u}) \mathbf{u} + (\mathbf{x} \cdot \mathbf{v}) \mathbf{v} + (\mathbf{x} \cdot \mathbf{n}) \mathbf{n}] + p_y [(\mathbf{y} \cdot \mathbf{u}) \mathbf{u} + (\mathbf{y} \cdot \mathbf{v}) \mathbf{v} + (\mathbf{y} \cdot \mathbf{n}) \mathbf{n}] + p_z [(\mathbf{z} \cdot \mathbf{u}) \mathbf{u} + (\mathbf{z} \cdot \mathbf{v}) \mathbf{v} + (\mathbf{z} \cdot \mathbf{n}) \mathbf{n}]$$

6.837 Linear Algebra Review

Change of Orthonormal Basis

$$\mathbf{p} = p_x [(\mathbf{x} \cdot \mathbf{u}) \mathbf{u} + (\mathbf{x} \cdot \mathbf{v}) \mathbf{v} + (\mathbf{x} \cdot \mathbf{n}) \mathbf{n}] + p_y [(\mathbf{y} \cdot \mathbf{u}) \mathbf{u} + (\mathbf{y} \cdot \mathbf{v}) \mathbf{v} + (\mathbf{y} \cdot \mathbf{n}) \mathbf{n}] + p_z [(\mathbf{z} \cdot \mathbf{u}) \mathbf{u} + (\mathbf{z} \cdot \mathbf{v}) \mathbf{v} + (\mathbf{z} \cdot \mathbf{n}) \mathbf{n}]$$

Rewrite:

$$\mathbf{p} = \begin{bmatrix} p_x(\mathbf{x} \cdot \mathbf{u}) + p_y(\mathbf{y} \cdot \mathbf{u}) + p_z(\mathbf{z} \cdot \mathbf{u}) \end{bmatrix} \mathbf{u} + \\ [p_x(\mathbf{x} \cdot \mathbf{v}) + p_y(\mathbf{y} \cdot \mathbf{v}) + p_z(\mathbf{z} \cdot \mathbf{v}) \end{bmatrix} \mathbf{v} + \\ [p_x(\mathbf{x} \cdot \mathbf{n}) + p_y(\mathbf{y} \cdot \mathbf{n}) + p_z(\mathbf{z} \cdot \mathbf{n}) \end{bmatrix} \mathbf{n}$$

Change of Orthonormal Basis

$$\mathbf{p} = [p_x (\mathbf{x} \cdot \mathbf{u}) + p_y (\mathbf{y} \cdot \mathbf{u}) + p_z (\mathbf{z} \cdot \mathbf{u})] \mathbf{u} + [p_x (\mathbf{x} \cdot \mathbf{v}) + p_y (\mathbf{y} \cdot \mathbf{v}) + p_z (\mathbf{z} \cdot \mathbf{v})] \mathbf{v} + [p_x (\mathbf{x} \cdot \mathbf{n}) + p_y (\mathbf{y} \cdot \mathbf{n}) + p_z (\mathbf{z} \cdot \mathbf{n})] \mathbf{n}$$

$$\mathbf{p} = (p_u, p_v, p_n) = p_u \mathbf{u} + p_v \mathbf{v} + p_n \mathbf{n}$$

Expressed in uvn basis:

$$p_{u} = p_{x}(\mathbf{x} \cdot \mathbf{u}) + p_{y}(\mathbf{y} \cdot \mathbf{u}) + p_{z}(\mathbf{z} \cdot \mathbf{u})$$

$$p_{v} = p_{x}(\mathbf{x} \cdot \mathbf{v}) + p_{y}(\mathbf{y} \cdot \mathbf{v}) + p_{z}(\mathbf{z} \cdot \mathbf{v})$$

$$p_{n} = p_{x}(\mathbf{x} \cdot \mathbf{n}) + p_{y}(\mathbf{y} \cdot \mathbf{n}) + p_{z}(\mathbf{z} \cdot \mathbf{n})$$

6.837 Linear Algebra Review

Change of Orthonormal Basis

$$p_{u} = p_{x}(\mathbf{x} \cdot \mathbf{u}) + p_{y}(\mathbf{y} \cdot \mathbf{u}) + p_{z}(\mathbf{z} \cdot \mathbf{u})$$

$$p_{v} = p_{x}(\mathbf{x} \cdot \mathbf{v}) + p_{y}(\mathbf{y} \cdot \mathbf{v}) + p_{z}(\mathbf{z} \cdot \mathbf{v})$$

$$p_{n} = p_{x}(\mathbf{x} \cdot \mathbf{n}) + p_{y}(\mathbf{y} \cdot \mathbf{n}) + p_{z}(\mathbf{z} \cdot \mathbf{n})$$

In matrix form:

$$\begin{bmatrix} p_{u} \\ p_{v} \\ p_{n} \end{bmatrix} = \begin{bmatrix} u_{x} & u_{y} & u_{z} \\ v_{x} & v_{y} & v_{z} \\ n_{x} & n_{y} & n_{z} \end{bmatrix} \begin{bmatrix} p_{x} \\ p_{y} \\ p_{z} \end{bmatrix}$$
where:
$$u_{x} = \mathbf{x} \cdot \mathbf{u}$$
$$u_{y} = \mathbf{y} \cdot \mathbf{u}$$
$$p_{z} = \mathbf{u}$$
etc.

6.837 Linear Algebra Review

Change of Orthonormal Basis

$$\begin{pmatrix}
p_{u} \\
p_{v} \\
p_{n}
\end{pmatrix} = \begin{pmatrix}
u_{x} & u_{y} & u_{z} \\
v_{x} & v_{y} & v_{z} \\
n_{x} & n_{y} & n_{z}
\end{pmatrix} \begin{pmatrix}
p_{x} \\
p_{y} \\
p_{z}
\end{pmatrix} = \mathbf{M} \begin{pmatrix}
p_{x} \\
p_{y} \\
p_{z}
\end{pmatrix}$$

What's M⁻¹, the inverse?

$$\begin{bmatrix} \mathbf{p}_{x} \\ \mathbf{p}_{y} \\ \mathbf{p}_{z} \end{bmatrix} = \begin{bmatrix} x_{u} & x_{v} & x_{n} \\ y_{u} & y_{v} & y_{n} \\ z_{u} & z_{v} & z_{n} \end{bmatrix} \begin{bmatrix} \mathbf{p}_{u} \\ \mathbf{p}_{v} \\ \mathbf{p}_{n} \end{bmatrix} \quad u_{x} = \mathbf{x} \cdot \mathbf{u} = \mathbf{u} \cdot \mathbf{x} = x_{u}$$

$$\mathbf{M}^{-1} = \mathbf{M}^{T}$$

6.837 Linear Algebra Review

Caveats

- Right landed vs. left landed coordinate systems
 OpenGL is right-handed
- Row major vs. column major matrix storage.
 - matrix.h uses row-major order
 - OpenGL uses column-major order

$$\begin{bmatrix} 0 & 1 & 2 & 3 \\ 4 & 5 & 6 & 7 \\ 8 & 9 & 10 & 11 \\ 12 & 13 & 14 & 15 \end{bmatrix} \qquad \begin{bmatrix} 0 & 4 & 8 & 12 \\ 1 & 5 & 9 & 13 \\ 2 & 6 & 10 & 14 \\ 3 & 7 & 11 & 15 \end{bmatrix}$$
 row-major column-major

6.837 Linear Algebra Review

Questions?

?