
Object-Space Painterly Rendering for WebGL

Andy Hanson∗

Scott Todd†

Figure 1: The Stanford bunny rendered with 3 layers of brush strokes.

Abstract

We produce painterly images of 3D models by covering them in
a particle system of brush strokes. Strokes move along with the
original object, producing smooth animations. Strokes are rendered
in multiple layers; higher layers show detail and appear in areas
of high specular value. Strokes orient and curve themselves along
edges and towards centers of light. We have avoided the use of the
painter’s algorithm or 2D post-processing.

Keywords: Painterly Rendering, Non-Photorealistic Rendering,
Particle Systems, Painting, GPU Processing

1 Introduction

Non-photorealistic rendering (NPR) aims to bridge the gap between
the creativity and expressivity of traditional art and the interactive
and automated world of digital computer graphics. Various NPR
techniques have applications in games, films, architecture, and sci-
entific visualization. Painterly rendering is a subset of NPR that
tries to create images that have a painted appearance, as if the im-
age was created from a sequence of brush strokes on a canvas.

Painterly rendering research typically focuses on brush stroke prop-
erties, methods of user interaction, rendering techniques, and other

∗email: hansoa2@rpi.edu
†email: todds@rpi.edu
Project Repository: https://github.com/ScottTodd/PainterlyRendering

methods of approximating natural artwork.

Many past painterly algorithms [Hertzmann 1998], [Lu et al. 2010]
have first generated a “real” image using other methods, then at-
tempted to draw it as a painting. This brings with it the computa-
tional cost of fully rendering the scene twice, as well as a “shower
door” visual effect where 2D strokes do not move perfectly in sync
with 3D geometry.

Like others [Meier 1996], we instead keep a scene of brush stroke
particles. There is no “real” rendering but the paint, and strokes
store their own color and calculate their own light. Strokes are
transformed along with the original geometry, allowing them to be
controlled by a physics engine (in our case, cannon.js). In video
games, there is also the potential to change brush stroke properties
according to an object’s state - for example, a damaged character
glowing red. It would also be possible for painted objects to appear
along-side those rendered in other styles.

1.1 Related Work

The use of particle systems to create painted images was explored in
“Painterly Rendering for Animation” [Meier 1996]. Paint particles
are distributed onto 3D objects and undergo the same transforma-
tion. During the rendering phase, a reference picture rendering is
first created using traditional methods. Then every particle is sorted
by depth, and particles are drawn back-to-front. Particles take on
the color of the reference picture, or a solid color may be used per-
particle and the reference picture ignored. The color is applied to
a stroke texture (called the “brush image”), which is finally applied
to the screen at the particle’s (projected) location.

[Lu et al. 2010] uses a hybrid approach - strokes are attached to the
screen in 2D but (in the case of a 3D animated scene) follow the mo-
tion vectors of objects. There is still a slight grainy look as strokes
are stochastically killed and reborn when passing object boundaries.
Their approach is also suitable to video camera footage. Like us,
they use multiple stroke layers and a variety of stroke parameters
(in their approach, these parameters are applied to the whole image

at once rather than to a particular object.)

In [Hertzmann 1998], 2D input images are painted over by layers of
spline brush strokes. Strokes are placed along areas of high gradient
on a source image blurred proportionally to the current brush size.
In this manner, progressive emphasis is placed on regions of high
visual interest. An intuitive collection of parameters is chosen such
that a user may easily select between a spectrum of visual styles.
Parameter sets are presented for “Impressionist”, “Expressionist”,
“Colorist Wash”, and “Pointillist” styles.

[Kalnins et al. 2002] explores interactive techniques that allow
artists to create non-photorealistic renderings of 3D models. Artists
are given control over brush styles, paper textures, basecoats, back-
ground styles, and the position and styling of each stroke. Their
system uses information supplied from one or more viewpoints to
render the models at any new viewpoint while preserving the de-
sired aesthetic.

2 Painterly Rendering System

2.1 Algorithm Overview

We represent brush strokes as particles within particle systems.
(The particles will be referred to as “strokes”.) Each object in the
scene is represented as any number of layers; each layer has its own
particle system.

Our system creates stroke meshes out of three.js geometries. Other
inputs will include layer, color, and lighting information. The sys-
tem outputs an image to a WebGL canvas.

Algorithm 1: Painterly Rendering Overview

[Section 2.2] At load time : foreach object do
foreach layer do

Create a “stroke mesh” particle system
end

end
[Section 2.3] At run time : foreach frame do

Render a depth image
foreach object do

foreach layer from bottom to top do
foreach stroke do

Compute stroke properties in the vertex shader
1. [Section 2.3.1] Compute zQuality

(closeness to desired depth) and discard
strokes with negative zQuality

2. [Section 2.3.2] Compute diffuse and
specular lighting and discard strokes with
specular less than the minimum

3. [Sections 2.3.3 - 2.3.6] Compute the
“drawing gradient” at the stroke’s position,
which provides the stroke’s orientation and
curvature

[Section 2.3.6] In the fragment shader, render an
oriented, curved, colored version of the stroke
texture according to the above parameters

end
end

end
end

2.2 Stroke Mesh Creation

2.2.1 Stroke Selection

Rather than storing models directly as stroke systems, our system
loads three.js JSON object files. These are transformed into stroke
systems in the client using a method similar to that of [Meier 1996].
The total number of particles to be placed on the mesh is a param-
eter. Then for each face on the mesh, the number of particles on
that face is in proportion to its area; in other words, it is that face’s
fraction of the total area, times the total number of particles. Ran-
dom Barycentric coordinates are selected, and position and normal
values are interpolated between the face’s vertices.

Strokes on the same object are drawn in the same order every time,
so if strokes are generated one face at a time in this way, rendered
images will show an undesirable ordering of particles. So, strokes
are shuffled once during the loading phase.

2.2.2 Color Selection

To color strokes, the user may select random hue, saturation, and
luminance ranges for colors to be chosen from. This produces aes-
thetically pleasing representations of what are essentially “solid”
colored objects.

2.3 Rendering

2.3.1 Rendering Overview

Both the original triangle mesh and stroke meshes are needed for
rendering. We render in two passes. First, we render the original
geometry into a (floating point) depth texture. Then, we may render
objects in any order, but render lower stroke layers before higher
layers. Some higher-layer strokes will decide to discard themselves.
(As WebGL does not yet support geometry shaders, discarding a
stroke is done by shrinking it to 0 size and moving it offscreen.)

We also render object borders by fattening the original and drawing
only triangles which face away from the camera. This is visually
pleasing, but not necessary for our method.

Figure 2: The Stanford bunny rendered into a depth buffer texture.
Note that areas close to the screen are lighter than areas further
from the screen.

Figure 3: On the left, all zQuality values are set to 1. Backfacing strokes render, causing black marks. It is unclear which portions are in
front. On the right, zQuality is used, so only strokes that should be showing are drawn and strokes fade in smoothly along the edges.

2.3.2 zQuality

Good results may be achieved by sorting particles by depth, but at
the cost of performance. Blending particles is also unsuccessful
because the number of overlapping particles is unpredictable. So,
within each layer, particles are always drawn in the same order and
always draw on top of each other. This leads to occlusion issues
when a layer overlaps itself (see Figure 3).

This depth texture is passed as a uniform into the vertex shader
for paint strokes. Each stroke measures its depth compared to the
expected depth, and fades out as the difference increases. We scale
opacity by an amount zQuality defined as:

zQuality = 1.0−
(modelV iewPosition.z − depthTextureZ)/zEpsilon

Where zEpsilon is a parameter such that greater values cause
strokes to fade in over a greater distance. A simple on/off threshold
(zEpsilon � 1) would work, but strokes just showing up coming
around the edge of an object would suddenly “pop” into existence.

We could have discarded fragments rather than whole strokes, but
decided that the visible clipping of strokes that would result was
undesirable.

There is still another problem for strokes just at the edge of an ob-
ject, which may on some frames barely extend beyond its depth
buffer, leading to negative zQuality and a discarded stroke; and on
other frames fit perfectly; meaning that these strokes would flicker
on and off. A slight fattening of the original mesh ensures that all
of its strokes fit within its borders. We fattened the original mesh
by pushing each vertex a small distance along its normal.

2.3.3 Lighting

Each stroke is shaded solidly, using the light calculated at its cen-
ter. We use the Phong equations. Light is calculated per stroke (in
the vertex shader), rather than per-fragment. The total diffuse and
specular lighting are calculated separately (see section 2.3.9).

2.3.4 Use of Gradient

For each stroke, we calculate a “drawing gradient” property which
strokes will be drawn perpendicular to. We would like strokes to
satisfy the following attributes: they should follow the contours
of objects and not extend far beyond the edges; and they should

Figure 4: Left: Strokes are green where edgePart is high, red where
lightPart is high, and transparent otherwise.
Right: Lit version. Note how strokes circle around the center of
light, and also align along the sphere’s edges.

circle around centers of light. To satisfy these, we calculate the
“net gradient” of the image based on both position and lighting
attributes. These two parts are called the “edge gradient”, which
points away from edges towards the center, and the “light gradient”,
which points towards centers of high light intensity (see Figures 4-
5).

We calculate their contributions with this formula:

edgePart =‖edgeGradient‖
lightPart =min(lightFactor × ‖lightGradient‖,

(1− edgePart)2)

drawingGradient =edgePart× norm(edgeGradient)+

lightPart× norm(lightGradient)

Near the edges, only the edge gradient will factor in. It is more
important that strokes align along the silhouette edges than that
they circle the light. lightFactor is a parameter measuring how
important the light gradient is, but lightPart can never exceed
(1 − edgePart)2. This quantity is squared to strictly reduce it;
without squaring, lightPart would still occasionally overwhelm
edgePart, making strokes leak past object edges.

2.3.5 Edge gradient

The edge gradient is simply the x and y of the projected normal.
Strokes whose normals point straight at the viewer have no edge

Figure 5: To create this image, lightPart was defined as
lightFactor × ||lightGradient||. Specular light is just coming
in on the edge, driving the gradient wild.

gradient, meaning that there is no desire to orient them along the
edges of the object, as they are likely in the middle. Strokes whose
normals point straight to the side have an edge gradient of length 1,
meaning that they are on the very edge of the object and there is a
strong desire to orient them along it.

2.3.6 Light gradient

The light gradient is estimated without the expense of creating a
reference image, meaning a Sobel filter is not used. Instead, we
consider the changes in lighting as a viewer looks across the sur-
face of an object. To do this, we calculate the direction from the
camera to each stroke. This direction is then moved a small amount
to the camera’s right or up (for the gradient’s x and y components,
respectively). A second ray is then fired from the camera and as-
sumed to hit the same object. We approximate the local surface as a
sphere and use a ray/sphere collision solver to find the new intersec-
tion. (The sphere’s radius is the mesh’s curvature at that position.
We currently hard-code this, but it may be calculated at load-time
[Gatzke and Grimm 2006].) The lighting intensity is then calcu-
lated with the new position and normal there to find the difference
in light. So, the lighting equation is run 3 times per stroke.

2.3.7 Orientation and Curvature

Stroke orientation is the gradient rotated 90 degrees. The amount
of curvature is determined by multiplying the gradient length by the
parameter curveFactor; strokes always curve along the gradient.
Since strokes are point sprites, orientation and curvature are done
using image transformations in the fragment shader.

First, the fragment coordinate is rotated around the stroke center
by the orientation. Then it is distorted according to curvature (see
Figure 6). Fragments with x = 0.5 will remain unaffected, while
fragments near x = 0 or x = 1 will sag down in a parabola whose
height scales with the curvature amount.

yDistort = curveAmount× (x− 0.5)2

The stroke texture sampling is then taken at (x, y−yDistort). The
stroke texture controls opacity, not color. The fragment shader’s
output is the stroke’s shaded color, with an opacity value or the
stroke texture sampling.

2.3.8 Layering

As in [Hertzmann 1998], [Meier 1996], and [Lu et al. 2010], we
use multiple layers of brush strokes for each object. Usually, the
base layers will contain fewer, larger brush strokes. The base layers

Figure 6: From left to right: no orientation or curvature, orienta-
tion with no curvature, orientation and exaggerated curvature (2.0).

capture rough, un-detailed areas and completely cover the object’s
silhouette, while the top layers show fine details and may leave gaps
between each other. We found that three layers of strokes were suf-
ficient for the scenes that we tested. Layers have completely sepa-
rate properties, making for interesting visual effects; for example, a
base layer may be unsaturated and have a rougher stroke texture.

2.3.9 Specular Fade In

We support having higher-layer strokes fade in to only areas of
high specular light. If the specular lighting contribution at a stroke
does not exceed a (user-specified) minimum value, it is discarded.
Strokes with low specular will be partly transparent, allowing for a
smooth transition. This allows us to approximate the visual interest
sampling in [Hertzmann 1998] and [Lu et al. 2010]; however, our
method does not draw small strokes along object borders. (If such
was really desired, it could be done by considering the magnitude
of edge gradient.)

2.4 Parameters List

The following properties may be specified per-layer:

1. Number of strokes

2. Stroke size

3. Stroke texture

4. Curve factor

5. Color range (hue, sat, lum)

6. Specular amount and power

7. Specular fade-in range

These may be specified by calling our API or through a user inter-
face we created for this purpose.

3 Results

Our system renders 60 frames per second with 250,000 strokes at an
1000 by 500 pixel resolution on an ATI Radeon HD 5770 graphics
card in Google Chrome. Users were able to edit parameters using
our user interface to create their own designs.

The variety of parameters allows a wide range of styles (Figures
7-10). Artistic skill plays a large role in producing a quality im-
age. Even without a texture, interesting images are created through
layering and random variations in stroke color.

Figure 7: American teapot. All strokes are checkerboards. A
sparse blue layer is rendered on top of a red layer. Varying lu-
minance causes some strokes to be black or white.

Figure 8: The Utah teapot rendered using three layers of brush
strokes. The topmost layer uses a specular fade-in.

Figure 9: Different layers may have different properties. Large red
unsaturated strokes lead to medium pink grids leading to rainbow
stick figures.

Figure 10: The Stanford bunny demonstrating some of our parame-
ters. The base layer contains large, dark, desaturated brush strokes.
The top layer disappears below a minimum specular and fades in
as specular increases.

4 Limitations and Future Work

Our method achieves smooth zooming by scaling strokes down
when they are farther away. Thus, objects in the distance may be
drawn with many small strokes rather than with a few well-placed
strokes.

The primary efficiency issue with our method is that every stroke
is stored as a particle with position, normal, and coloring informa-
tion. For large objects with many small strokes this would have a
great data cost. Most strokes are discarded in most frames, whether
because they are occluded or do not reach their minimum specular
value. One improvement might be to perform stroke generation in
a geometry shader and only store the mesh as data. (Unfortunately,
WebGL does not yet support geometry shaders.)

Our method does not cull strokes at object boundaries, instead curv-
ing them inwards. This would not work well for objects to be ren-
ders with sharp corners (e.g. a dagger). However, per-fragment
culling could be easily added, at the cost of unappealingly slicing
strokes in two.

We are also exploring the use of textures for color selection. If a
model provides a set of UV coordinates at each vertex on a face,
we can interpolate those UV coordinates and perform a lookup into
a texture. We can then use that color for the brush stroke instead
of a random color. To preserve details, we could strategically place
upper-layer strokes at areas of high gradient in the texture, similar
to what others [Hertzmann 1998], [Lu et al. 2010] have done to
painterly images as a whole.

There remains the possibility of controlling stroke parameters in
real time based on how a game plays out. Values passed to the
vertex shader as uniforms are animatable - this includes texture,
size, curvature, and specular parameters. It may also be desired
to efficiently animate what are currently specified as shader (per-
stroke) attributes - for example, stroke colors on a character may
increase in saturation when the character is selected. This could be
done by adding uniform factors or offsets for stroke attributes.

5 Conclusions

We have presented an interactive painterly rendering system that
runs in a web browser using 3D models as inputs. Our system con-
siders brush stroke depth, lighting, and “drawing gradient” while
rendering. Our system uses layers, color variation, stroke textures,
and other parameters to allow for customization.

Non-photorealistic rendering techniques such as painterly render-
ing allow for great artistic freedom within computer graphics. As in
photorealistic rendering, care must be taken to accurately represent
objects within the scene, which can be challenging when working
with a constrained set of visual components.

Acknowledgments

We developed our system using three.js.

References

GATZKE, T., AND GRIMM, C. M. 2006. Estimating curvature on
triangular meshes. International journal of shape modeling 12,
1, 1–28.

HERTZMANN, A. 1998. Painterly rendering with curved brush
strokes of multiple sizes. In Proceedings of the 25th Annual
Conference on Computer Graphics and Interactive Techniques,
ACM, New York, NY, USA, SIGGRAPH ’98, 453–460.

KALNINS, R. D., MARKOSIAN, L., MEIER, B. J., KOWALSKI,
M. A., LEE, J. C., DAVIDSON, P. L., WEBB, M., HUGHES,
J. F., AND FINKELSTEIN, A. 2002. Wysiwyg npr: Drawing
strokes directly on 3d models. In Proceedings of the 29th Annual
Conference on Computer Graphics and Interactive Techniques,
ACM, New York, NY, USA, SIGGRAPH ’02, 755–762.

LU, J., SANDER, P. V., AND FINKELSTEIN, A. 2010. Interac-
tive painterly stylization of images, videos and 3d animations.
In Proceedings of the 2010 ACM SIGGRAPH Symposium on In-
teractive 3D Graphics and Games, ACM, New York, NY, USA,
I3D ’10, 127–134.

MEIER, B. J. 1996. Painterly rendering for animation. In Pro-
ceedings of the 23rd Annual Conference on Computer Graphics
and Interactive Techniques, ACM, New York, NY, USA, SIG-
GRAPH ’96, 477–484.

