# CSCI-4530/6530 Advanced Computer Graphics

http://www.cs.rpi.edu/~cutler/classes/advancedgraphics/S14/

Barb Cutler cutler@cs.rpi.edu MRC 331A





















### Syllabus & Course Website

http://www.cs.rpi.edu/~cutler/classes/advancedgraphics/S14/

- Which version should I register for?

   CSCI 6530 : 3 units of graduate credit
   CSCI 4530 : 4 units of undergraduate credit
   (same lectures, assignments, quizzes, & grading criteria)
- This is an intensive course aimed at graduate students and undergraduates interested in graphics research, involving significant reading & programming each week. Taking this course in a 5 course overload semester is discouraged.
- Other Questions?

#### Participation/Laptops in Class Policy

- Lecture is intended to be discussion-intensive
- Laptops, tablet computers, smart phones, and other internet-connected devices are not allowed
  - Except during the discussion of the day's assigned paper: students may use their laptop/tablet to view an electronic version of the paper
  - Other exceptions to this policy are negotiable; please see the instructor in office hours

14

16

#### Introductions – Who are you?

- name
- year/degree
- graphics background (if any)
- · research/job interests, future plans
- something fun, interesting, or unusual about yourself

#### Outline

13

15

- Course Overview
- Classes of Transformations
- Representing Transformations
- Combining Transformations
- Orthographic & Perspective Projections
- Example: Iterated Function Systems (IFS)





### Transformations are used to:

- Position objects in a scene
- Change the shape of objects
- Create multiple copies of objects
- Projection for virtual cameras
- Describe animations













#### Outline

- Course Overview
- Classes of Transformations
- Representing Transformations
- Combining Transformations
- Orthographic & Perspective Projections
- Example: Iterated Function Systems (IFS)

26



| Homogeneous Coordinates                                                                                                                                                                                |    |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| <ul> <li>Add an extra dimension</li> <li>in 2D, we use 3 x 3 matrices</li> <li>In 3D, we use 4 x 4 matrices</li> </ul>                                                                                 |    |
| • Each point has an extra value, w                                                                                                                                                                     |    |
| $ \begin{pmatrix} x' \\ y' \\ z' \\ w' \end{pmatrix} = \begin{pmatrix} a & b & c & d \\ e & f & g & h \\ i & j & k & l \\ m & n & o & p \end{pmatrix} \begin{pmatrix} x \\ y \\ z \\ w \end{pmatrix} $ |    |
| p' = M p                                                                                                                                                                                               | 28 |



| • Most | of the tin                                         |   |   |   |   | •                                 | nore it | t |
|--------|----------------------------------------------------|---|---|---|---|-----------------------------------|---------|---|
|        | $\begin{bmatrix} x'\\ y'\\ z'\\ 1 \end{bmatrix} =$ | a | b | С | d | $\begin{bmatrix} x \end{bmatrix}$ |         |   |
|        | y' _                                               | e | f | g | h | <i>y</i>                          |         |   |
|        | z'   _                                             | i | j | k | l | z                                 |         |   |
|        | 1                                                  | 0 | 0 | 0 | 1 |                                   |         |   |
|        | multiply<br><i>affine ma</i>                       |   | - |   |   |                                   | nate    |   |











#### Storage

- Often, *w* is not stored (always 1)
- Needs careful handling of direction vs. point
   Mathematically, the simplest is to encode directions with w = 0
  - In terms of storage, using a 3-component array for both direction and points is more efficient
  - Which requires to have special operation routines for points vs. directions

#### Outline

- Course Overview
- Classes of Transformations
- Representing Transformations
- Combining Transformations
- Orthographic & Perspective Projections
- Example: Iterated Function Systems (IFS)

37

41





| Non-commutative Composition                                                                                                                                                                                    |    |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| Scale then Translate: $p' = T(Sp) = TSp$                                                                                                                                                                       |    |
| $TS = \begin{pmatrix} 1 & 0 & 3 \\ 0 & 1 & I \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 2 & 0 & 3 \\ 0 & 2 & I \\ 0 & 0 & 1 \end{pmatrix}$ |    |
| Translate then Scale: $p' = S(Tp) = STp$                                                                                                                                                                       |    |
| $ST = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 3 \\ 0 & 1 & l \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 2 & 0 & 6 \\ 0 & 2 & 2 \\ 0 & 0 & 1 \end{pmatrix}$ |    |
|                                                                                                                                                                                                                | 40 |

#### Outline

- Course Overview
- Classes of Transformations
- Representing Transformations
- Combining Transformations
- Orthographic & Perspective Projections
- Example: Iterated Function Systems (IFS)











#### Outline

- Course Overview
- Classes of Transformations
- Representing Transformations
- Combining Transformations
- Orthographic & Perspective Projections
- Example: Iterated Function Systems (IFS)

47















## For Next Time:

- Read Hugues Hoppe "Progressive Meshes" SIGGRAPH 1996
- Post a comment or question on the course WebCT/LMS discussion by 10am on Friday

