CSCI-4530/6530

Advanced Computer Graphics

http://www.cs.rpi.edu/~cutler/classes/advancedgraphics/s14/

Barb Cutler
cutler@cs.rpi.edu
MRC 331A

Luxo Jr.

Pixar Animation Studios, 1986

Topics for the Semester

* Meshes

— representation

— simplification

— subdivision surfaces

— construction/generation
— volumetric modeling
Simulation

— particle systems, cloth

— rigid body, deformation
— wind/water flows

— collision detection

— weathering

* Rendering

— ray tracing, shadows
— appearance models

— local vs. global
illumination

— radiosity, photon
mapping, subsurface
scattering, etc.

procedural modeling
texture synthesis
non-photorealistic rendering
hardware & more ...

Mesh Simplification

(a) Base mesh " (150 faces) (b) Mesh M (500 faces) (¢) Mesh M (1,000 faces) (d) Original /=M (13,546 faces)

Hoppe “Progressive Meshes” SIGGRAPH 1996

Mesh Generation & Volumetric Modeling

QI
Sl gt

Cutler et al., “Simplification and Improvement of
Tetrahedral Models for Simulation” 2004

Modeling — Subdivision Surfaces

Hoppe et al., “Piecewise Smooth
Surface Reconstruction” 1994

Geri’s Game

Pixar 1997 o

Particle Systems Physical Simulation

* Rigid Body Dynamics f (t) K (t

¢ Collision Detection
* Fracture

¢ Deformation

Miiller et al., “Stable Real-Time f; (t)
Star Trek: The Wrath of Khan 1982 Deformations” 2002

* For every pixel
construct a ray from the eye
— For every object in the scene

« Find intersection with the ray “An Improved Illumination
Model for Shaded Display”

Fluid Dynamics Ray Casting/Tracing
» Keep the closest

 Shade (interaction of
light and material) G/
“Visual Simulation of Smoke™) Secondary rays

Fedkiw, Stam & Jensen (shadows,
SIGGRAPH 2001 reflection
Foster & Mataxas, 1996 eriec .O 2

0 refraction)

Appearance Models Subsurface Scattering

Wojciech Matusik n n n
Jensen et al., “A Practical
- Model for Subsurface
\ Light Transport” 2001

Surface

Henrik Wann Jensen

Syllabus & Course Website

http://www.cs.rpi.edu/~cutler/classes/advancedgraphics/S14/

* Which version should I register for?
— CSCI 6530 : 3 units of graduate credit
— CSCI 4530 : 4 units of undergraduate credit
(same lectures, assignments, quizzes, & grading criteria)

* This is an intensive course aimed at graduate students and
undergraduates interested in graphics research, involving
significant reading & programming each week. Taking this
course in a 5 course overload semester is discouraged.

* Other Questions?

Participation/Laptops in Class Policy

* Lecture is intended to be discussion-intensive

» Laptops, tablet computers, smart phones, and
other internet-connected devices are not allowed
— Except during the discussion of the day's assigned

paper: students may use their laptop/tablet to view an
electronic version of the paper

— Other exceptions to this policy are negotiable; please
see the instructor in office hours

Introductions — Who are you?

¢ name

* year/degree

graphics background (if any)

research/job interests, future plans

something fun, interesting, or unusual
about yourself

Outline

* Course Overview

* Classes of Transformations

* Representing Transformations

* Combining Transformations

* Orthographic & Perspective Projections

» Example: Iterated Function Systems (IFS)

What is a Transformation?

* Maps points (x, y) in one coordinate system to
points (x’, ') in another coordinate system

x'=ax+by+c
yi=deteytf

* For example, Iterated Function System (IFS):

B

Simple Transformations

Isotropic
Tdentity Translation Rotation (Uniform)
Scaling

* Can be combined
* Are these operations invertible?

Yes, except scale = 0

Transformations are used to:

« Position objects in a scene
» Change the shape of objects
* Create multiple copies of objects

* Projection for virtual cameras

. Describe l l l
19

Rigid-Body / Euclidean Transforms

* Preserves distances
* Preserves angles

Rigid / Ey

20

animations
Similitudes / Similarity Transforms

A
* Preserves angles ® @

1

1

1

1

1

1
+

Identity
Translation Isotropic Scaling

Rotation

Linear Transformations

A — =7,
s //@ /;‘, (/ \
= Yl

\\7</, \\

Scaling Reflection

Scaling
Reflection

Shear

Lip+q) =L(p) +L(g)

L(ap) = aL(p)

Affine Transformations

* preserves
parallel lines

Scaling
Reflection

Shear

Projective Transformations

* preserves lines

Projective

Identity
Rotation

Perspective

Linear

Scaling

Isotropic Scaling Reflection

Shear

24

General (Free-Form) Transformation

* Does not preserve lines

» Not as pervasive, computationally more involved

Fig 1. Undeformed Plastic

Fig 2. Deformed Plastic

Sederberg and Parry, Siggraph 1986

Outline

» Course Overview

* Classes of Transformations

» Representing Transformations

* Combining Transformations

* Orthographic & Perspective Projections

» Example: Iterated Function Systems (IFS)

26

How are Transforms Represented?

x'=ax+by+c
yi=deteytf

MEFRINEH

p= Mp +1

Homogeneous Coordinates

* Add an extra dimension
« in 2D, we use 3 x 3 matrices

« In 3D, we use 4 x 4 matrices

* Each point has an extra value, w

x' a b c d||x
yi_|e f g h||y
z' i j k1 z
w' m n o p||w
r = Mp

28

Translation in homogeneous coordinates

x'=ax+by+c
y'=dxteytf

Affine formulation Homogeneous formulation

, x a b cl|x
H="b x}? v|=ld er|ly
yjyold eyl V 1) lo oo 1]l1

p = Mp + t p = Mp

Homogeneous Coordinates

* Most of the time w = 1, and we can ignore it

X a b ¢ df|x
yii_le f g h|ly
z' i j ok 1|z
1 0 0 0 1]]|1

* If we multiply a homogeneous coordinate
by an affine matrix, w is unchanged

30

Homogeneous Visualization

» Divide by w to normalize (homogenize)

« W =0? Point at infinity (direction)

(0,0,1)=(0,0,2)=...
(7,1,1)=(14,2,2)= ...
(4,5,1)=(8,10,2)

/fz

Translate (tx, ty,) Translate(c.0,0)
y

* Why bother with the
extra dimension?
Because now translations

Scale (Sx, Sy, Sz)

* Isotropic (uniform)
scaling: sx=s,=s:

x' ss 0 0 0
vl 1o s 00
21 o0 s 0
1 0 0 1

e
Y

Scale(s,s,s)

)0

7

Py

.
q

'

can be encoded in the matrix! ¢
x' 1 0 0 &« X
yi_|10 1 0 &y
z' 0 0 1 ¢ z
1 0 0 0 1 1
Rotation ZRotate(d)

« About z axis

x' cos@ -sin 0 0| |x
y'| _|sin@ cos@ 0 0| |y
2o 0 1 0]z
1 0 0 0 1 1

Rotation

* About (ks &, k), a unit
vector on an arbitrary axis
(Rodrigues Formula)

x' kiki(1-c)+c kk(l-c)-ks
V' | kkd(1-¢)tks kk(1-c)+c
2| | kk(l-c)-ks kk(l-c)-ks
1 0 0

Rotate(k,)

0

where ¢ =cosf & s=sin0

kk-(1-c)+hks 0| x
kk:(1-c)-kss 0|y
lek(1-c)+c 0| z

1|1

Storage

» Often, w is not stored (always 1)
* Needs careful handling of direction vs. point
— Mathematically, the simplest is to encode directions
withw=0
— In terms of storage, using a 3-component array for
both direction and points is more efficient

— Which requires to have special operation routines for
points vs. directions

36

Outline

* Course Overview

* Classes of Transformations

* Representing Transformations

* Combining Transformations

* Orthographic & Perspective Projections

» Example: Iterated Function Systems (IFS)

How are transforms combined?

Scale then Translate
—_— —
an Scale(2.2) 22 Translate(3,1) m)‘.’ 64
(0,0) (0,0)
Use matrix multiplication: p' = T(Sp) = TSp

20 3

0
8 = 1
0

(=
—_ o~ W
S o O

2
0
0

—_ O O
Il
[
S o
—_ o~

Caution: matrix multiplication is NOT commutative!
38

Non-commutative Composition

Scale then Translate: p' = T(Sp) = TSp

—_— —_— 53
wn Scale(2,2) (2.2) Translate(3,1) (3.]).'(P

(0,0) (0,0)

Translate then Scale: p' = S(Tp) = STp

— — ., (8.4)
wn Translate(3,1) .)' 42) Scale(2,2) (62)

0,0)

Non-commutative Composition

Scale then Translate: p' = T(Sp) = TSp

103 200 20 3
IS =101 1 020[=1021
001 001 001

Translate then Scale: p' = S(Tp) = STp

200 103 200
ST=1020 o1 /7{=1022
001 001 001

40

Outline

* Course Overview

* Classes of Transformations

* Representing Transformations

* Combining Transformations
 Orthographic & Perspective Projections

» Example: Iterated Function Systems (IFS)

Orthographic vs. Perspective

* Orthographic

Aigy/;’ N

* Perspective

projector T~~~

42

Simple Orthographic Projection

* Project all points along the z axis to the z =0 plane

=

X 1 0 0 0 |x
vyl o100y
ol o0 o0 0]z
1 000 1/]1

Simple Perspective Projection

* Project all points along the z axis to the z = d plane,

eyepoint at the origin:
X

By similar triangles:
XIx=dlz
X' = (x*d)/z

homogenize

x*d/z X
yrEd/z| _| 'y
d z

/

1 z

1
0
0
0

e (xy2)

0 0 O0f|x
1 0 01|y
0 0 z
0 1/d 0 1

Alternate Perspective Projection

* Project all points along the z axis to the z=0
plane, eyepoint at the (0,0,-d):
X
By similar triangles:

X/x = d/(z+d) » (xy,2)
X' = (x*d)/(z+d)

homogenize /-\

In the limit, as d — o

this perspective
projection matrix...

1 000
0100
00 00 -
0 0 1/d 1

Y o Yprzp)

z=-d zF0

...is simply an
orthographic projection

1 0 00
01 00
00 0 0
00 01

. (x,y,2)

46

x*d/(z+d) x 1 00 0] |x
y¥d/E+d)|_| vy |_|0 1 0 0|y
0 0 000 O0]]|z
1 E+d/d) [0 0 1d1]|1,
Outline

* Course Overview

* Classes of Transformations

» Representing Transformations

* Combining Transformations

* Orthographic & Perspective Projections

* Example: Iterated Function Systems (IFS)

Iterated Function Systems (IFS)

* Capture self-similarity

» Contraction
(reduce distances)

¢ An attractor is a

fixed point %gif%ﬁ e

y 2

A=UA@® Yy 3*#

48

Example: Sierpinski Triangle

* Described by a set of n affine transformations
e Inthis case,n=3
— translate & scale by 0.5

Another IFS: The Dragon

S RECET R

51

Assignment 0: OpenGL Warmup

Get familiar with:

— C++ environment
— OpenGL
— Transformations

— simple Vector &
Matrix classes

* Have Fun!
Due ASAP (start it today!)

Y4 of the points of the other HWs
(but you should still do it and submit it!)

53

Example: Sierpinski Triangle

for “lots” of random input points (x,, y,)
for j=0 to num_iters

randomly pick one of the transformations
(Ke1s Yien) = £
display (%, ¥i)

(%, ¥i)

Increasing the number of iterations

50

3D IFS in OpenGL

52

Questions?

Image by Henrik Wann Jensen

54

For Next Time:

» Read Hugues Hoppe “Progressive Meshes”
SIGGRAPH 1996

» Post a comment or question on the course
WebCT/LMS discussion by 10am on Friday

(a) Base mesh M7 (150 faces) — (b) Mesh M (500 faces) (¢) Mesh M (1,000 faces) (d) Original M=M" (13,546 faces)

55

