
Realistic Animation of LiquidsNick Foster and Dimitri MetaxasCenter for Human Modeling and Simulation,University of Pennsylvania, Philadelphia, PA 19104fostern@graphics.cis.upenn.eduhttp://www.cis.upenn.edu/~fostern/liquids.htmlAbstractWe present a comprehensive methodology for realisticallyanimating liquid phenomena. Physically accurate 3D mo-tion is achieved by performing a two-stage calculation overan arbitrary environment of static obstacles surroundedby 
uid. A �nite di�erence approximation to the Navier-Stokes equations is �rst applied to a low resolution, vox-elized representation of the scene. The resulting velocityand pressure �elds describe the gross transport of liquid,including e�ects such as splashing, vorticity and overturn-ing. Local 
uid velocity is then used to drive a height �eldequation or to convect massless marker particles. The po-sition of any free surface can thus be determined to a sig-ni�cantly higher resolution than that of the Navier-Stokescalculation. In addition, the pressure �eld, together withthe Lagrange equations of motion, is used to simulate dy-namic buoyant objects. Typical disadvantages to volumet-ric methods such as poor scalability and lack of control areaddressed by assuming that stationary obstacles align withgrid cells during the �nite di�erence discretization, and byappending driving functions to the Navier-Stokes equa-tions. The output from our system is suitable for many ofthe water rendering algorithms presented by researchersin recent years.Keywords: Fluid Simulations, Navier-Stokes Equations,Physics-Based Modeling, Free-Surface Flow.1. IntroductionSome of the most breathtaking animations in recent yearshave been generated by modeling the interaction betweenlight and water. E�ects such as caustic shading, re
ection,refraction, and internal scattering have been addressed insome detail, with realistic results 12; 15; 17. One charac-teristic of this work however, has been that the motionof the water surface is approximated by a non physics-based function. Suggested methods have included para-metric functions 4 and sinusoidal phase functions 8; 13.Two exceptions to this are the papers by Kass and Miller,and Chen and Lobo. Kass and Miller use a fast approxi-mation to the two-dimensional shallow water equations tosimulate surface waves in water of varying depth 7. Theirmodel allows for the re
ection and refraction of waves, andtakes account of mass transport, but it does not addressthe full range of three-dimensional motion found in a liq-uid. Such motion includes rotational and pressure basedThis research is partially supported by ARPA DAMD17-94-J-4486; DMSO DAAH04-94-G-0402; National Library ofMedicine N01LM-43551 and ARO DURIP DAAH04-95-1-0023.

e�ects responsible for the much of a 
uid's characteris-tic behavior. They also cannot easily incorporate dynamicobjects or buoyant e�ects into the model, because the ve-locity of the 
uid is known only on the surface, and in-ternal pressure is not calculated at all. Chen and Lobogo further towards a physics-based 
uid methodology bysolving a simpli�ed form of the Navier-Stokes equationsin two dimensions 1. However, they assume that the 
uidhas zero depth, and calculate the elevation of the surfacesolely from the instantaneous pressure. This allows themto perform some interaction between moving objects andthe 
ow �eld, but restricts the class of problems that canbe solved using the method. Notably, obstacle geometrymust be two-dimensional, and although the surface heightis varied for animation, they treat the 
uid as being com-pletely 
at during the calculation. Therefore, convectivewave e�ects, mass transport, and submerged obstacles arenot covered by their technique.Comprehensive models of 
uid motion do exist, andthere are a variety of tools for solving them in the �eldof Computational Fluid Dynamics (CFD). These methodsgenerally involve direct simulation techniques to get accu-rate 
uid motion. Unfortunately, in any direct simulationtechnique the temporal resolution is strongly coupled tothe spatial resolution. Thus, if the spatial resolution dou-bles, the temporal resolution must also be doubled so thatthe solution does not move more than one spatial sampleper time step. This gives running times proportional tothe fourth power of the resolution, so most of these tech-niques will scale poorly. Furthermore, an animator needsa fairly clear understanding of the system of equations be-ing solved so that he or she can set initial and boundaryconditions to get the desired results. An ideal 
uid sim-ulator for graphics applications would apply the correctconditions automatically based on the underlying geome-try. CFD methods also resist external control, making itdi�cult to force a particular motion from a 
uid, unless itis a natural consequence of the system. These restrictionsare an inherent part of the 
uid modeling problem. Thequestion arises whether it is possible to accurately modelrealistic 
uid motion while keeping within acceptable e�-ciency bounds for Computer Graphics.In this paper we present a solution to the Navier-Stokes equations for modeling liquid motion, that satis�esmany of an animator's needs. Realism is provided througha �nite di�erence approximation to the incompressibleNavier-Stokes equations. This gives rise to a completepressure and velocity pro�le of the simulated environment.This pro�le is then used to determine the behavior of freesurfaces, and is loosely coupled to the Lagrange equationsof motion to include buoyant rigid objects into a scene.The range of behaviors accounted for include wave e�ectssuch as refraction, re
ection and di�raction, together with



rotational motion such as eddies and vorticity. Further-more, velocity and pressure are strongly coupled withinthe model. This means that even the simplest animationexhibits subtle realistic behavior not available using pre-vious computer-graphics 
uid models.Usability has also been a strong motivation for this pa-per. The Navier-Stokes equations are solved over a coarse,rectangular mesh containing an arbitrary distribution ofsubmerged or semi-submerged obstacles. Boundary con-ditions for the mesh are generated automatically by con-straining the free variables at an obstacle-
uid or air-
uidboundary. This low resolution calculation together withhomogeneous boundary conditions leads to a relatively ef-�cient determination of 
uid velocity and internal pres-sure. Detail is achieved by using the velocity �eld to con-centrate attention on regions of interest, i.e., the 
uid sur-face. The surface is represented as either a chain of mass-less marker particles, or a height �eld. The markers arecarried around the mesh by convection, and can have ar-bitrary connectivity, accounting for multiple colliding sur-faces in a scene.Consideration is also given to controlling the overall be-havior of the 
uid. Liquid sources or sinks (known as in-
ow and out
ow boundaries) can be included anywhere inthe environment. They allow liquid to 
ow (or be forced)into a scene, or 
ow out at a natural rate. A time depen-dent pressure �eld may also be applied to the 
uid surface.Thus, the e�ects of a strong wind can be simulated andinitial waves be driven realistically. The output from thesystem is a polygonal surface or height �eld, both of whichcan be rendered using many of the techniques presentedby researchers in recent years 4; 7; 12; 13; 17.This paper is organized as follows: We begin by de-scribing the Navier-Stokes equations, and show how theseequations can be solved to give the complete pressureand velocity pro�le of a 
ow. If care is taken during dis-cretization of the scene, this can be done e�ciently andautomatically for an arbitrary environment. Section 4 de-scribes how the dynamic position of multiple free surfacescan be delineated without restriction by the convectionof massless particles. For the special but common caseof a 
ow without overturning, a height �eld equation isderived, that couples velocity and surface elevation to theNavier-Stokes equations. This generate a mesh suitable forspline-based rendering. A method for loosely coupling theLagrange equations of motion to the 
ow pressure pro�leis described in Section 5. This method is used to includebuoyant rigid objects into a scene. The complete algorithmfor our technique is given in Section 6. Section 7 describestwo methods for controlling the 
uid motion by constrain-ing velocity and pressure boundary conditions. Examplesare given to simulate di�erent speeds of 
ow and winddriven waves. The paper concludes with a description ofseveral example animations that have been made usingthis system, together with a discussion of the procedurefollowed in each case.2. Navier-Stokes EquationsThe motion of a 
uid at any point within a 
ow is com-pletely described by a set of non-linear equations knownas the momentum or Navier-Stokes equations. In three di-mensions, for an incompressible 
uid such as water, these

equations can be written as@u@t + @u2@x + @uv@y + @uw@z = � @p@x + gx + �( @2u@x2 + @2u@y2 + @2u@z2 )@v@t + @vu@x + @v2@y + @vw@z = � @p@y + gy + �( @2v@x2 + @2v@y2 + @2v@z2 )@w@t +@wu@x + @wv@y + @w2@z = � @p@z + gz + �( @2w@x2 + @2w@y2 + @2w@z2 ); (1)where u, v, w are velocities in the x, y, z directions re-spectively, p is the local pressure, g, gravity, and � is thekinematic viscosity of the 
uid. Although they may seemdaunting at �rst sight, these equations have very hum-ble origins. They are derived from Newton's Second Lawwhich states that momentum is always conserved. TheNavier-Stokes equations simply account for all momentumexchange possibilities within a 
uid. Speci�cally, the termson the left hand side of the equations account for changesin velocity due to local 
uid acceleration and convection.The right hand terms take account of acceleration dueto the force of gravity (or any body force g), accelerationdue to the local pressure gradient, rp, and drag due to thekinematic viscosity, �, or thickness of the 
uid. Togetherwith appropriate boundary conditions and the constraintthat not only momentum, but also mass should be con-served (see Section 3.1) , the Navier-Stokes equations canbe used to accurately simulate 
uid phenomena.3. Solving the Navier-Stokes equationsDespite the complexity of a system of di�erential equa-tions such as (1), it is possible to solve it in an intuitiveway, using standard analysis tools 3. The �rst step is todiscretize both the equations and the environment that wewant to model. There are a number of ways to do this, butit is important to keep four things in mind:� In a typical graphics application involving liquids, thereare likely to be numerous boundaries between the liquidand other objects, and between the liquid and the sur-rounding medium. Computation cost can be minimizedif such interfaces are homogeneously incorporated intothe model instead of being treated as special cases.� Generality is everything. Users of the system need tobe able to specify environment geometry quickly, andwithout referring to the underlying equations for thecorrect boundary conditions.� It must be possible to apply some external control tothe system so that the animator can accurately specifyhow the liquid will behave.� The range of motion that can be animated using thetechnique should include the set of e�ects available withexisting computer-graphics methods, and extend it byadding new, interesting, and useful behavior.With some thought, a good discretization that providesa solution to the �rst of these constraints also providessolutions to the other three. In the following sections wepresent a numerical solution to the Navier-Stokes equa-tions. The technique combines a low resolution 3D calcu-lation to determine velocity and pressure �elds within theliquid, with a height �eld equation that is used to preciselytrack the position of a free surface. At all times during thecomputation, boundary conditions due to solid obstaclesand the 
uid surface are homogeneous, and their applica-tion is transparent to the user.
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uid,be a Surface cell on the boundary between the liquid andsurrounding medium, or be Empty. In all four cases, thevelocity and pressure �elds are de�ned everywhere.This discretization leads to an explicit �nite di�erenceapproximation of (1) in the form 6~ui+1=2;j;k = ui+1=2;j;k + �tf(1=�x)[(ui;j;k)2 � (ui+1;j;k)2]+(1=�y)[(uv)i+1=2;j�1=2;k � (uv)i+1=2;j+1=2;k ]+(1=�z)[(uw)i+1=2;j;k�1=2 � (uw)i+1=2;j;k+1=2 ] + gx+(1=�x)(pi;j;k � pi+1;j;k) + (�=�x2)(ui+3=2;j;k�2ui+1=2;j;k + ui�1=2;j;k) + (�=�y2)(ui+1=2;j+1;k�2ui+1=2;j;k + ui+1=2;j�1;k ) + (�=�z2)(ui+1=2;j;k+1�2ui+1=2;j;k + ui+1=2;j;k�1)g; (2)for each velocity component u,v, and w of cell i; j; k.Although this system of equations is complex, the so-lution process is straightforward. To move the solutionahead in time, velocities and pressures from the previ-ous iteration are taken directly from individual cells andplugged into (2) to give the new velocities for the cur-rent iteration (~u,~v, ~w). In some cases, velocities are re-quired that do not lie on cell faces, in which case theyare averaged over the nearest available values, e.g., ui;j;k =12 (ui+1=2;j;k+ui�1=2;j;k), and the square of a quantity, e.g.,u2 at (i; j; k), is the square of the average, (ui;j;k)2.The new velocities are labeled with a tilde becausethe direct application of (2) does not ensure that (3) issatis�ed. Due to the discretization of the environment,each individual cell may not explicitly satisfy the criteria

that mass be conserved and that the 
uid is incompress-ible. Also, the new pressure �eld needs to be determined.These constraints are satis�ed simultaneously by solvingthe mass conservation, or continuity equation 3,@u@x + @v@y + @w@z = 0; (3)which essentially says that the net 
uid 
ow into or out ofa cell is zero.Consider a cell i; j; k. The divergence of 
uid within thecell, or \missing mass", is given by 11Di;j;k = �((1=�x)(ui+1=2;j;k � ui�1=2;j;k)+ (1=�y)(vi;j+1=2;k � vi;j�1=2;k ) (4)+ (1=�z)(wi;j;k+1=2 � wi;j;k�1=2)):Notice that this is a �nite di�erence approximation to thecontinuity equation. A positive D therefore, represents anin
ux of 
uid, and in the real world would correspondto an increase in cell pressure and subsequent increase in
uid out
ow from the cell. Similarly, a negative D lowersinternal pressure and increases in
ow from neighboringcells. Thus if the change in cell pressure is scaled accordingto the divergence in the cell, and the face cell velocities areadjusted according to the change in pressure, the cell canbe made to satisfy (3). The change in pressure for a cell is�p = �D; (5)where � is given by 11� = �0=2�t( 1�x2 + 1�y2 + 1�z2 ); (6)and �0 is a relaxation coe�cient within the range [1,2].The cell face velocities are then updated according to �psuch that ui+1=2;j;k = ui+1=2;j;k + (�t=�x)�p;ui�1=2;j;k = ui�1=2;j;k � (�t=�x)�p;vi;j+1=2;k = vi;j+1=2;k + (�t=�y)�p;vi;j�1=2;k = vi;j�1=2;k � (�t=�y)�p;wi;j;k+1=2 = wi;j;k+1=2 + (�t=�z)�p;wi;j;k�1=2 = wi;j;k�1=2 � (�t=�z)�p; (7)and the cell pressure is updated according to~pi;j;k = pi;j;k + �p: (8)Use of the above equations satis�es (3) for a single cell,but neighboring cells may now have a non-zero divergence11. In order for the whole mesh to simultaneously satisfy(3), the pressure and velocities are �rst adjusted using(5)� � �(7) for every cell in the grid. This procedure is thenrepeated until all cells in the 
ow �eld have a divergenceless than some prescribed small �. With a �0 of 1:7 and� of 0:0001, the examples shown in this paper convergedin 3{6 sweeps on average. Once convergence is achieved,the 
uid is considered to be locally incompressible andthe velocity and pressure �elds are complete for buoyantobject inclusion and the start of the next cycle.3.2. Boundary ConditionsThe boundary conditions for our model are set automati-cally once the contents of each cell in the mesh have beendetermined. They are also homogeneous. That means thatonce they have been set, the Navier-Stokes equations canbe applied blindly without determining exactly where sur-faces or obstacles lie. This makes for cheap computation
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uid and a solid obstacle, or be-tween the 
uid and atmosphere, or a point at which 
uid
ows into or out of the system. In all cases, generalizingassumptions about the shape of static obstacles, and theposition of free surfaces can greatly reduce the amount ofwork that we have to do, without compromising accuracyor realism.3.2.1. Stationary ObstaclesConsider Figure 2, which shows an obstacle and a freesurface. We assume that the walls of an obstacle are al-ways co-incident with the face of a computational cell. Itthen becomes a trivial process to set correct solid obsta-cle boundary conditions; That is, velocity and pressurefor use in the �nite di�erence expressions. For example,the component of 
uid velocity normal to the face of anon-permeable obstacle is zero. Because obstacle and cellfaces are coincident, the normal velocities are set directly(u0 = 0 in the �gure). In the case of a non-slip obsta-cle which exerts a drag on the 
uid, the tangential veloc-ity at the boundary is also zero. This is set indirectly bymaking the tangential cell face velocity inside the bound-ary cell equal and opposite to that outside in the 
uid(w0 = �w1). Finally, the pressure in the boundary cell,which is also needed for the �nite di�erence calculation,is set equal to the pressure in the adjacent 
uid cell, pre-venting any acceleration across the boundary.Another useful type of obstacle is a free-slip boundary.The treatment of pressure and velocity is the same as fora non-slip boundary except that the inner tangential ve-locity is set equal to that outside in the 
uid (w0 = w1).A free-slip boundary can be thought of as a plane of sym-metry for motion tangential to it, thus it provides a con-venient way to bound a 
ow �eld.3.2.2. In
ow and Out
owFluid can easily 
ow into or out of the system by virtueof in
ow or out
ow boundary cells. For in
ow, the re-quired input velocity is set on the cell faces and held�xed throughout the calculation. In the case of an out
owboundary, velocities are initially set equal to the tentativevelocity �eld in adjacent 
uid cells and then allowed to re-lax without constraint during the pressure iteration step.

This ensures that 
uid can 
ow freely out of the systemwithout causing any upstream artifacts.3.2.3. Free SurfaceBoundary conditions also need to be set on the free sur-face. When (2) is applied to a surface cell, velocities andpressures are needed from adjacent empty cells. We as-sume that for most applications, if the wavelength of anydisturbance is longer than a few inches, forces due to sur-face tension will be negligible. We then relax the constraintthat we need to know exactly where in a cell the surfacelies. Thus, if any part of a free surface passes through acell, that cell is labeled as a Surface cell, and the equationof continuity (3) is used to set boundary velocities. Con-sider a two dimensional surface cell which is surroundedon three sides by cells containing 
uid. The velocity onthe remaining surface side is set so that the divergence Dof the 
uid in the cell is zero. So referring to Figure 2,wi;j;k+1=2 = wi;j;k�1=2 � (�z=�x)(ui+1=2;j;k � ui�1=2;j;k ): (9)If the cell had two sides which face an empty cell, we re-quire that @u=@x and @w=@z both vanish separately, thatis that each open side velocity equals the velocity of theside of the cell opposite it. This also satis�es (3). Finally,for the case in which three sides are open, the side oppo-site the 
uid carries the velocity of that side, while theremaining two sides follow freely the e�ects of the bodyforce and do not otherwise change. A three dimensionalsurface cell has velocity components set in an analogousfashion, leading to 64 distinct Empty{Fluid con�gurations.The pressure in a surface cell is set to the applied atmo-spheric pressure or forcing pressure function (see Section7.2).4. Tracking 
uid positionWe have described a method for solving the full Navier-Stokes equations over a �nite di�erence mesh. From themesh we want to generate a smooth and accurate repre-sentation of the actual 
uid surface position. We also wantto track the motion of such a surface over time, so thatwe can adjust the contents of the mesh accordingly (i.e.,Full, Surface, or Empty). Finally, to avoid aliasing, theresolution of the surface should not be restricted by thecoarse resolution of the mesh. With these goals in mindthree methods of surface identi�cation have been devel-oped, each of which is useful for a particular class of liquidphenomena.4.1. Marker ParticlesThe simplest and most functional way to track 
uid po-sition in 2D is to convect massless marker particles withlocal 
uid velocity. In this way particles are continuouslyintroduced at in
ow boundaries and removed if they crossan out
ow boundary, and can splash and 
ow freely. Aparticle's new position is found using an area weightinginterpolation over the four nearest cell velocities (See Fig-ure 3) and multiplying the resultant velocity by the cur-rent timestep. The �nite di�erence mesh is then labeledas follows:� A cell containing no particles is Empty.� A cell containing at least one particle that is adjacentto an Empty cell is a Surface cell.� A cell containing at least one particle that is not a Sur-face cell is a Full cell.
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uid velocity for a marker k.The use of marker particles can highlight the full range ofinternal 
uid motion such as rotation and splashing at agreater resolution than the �nite di�erence mesh. It is im-portant to note that the particles do not represent a massof 
uid. They are used to de�ne the position of the sur-face only, and have no e�ect on the calculation. Framesfrom two dimensional animations using marker particlesare shown in Figure 4. Figure 4(a) shows that an initialpulse of water has struck the sides of a concrete tank andhas been projected up into the air. This jet eventuallyoverturns and crashes back down into the growing pool.Marker particles are ideal for animating violent phenom-ena such as overturning waves because they de�ne the po-sition of the 
uid exactly, regardless of how complex thesurface has become. Figure 4 is discussed in more detailin Section 8.4.2. Free Surface ParticlesMarker particles can also be used to precisely delineate anyfree-surfaces in a scene. Instead of appearing within everycell containing 
uid, a grid of markers is placed along theboundaries between 
uid and obstacles or air. This gridis convected with local velocity as before. However, thenumber, distribution, and connectivity of particles are al-lowed to change dynamically as the position of the surfacechanges. The rules for removing and adding particles aresimple. If two particles become too close together, deleteboth of them and connect their neighbors. If two particlesbecome too far apart, insert a new particle on the linkbetween them. This ensures that the surface always re-mains continuous and that colliding surfaces are smoothlyconnected. In two dimensions this method is particularlyuseful because it is fast and can easily account for multiplesurfaces.4.3. Height FieldLiquid in the real world often has a surface that is singlevalued. Examples of this are puddles, rivers, or the ocean(as long as there are no overturning waves). For such casesthe position of the surface can be calculated without usingmarker particles because we no longer need to track thecomplex geometry caused by overturning. We de�ne thesurface height along the y axis, at the center of each ver-tical column of cells in the three-dimensional mesh. Thechange in local surface elevation at each timestep is deter-mined by the local 
uid velocity, that is, by the verticalcomponent of the 
uid motion plus the horizontal convec-

tion of the surface elevation from adjacent cell columns,@h@t = w � u(@h@x )� v(@h@y ); (10)where h is the surface height. This equation can be ap-proximated by a �nite di�erence expression 11ht+�ti;j = hti;j + �tf �wt+�ti;j;k+(hti�1;j � hti+1;j )4�x (ut+�ti+1=2;j;k + ut+�ti�1=2;j;k) (11)+(hti;j�1 � hti;j+1)4�y (vt+�ti;j+1=2;k + vt+�ti;j�1=2;k )g:This expression is used to update the position of the height�eld once the velocity and pressure �elds have been calcu-lated. It is important to note that despite super�cial sim-ilarities to the method used by Kass et al. in 7, the height�eld equation is very di�erent. Here, surface elevation isdriven by the underlying 
uid velocity. Therefore, veloc-ity or pressure disturbances anywhere in the 
uid volumecan a�ect the surface (see Examples). Cell con�gurationfor the height �eld approach is trivial. Cells crossed bythe height �eld are Surface cells while those above it areEmpty, and those below it are Full.For dramatic e�ects such as crashing waves or splashing,the height �eld can be combined with the marker particles.Whenever the vertical velocity of the surface is greaterthan some positive threshold, a set of particles are intro-duced just below the surface and the local 
uid velocityis used to set their initial velocity. The particles are thenremoved from the Navier-Stokes calculation and a�ectedonly by gravity, wind, and air resistance. There is inter-esting discussion of topics related to the use of particlesystems for 
uid animation in 4; 5; 10.5. BuoyancyRigid dynamic objects can be included in a scene using thevelocities and pressures calculated using the Navier-Stokesequations. Speci�cally, we assume that each rigid objectis discretized and consists of a set of nodes ni. For eachmodel surface node ni which is within the 
uid, the forceacting on this node is calculated based on the followingformula fni = �rpidVi +mig; (12)where dVi is a volume associated with the submerged nodeof the object and rpi is the gradient vector of the pressure.Each component of rpi is computed in discrete form as(rpi)xj = pni � pni;xj�xj ; j = 1; 2; 3 ; (13)where pni is the pressure in the cell containing ni, andpni;xj is the pressure in the previous cell in the xj direc-tion. Also, g is the gravitational acceleration, and mi isthe nodal mass assuming lumped masses. The total forceon the object due to the 
uid motion and gravity is givenin discrete form by ffluid =Xi fni : (14)Based on the total force acting on each node, we computethe generalized external forces fq (total force and torque



(a) (b) (c) (d)(g) (h) (e) (f)Figure 4: Frames from two dimensional animations making use of marker particles. A jet of water splashes into aconcrete tank (a-d). A drop of water splashes into a shallow pool (e-h).acting on the object) as demonstrated in 9 and we computeits motion based on the Lagrange equations of motionM�q +D _q = fq + gq; (15)where M and D are the object's generalized mass anddamping matrices, q are the model translational and ro-tational degrees of freedom, and gq are the generalizedcoriolis and centrifugal forces. The mass matrix, M, is de-rived directly from the object in question 9, and is unaf-fected by the 
uid model. The damping matrix,D, also hasthe same form as in 9, but with the damping coe�cientsadjusted proportional to the relative velocity between anode, ni, and the local 
uid.In order to handle collisions of the 
oating objects withstatic obstacles, we also apply the techniques developed in9 for collision detection and collision force computation.The 
oating objects that we used in the examples aresmall compared to the mesh size and therefore it is possi-ble to make the simplifying assumption that they do note�ect the water 
ow. Thus, they act like large marker par-ticles moving and rotating according to local forces. Forthe objects to in
uence the motion of the 
uid, more so-phisticated techniques need to be employed.6. Summary of the Navier-Stokes AlgorithmThe complete algorithm for solving the Navier-Stokesequations and tracking the 
uid surface can be summa-rized in the following steps;1. De�ne obstacles and starting 
uid con�guration, andplace dynamic objects.2. Set initial pressure and velocity conditions.3. Determine cell contents depending on the method usedto track the surface.4. Set up boundary conditions for the free surface andobstacle cells.5. Compute ~u; ~v; ~w for all Full cells.6. Perform the pressure iteration for all Full cells.7. Re-calculate boundary velocities for Surface cells.8. Update the position of the surface and objects.9. Go to step 3.

7. ControlAn important part of the animation process is specifyinghow objects in a scene will move. Doing this for a 
uidsurface is di�cult because the governing equations (1) arestrongly coupled and non-linear. Large scale behavior ofthe system can be controlled by altering various constantssuch as gravity and viscosity, but it is di�cult to specify amotion then solve backwards to �nd the correct boundaryconditions to cause it. However, there are two places inour algorithm where coercion can be applied to the 
uid.These can easily be exploited to yield e�ective methodsfor controlling the 
uid surface.7.1. In
ow and out
ow velocitiesA time dependent function can be used to determine therate at which 
uid is pumped into a scene or the rate atwhich it is allowed to exit, producing a variety of e�ects.For example, a broken dam initially generates a high inputrate, but tails o� exponentially as the water level drops.Also, for animating a river scene, a varying in
ow andout
ow rate will simulate di�erent classes (speed, turbu-lence) of water 
ow without requiring any changes to theenvironment model.7.2. Surface pressure historyPerhaps the most natural way to specify surface behavioris to model nature. As wind blows across a liquid surface,small, low pressure vortices induce a local change in sur-face elevation. This in turn, disturbs the air
ow over thesurface, changing the pressure. Gravity then provides arestoration force for the initial perturbation which resultsin oscillation. Over time, this process is ampli�ed and awind driven wave is born. A similar e�ect can be achievedin a shorter time by applying a forcing pressure historyto the free surface during the Navier-Stokes computation.This may be constant, time dependent, or depend on thepresent height of the surface. For example, in two dimen-sions, interesting waves can be developed using the forcingfunction papplied(z) = A +Bcos(Cz � !t)�t ; (16)
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yFigure 5: Deriving constants for an applied pressure func-tion.
yFigure 6: Starting con�guration for 2D marble soup an-imation.where papplied is the pressure within a Surface cell, A=�tis the mean pressure, and B and C are constants derivedfrom the desired wave motion. From Figure 5, if 2L is thewavelength of the oscillation and D is the mean depth ofthe 
uid, then, B = ar�gDC ; (17)and C = �L ; (18)where a is the wave amplitude, and g is gravity. Such afunction is used to set the applied pressure boundary con-dition on the free surface (See section 3.2.3).8. ExamplesWe present a number of examples to show di�erent aspectsof the system described in this paper. Running times aregiven for a Silicon Graphics Crimson R4000. They do notvary linearly with the size of each problem because otherfactors, such as the total number of Full cells present, orthe speed of the 
ow, make a larger contribution to theamount of CPU time required.The �rst example (Figure 4(a-d)), is a two dimensionalanimation of a water jet splashing into a concrete tank.The water motion was calculated over a 30x40 grid of cells,and marker particles were used to delineate 
uid position.Two input rates were speci�ed; water in
ow and particlein
ow. The jet had a velocity of 0.8 ms�1 and new par-ticles were introduced at the in
ow boundary at a rate of500 particles per second. It is important to note that theonly overhead associated with the marker particles is thecost of moving and displaying them. A relatively sparsedistribution of particles was used in this case to clearlyshow that the model can account for colliding surfaces,overturning waves, and arbitrary splashing. A later frame

from the animation shows that after the jet is turned o�the vortices in the tank slow down and the surface starts tosettle (Figure 4(d)). This animation ran for 4500 iterationsin just over sixteen minutes. The same grid size (30x40)was used again to animate a splashing drop (Figure 4(e-h)). Figures 4(e) and (f) show the starting con�gurationof the drop and its initial impact with the surface. Thewaves caused by the collision travel out to the sides ofthe pool (Figure 4 (g)), and are re
ected back to give thecharacteristic 
uid rebound at the epicenter of the splash.Particle density was set at 25 per cell. This animation ranfor 2800 iterations in twelve minutes, slightly slower thanthe water jet example above because the average numberof Full cells per iteration was higher.If the scene geometry is rotationally symmetric, compu-tationally cheap two dimensional calculations can be madeusing linked chains of markers. Figure 8 shows two framesfrom an animation of a rigid marble dropping into a bowlof thick soup. The actual calculation was performed intwo dimensions by setting the z axis resolution to 1. Thecurved side of the bowl was approximated as a series ofsteps, and a semicircular drop of liquid was aligned alongthe y axis (see Figure 6) to represent the marble. The dropwas given an initial velocity of -0.2 ms�1, and the viscos-ity of the soup was set relatively high (0:003). Two chainsof particles were used to represent the free surfaces in thescene, 50 for the drop and 150 for the soup. The calcula-tion was run for two thousand iterations at a resolution of15x30x1 taking twelve minutes. The scene was rendereddirectly from the positions of the markers. Each chain wasused to de�ne the pro�le of a surface of revolution, whichwas smoothed using a series of bicubic splines. Finally,the marble and other objects were added, and the wholescene rendered using Pixar's PhotoRealistic RenderMan16. The liquid surface was colored using a straightforwardenvironment map, taking account of Fresnels's law 2 tocalculate the fraction of light re
ected toward the camera,or transmitted to the bottom of the bowl.The soup example clearly shows some of the advantagesof our model. The liquid drop for the calculation is thesame size as the marble object, so after impact the meansurface level has risen correctly. Also, the coupling betweenpressure and velocity develops as a non-linear oscillationwhich continues long after the wave due to the collision hassubsided. Previous computer graphics 
uid models wouldhave accounted for the surface wave, but not for the ac-companying pressure wave which is responsible for mostof the �nal motion.The �rst full 3D example is an animation titled Moon-light Cove (Figure 9). A 50x15x40 mesh was used to �nelyresolve the e�ect of two large ocean waves crashing into ashallow cove. Submerged rocks, and an irregular sea bot-tom, focus the waves into the center of the cove, causing anumber of interesting features on the water surface. Thewave becomes steeper as the water depth decreases, andeddies and pressure waves appear to the left of, and behindthe initial obstacle (Figure 9(b)).Setting up the scene was straightforward and proceededin two stages. First, a voxel based editor was used to de�nethe initial distribution of rocks and water (Figure 7). Thelast plane of cells opposite the cove were then designatedas in
ow cells, with in
ow velocity de�ned asu = u+ a!2cos!t; (19)



Figure 7: Calculation environment for the MoonlightCove.where a was the desired wave amplitude and ! the desiredwave frequency. The calculation was run for 2=! seconds,then the in
ow cells were changed to out
ow and waterallowed to leave the system at its natural rate. This ap-proach resulted in two full waves while allowing the addedwater volume to 
ow back out of the scene once the waveshad been re
ected. The animation took two and a halfhours to complete and ran for 20,000 iterations.RenderMan was also used to render this example. Twospline meshes were used; one generated from the surfaceheight �eld, and another from the distribution of bound-ary cells. The water surface was rendered as a glass-likeobject with small disturbances generated using the longcrested wave model suggested in 14. Detail in the rockswas provided using a displacement map and suitable noisefunction on the spline surface.The frames in Figure 10 show screen shots from ananimation involving buoyant objects. Water 
ows into aclosed container carrying soda cans along with it. Whenthe 
ow is turned o�, the cans gather at the far corner ofthe container because the walls in this example were set asnon-slip so the tangential 
uid velocity is zero. This sim-ulates the e�ect that objects tend to gather in stagnantparts of a 
ow. The water motion was precomputed inthirty minutes over a 30x10x20 grid. The soda cans wereadded later using an interactive editor which takes a pre-computed velocity and pressure �eld, and calculates theforces on an object within the mesh. In this way, manydi�erent shapes and sizes of object can be experimentedwith, without having to re-do the 
uid calculation.9. ConclusionsWe have presented a comprehensive method for animatingliquid phenomena. A direct simulation technique is usedto solve the Navier-Stokes equations in two or three di-mensions yielding a range of behavior unavailable withprevious computer graphics 
uids models. The methoddoes come with a computational cost, which, like othervolumetric techniques, scales proportional to the fourthpower of the spatial resolution. However, by careful dis-cretization of the environment, the most expensive partof the computation can be made at a low resolution. De-tail generation is then achieved by directly calculating theposition of a height �eld representing the 
uid surface, ortracking the changing connectivity of surface marker par-

ticles convected with local 
uid velocity. The model allowsfor some novel control techniques that can be used to gen-erate a variety of interesting e�ects, and is suitable as afront end to many of the more inspiring water renderingalgorithms available.References1. Chen, J., and Lobo, N., (1995) \Toward Interactive-RateSimulation of Fluids with Moving Obstacles Using Navier-Stokes Equations," Graphical Models and Image Process-ing, March 1995, pp. 107{116.2. Cook, R., and Torrance, K., (1982) \A Re
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(a) (b)Figure 8: A marble dropping into a bowl of thick soup. Initial collision (a). Oscillation due to coupling between pressureand velocity (b).
(a) (b)Figure 9: Moonlight Cove. Two ocean waves crash into a shallow cove. Pressure and velocity e�ects throughout thewater volume manifest themselves at the surface (a,b).
(a) (b)Figure 10: Dynamic objects. Soda cans are carried along with the incoming water, colliding with obstacles (a), andgetting caught in local eddies (b).


